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Abstract—MapReduce has since its inception been steadily
gaining ground in various scientific disciplines ranging from
space exploration to protein folding. The model poses a challenge
for a wide range of current and legacy scientific applications for
addressing their ”Big Data” challenges. For example: MapRe-
duce’s best known implementation, Apache Hadoop, only offers
native support for Java applications. While Hadoop streaming
supports applications compiled in a variety of languages such as
C, C++, Python and FORTRAN, streaming has shown to be a less
efficient MapReduce alternative in terms of performance, and ef-
fectiveness. Additionally, Hadoop streaming offers lesser options
than its native counterpart, and as such offers less flexibility
along with a limited array of features for scientific software.
The Hadoop File System (HDFS), a central pillar of Apache
Hadoop is not a POSIX compliant file system. In this paper, we
present an alternative framework to Hadoop streaming to address
the needs of scientific applications: MARISSA (MApReduce
Implementation for Streaming Science Applications). We describe
MARISSA’s design and explain how it expands the scientific
applications that can benefit from the MapReduce model. We
also compare and explain the performance gains of MARISSA
over Hadoop streaming.

I. INTRODUCTION

Evolving scientific instruments and the rapid sophistication

of computing systems have resulted in large-scale scientific

simulations and data analysis workflows. Today, scientists in

a variety of disciplines such as earthquake simulation [32],

bioinformatics [13], climate science [25], and astrophysics [9],

generate data at increasingly larger scales than was possible

before. As more and more scientific data is generated, our abil-

ity to effectively manage and process such data also needs to

evolve. MapReduce, since its introduction at the 6th USENIX

Symposium on Operating Systems Design and Implementation

[14], has been widely used to this end. The MapReduce model

is inspired from functional programming. The model allows a

the uniform application of map and reduce functions to nearly

equally split data amongst participating nodes. Among its most

attractive qualities, the MapReduce model counts: inherent

data management, parallelization/synchronization abstraction

and fault-tolerance. For the scientist or the programmer, this

means the advantage of being absolved from providing paral-

lelization and synchronization features to programs, as those

features are automatically managed by the framework. Sim-

ilarly, data management and fault-tolerance (in case of node

failures) are abstracted away from the user and are instead the

responsibility of the MapReduce framework. Apache Hadoop

[1], the most widely used MapReduce framework, provides

these same advantages. Hadoop native does not provide sup-

port for application source code written in languages other

than Java. While Hadoop streaming attempts to address this

problem in enabling scripts and executable binaries to run

on its framework, our previous work [19] has shown (see

Table I and Figure 2 for summarized results) the negative

performance impact displayed by streaming applications to be

considerable. In this paper, we use the word streaming as in

the context of Hadoop, which provides a mechanism to run

non-Java applications from within the context of a Java-based

MapReduce framework.

Hadoop MapReduce relies on the Hadoop Distributed File

System (HDFS) [33], a non POSIX compliant filesystem, for

its data and cluster operations. Super computing facilities such

as the National Energy Research Scientific Computing Center

(NERSC) [5], part of Lawrence Berkeley National Laboratory

(LBNL) and scientific cluster computing centers such as

TeraGrid [8] primarily rely on POSIX-compliant file systems.

Thus, for scientific computing, filesystems such as GFS2 [34],

GPFS [31], Lustre [3], rather than HDFS are widely adopted,

making the adoption of MapReduce difficult, and reducing

availability to scientists. Finally, Hadoop streaming, in its

current form, although capable of generic data-intensive com-

puting, lacks features most attractive for scientific applications.

We present in this paper, MARISSA (MApReduce Imple-

mentation for Streaming Science Applications), a MapReduce

framework offering better performance and faster application

turnaround time than Hadoop streaming, while capable of fully

supporting a variety of POSIX compliant file systems.

The contributions of this paper are the following:

• We present the design and implementation of a MapRe-

duce streaming framework capable of running not only

Java applications, but also any executable binary.

• Provide evidence illustrating a considerable performance

improvement over Hadoop streaming both under normal

and under availability variations.
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Fig. 2. Streaming counterpart of Table I. At 1.6TB the “C” streaming version
is about 19% slower than Hadoop native. Note that the ‘C” vs Java baseline
experiments in Table I showed that ‘C” was 20% faster than Java for the
same applications and systems. Thus the actual overhead is even higher.
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Fig. 3. Following Table I and Figure 2, this shows streaming performance
as not a factor of I/O speeds in this case. In fact ‘C” streaming performs
faster I/O than Hadoop native. The performance losses occur in processing.
This graph shows processing of 1.6TB of Wikipedia data being filtered to
isolate embedded indices using 75 nodes in both cases.

variant of this problem could require all nodes to run the same

executable program with different arguments. Such a feature

although common and useful in scientific data processing, is

not addressed by Hadoop streaming.

3) Lack of support for individual input: In a similar man-

ner, each node might be required to process a specific file or

input dataset. While some nodes have different specifications

from others, it might be desirable to process specific files on

given nodes. For instance, it might be beneficial to process

parts of the input consisting of floating point numbers on a

node specialized for fast floating point operations, while other

nodes busy themselves with String filled parts of an input

dataset. With Hadoop this feature is not possible.

4) Lack of iterative support: Scientific applications such

as climate simulations [25] can be iterative in nature. As

such, after a run, the application might need to assess its

own output and determine if subsequent runs are needed in

order to achieve the desired precision. Subsequent runs should

automatically be scheduled in such cases. While MapReduce

frameworks like Twister [6] offer iterations, Apache Hadoop

does not. Twister, however, only provides Java program sup-

port, and no binary executable support. Similarly, Haloop [11]

is a modified version of Hadoop targeting iterative applica-

tions. Haloop provides a programming interface that users can

use to express the iterative nature of their applications. Haloop,

however, like Twister and unlike MARISSA, does not provide

executable binary support.

5) Lack of support for user specified redundant tasks:

Although Hadoop launches speculative tasks, such tasks are

discarded when primary tasks complete. A scientific applica-

tion might require multiple nodes to execute the same tasks

for result correctness comparison in the reduce phase. This

feature is currently not supported by Hadoop streaming.

6) HDFS is not POSIX compliant: Most modern and legacy

scientific applications require POSIX compliance on the part

of the filesystem. Thus, scientific facilities and cluster centers

such as NERSC and TeraGrid feature POSIX filesystems. As

we have previously shown, the lack of POSIX compliance by

HDFS renders its adoption in such facilities difficult, if not

impossible at the moment.

7) Hadoop streaming requires STDIN/STDOUT: Scientific

applications not relying on standard Input/Output for process-

ing do not qualify to run with Hadoop streaming. The Hadoop

streaming MapReduce model currently requires applications

to accept input only through STDIN and write out only to

STDOUT. This measure disqualifies many scientific applica-

tions from benefiting from the model. Although one could

re-write or modify an application for compliance, both large

and legacy applications do not always benefit from such a

possibility.

C. Solutions implemented in MARISSA

Faced with the challenges highlighted above, we have

implemented MARISSA, a MapReduce framework allowing

for any executable program to serve as map and/or reduce

functions. MARISSA also allows for:

• Full compatibility with POSIX filesystems.

• Iterative application support: The ability for an applica-

tion to assess its output and schedule further executions.

• The ability to run a different executable on each node.

• The ability to run different input datasets on different

nodes.

• The ability for a subset (or all) of the nodes to run

the same application, allowing the reduce step to decide

which result to select if applicable.

• The ability for programs not reading from STDIN and

writing to STDOUT to be executed.

D. Architecture and Design of MARISSA

As a MapReduce framework, MARISSA needs to adhere to

the three main pillars of the model:

• Data management

• Synchronization/parallelization abstraction

• Fault-tolerance





tolerance mechanism, rather than an input specific one. Should

a node fail with Hadoop, replicas of the chunk it held are

located on other nodes, and the nodes found to be holding

them are tasked with running a rescue job. This implies a

high disk space requirement as file sizes grow. Further more,

given large failures, or failures involving a chunk and its

replicas, a total failure is a possibility on Hadoop’s part. With

MARISSA’s approach, node failure is inherently decoupled

from data availability as the data is held by the shared

filesystem. This means that a user code exception or failure

does not jeopardize the job. Upon failures, the master is

notified through an exception handler, or a broken pipe in the

case of sudden node failures. The master then resubmits the

job to be executed by the first available node. As all nodes

benefit from full visibility on the disk, re-execution simply

consists of task re-assignment with no application-level data

movement from the failed node to the rescuing node. Given

MARISSA’s fault tolerance model, should massive failures

occur, or should the rescuing node itself fail, the fault-tolerance

operation is recursive. Failed rescuers are themselves added to

a completion table and the Fault-tolerance module runs

until all tasks are completed, or until all existing nodes die

or fail. This means that unlike Hadoop, losing a substantial

number of nodes, typically more than half, will not affect the

whole job, but rather rescue attempts are made until the last

living node dies.

III. PERFORMANCE RESULTS

In this section we compare the performance of MARISSA

and Hadoop streaming for two classes of scientific applica-

tions: BLAST and K-means clustering. BLAST (Basic Local

Alignment Search Tool) [24], is used for comparing pri-

mary biological sequence information, such as the amino-acid

sequences of different proteins or the nucleotides of DNA

sequences. A BLAST search enables a researcher to compare

a query sequence with a library or database of sequences, and

identify library sequences that resemble the query sequence

above a certain threshold. We chose both K-means and BLAST

as K-means is CPU-intensive, and BLAST presents substantial

memory demands. Choosing both a CPU and a Data-intensive

application ensures coverage of a wide array of scientific

applications.

The following experiments were performed on the Grid

and Cloud Computing Research Lab Cluster at Binghamton

University.

• Dual core – One desktop-class machine, which has a

single 2.4Ghz Intel Core 6600 with 2 GB of ECC RAM,

running Linux 2.6.24.

• Quad core – Nodes in a cluster, each of which has two

2.6Ghz Intel Xeon CPUs, 8 GB of RAM 4 cores, and

run a 64 bit version of Linux 2.6.15

• 8 core – Nodes in a cluster, each of which has two 2.6Ghz

Intel Xeon CPUs, 8 GB of RAM 8 cores, and run a 64

bit version of Linux 2.6.15.

• 48 core – Nodes in a cluster, each of which has two

2.6Ghz Intel Xeon CPUs, 16 GB of RAM 48 cores, and

0 500 1000 1500 2000 2500 3000 3500

0
5

10
15

20
25

30

Number of 2D records (Millions)

P
ro

ce
ss

in
g 

tim
e 

(m
in

)

Hadoop Streaming 

MARISSA

Fig. 5. 80-core Hadoop streaming and MARISSA clusters, each performing
K-means clustering on 0.1 Billion to 3.4 Billion 2D-records, using 20 nodes.
MARISSA here, given the CPU-intensive nature of the application performs
up to 47% faster than Hadoop streaming.
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Fig. 6. K-means clustering on both streaming MapReduce frameworks,
processing 858 million 2D-records given different cluster sizes ranging from
5 to 80 nodes.

run a 64 bit version of Linux 2.6.15.

Figure 5 shows K-means clustering on data increases from

0.1 Billion 2D-records to 3.4 Billion. MARISSA, because it is

free of data management during runtime, performs best here

as the framework can solely focus on mapping and reducing.

Hadoop also supports Datanodes on its TaskTrackers,

potentially inhibiting the worker nodes. MARISSA performs

up to 47% faster than Hadoop streaming.

Figure 6 shows K-means clustering on cluster sizes ranging

from 20 to 320 cores, which corresponds to a range of 5 to

80 nodes. MARISSA here performs up to 46.8% faster than

Hadoop with 5 nodes, and up to 47% with 80 nodes.

In Figure 7, we show the increasing performance disparity

between Hadoop streaming and MARISSA while both are run-

ning BLAST in the face of data increases. MARISSA runs up

to 13.6% faster than Hadoop streaming for 300,000 sequences,
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Fig. 7. 160-core Hadoop streaming and MARISSA clusters, each performing
gene sequencing and similarity comparisons using BLAST. Each framework
processes from 10,240 to 327,680 genetic sequences, using 80 nodes.
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Fig. 8. MARISSA and Hadoop streaming cluster running BLAST, performing
similarity comparisons on 40,960 genetic sequences. The number of cores
used here varies from 10 to 160 cores.

and subsequently provides up to 26.6% better performance

for 10,240 sequences. BLAST shows a lower performance

disparity over K-means between both frameworks, because

BLAST is more data-intensive than CPU-intensive. As we

have shown in [18] our MapReduce processing model fairs

better in CPU-intensive contexts.

In Figure 8, In contrast to K-means, BLAST is more mem-

ory intensive than CPU-intensive. The addition of computing

nodes, and the ability for MARISSA to leverage its unbridled

processing model therefore only minimally shows. MARISSA

runs up to 5.2% faster than Hadoop streaming with 10 cores,

and 21% faster with 160 cores. In Figure 9, both frameworks

gradually experience induced node failures. Hadoop streaming

is seen here experiencing an unrecoverable failure beyond an

eight node loss. This is because Datanodes with Hadoop

also hold the role of TaskTrackers. With MARISSA, as
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Fig. 9. This graph shows how Hadoop streaming and MARISSA behave
faced with defaulting or dying nodes while running BLAST, processing 10240
genetic sequences. Both clusters start with 20 nodes, and progressively, in
separate runs lose 2, 4, and 6 nodes. The Hadoop streaming framework
however experiences a total failure beyond a 4 node loss. This occurs as
worker nodes also hold vital data for processing.
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Fig. 10. This graph shows how Hadoop streaming and MARISSA slowdown
given node losses while running BLAST. Both frameworks start with 20 nodes
and process 10240 genetic sequences. Where comparable, Hadoop performs
up to three times as slow, while MARISSA only slows down by a factor of
2.

the input is decoupled from the processing nodes, the gradual

loss of nodes only slightly affects the processing runtime of

the underlying application. As data does not require being

shifted from failing node to rescuing node, fault-tolerance in

MARISSA’s case incurs little overhead if any. Data availability

is the responsibility of the filesystem, and not MARISSA’s.

Rescuing nodes are simply instructed by the master to

process the data left by the failed nodes. This simply involves

pointer passing which is very inexpensive, explaining the good

performance exhibited.

In Figure 10, we quantify both frameworks’ slowdown

factors with respect to node losses. Over 6 and 8 node losses,

Hadoop experiences a total job failure, leaving us unable to

draw a comparison beyond 4 lost nodes.



IV. RELATED WORK

While a fair body of work exists with regards to MapReduce

implementations, the questions of multi-language support and

application streaming has not been widely addressed. Here we

summarize work related to our research into two categories:

MapReduce comparisons: Our previous work, MARIANE

[17], is a traditional MapReduce framework, whose archi-

tecture presents the basis for MARISSA. Twister [15] is an

iterative MapReduce framework. Just like Hadoop, Twister

only supports user code written in Java. LEMO-MR [18] is

a lightweight, low-overhead MapReduce framework. LEMO-

MR also can only support Java applications. Amazon has pro-

duced EMR [10], a cloud computing framework allowing for

MapReduce programs to be implemented. In a similar fashion,

Microsoft has produced Azure [4]. While EMR borrows from

Hadoop’s model, Azure is limited by applications developed

inside its own environment, precluding legacy and pre-existing

scientific applications. Similarly, Twister4Azure [21] affords

the Azure framework the ability to apply iterative MapReduce

applications. MARS [23] is a MapReduce framework on

graphics processors. MARS does not feature streaming nor

multi-language support, as it offers only C/C++ APIs. Phoenix

[35] is a shared-memory implementation of the MapReduce

model. Similar to MARS, Phoenix features APIs solely for

C/C++ applications.

MapReduce applications in Science: CGL-MapReduce is

a set of MapReduce APIs for use with Hadoop MapRe-

duce in processing binary data formats in use with High

Energy Physics [16]. While CGL-MapReduce work focuses on

MapReduce for science, the APIs offered only focus on High

Energy Physics, and do not cover other scientific applications.

Similarly, Twister-BLAST [7] allows for the application of

BLAST on the Twister platform. Nguyen et.al. [28] expose

the use of MapReduce to climate satellite applications, and

much like CGL-MapReduce, only focus on a single application

suited for a given scientific discipline. AzureBlast [26] applies

the bioinformatics tool BLAST to the Azure cloud and evalu-

ates the advantages and trade-offs of such an approach. Buck

et. al [12] introduce a Hadoop plug-in allowing scientists to

specify logical queries over array-based NetCDF data models.

Mackey et. al [27], [36], highlight how the MapReduce

model can be useful to a myriad of disciplines, ranging from

bioinformatics to astrophysics, to cyber-security and discuss

extensions such as arbitrary input format support required for

scientific applications. While Lu et. al [26] address challenges

in their quest to develop scientific applications on the cloud,

the authors solely focus on Microsoft Azure [4] in their study.

V. CONCLUSION

According to CERN [2], every second of the Large Hadron

Collider’s operation produces more than 40 million data ele-

ments. Similar trends are being observed in other scientific fa-

cilities. The utilization of data-intensive frameworks capable of

managing and processing such large-scale data is increasingly

becoming a critical need to the scientific community. While

MapReduce presents an adequate model for this challenge, its

current implementation, in the form of Apache Hadoop, does

not yet fully allow scientists to make use of the model for their

purposes. In this paper, we first discussed the problems and

shortcomings of existing MapReduce implementations as they

apply to scientific applications, and subsequently addressed

these needs in MARISSA (MapReduce Implementation for

Streaming Scientific Application). Specifically, MARISSA al-

lows for:

• Iterative application support: The ability for an applica-

tion to assess its output and schedule further executions.

• The ability to run a different executable on each node of

the cluster.

• The ability to run different input datasets on different

nodes.

• The ability for all or a subset of the nodes to run

duplicates of the same task, allowing the reduce step to

decide which result to select.
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