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Abstract—To facilitate the sharing and re-use of data in
scientific studies we propose an automated technique for anno-
tating operation results. The annotated output has to preserve,
as much as possible, the properties of the input annotations.
The preservation of properties is achieved by taking into account
operation properties. Property preservation is evaluated with
information theory metrics.

I. MOTIVATING INTRODUCTION

In many disciplines producing data is expensive and there-
fore data is used for multiple purposes. We have experienced
this at various research and governmental organizations in the
field of hydrology and many other areas [3TU ]. However,
reusing other peoples data and interpreting them correctly
requires more information than the data itself. In Particular,
the metadata or context of the source data is required to
correctly re-use and interpret the data. However, the associated
context, although vital, is easily lost when communicating
results. Further, if a result serves as input to further calculations
it is close to impossible to see the implications of the source
data context in the output.
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A. Areas of applicability

Two areas where communicating the data context can be
of crucial importance are when re-using data from previous
studies, and as part of automated decision making.

Data curation efforts [wallis2007know, SwissExperiment2010

] allow for data to be re used in several studies. In
[artioli2005defining ] an estimation of the coastal area of the
river Po in Italy is done by combining data from 3 different
studies. The original data would have been gathered and
cleaned with different purposes in mind. The original purpose
having influenced the data capture process by defining capture
parameters such as locations and sampling ratios. Though
these technical decisions, influencing the data, are part of
the basic meta-data more subtle parameters may not be
communicated.

Consider briefly that one of the studies contributing data
to the river Po scenario, decided to normalise the water
salinity measurement based on a seasonal average. Such data
correction may interfere with an outlier detection technique
based on value ranges. If the corrected data are not identified
as corrected any further processing of the data may be based
on erroneous data.

Techniques like data provenance [Moreau:2008:PED:1330311.1330323nother  hydrology application subterranean water

] have been developed to solve this problem. However, the
interpretation of the provenance data requires an active
involvement from the data user to understand the effect of
the context on the resulting data. This is a time consuming
task. Therefore, data provenance inference is only called upon
when a result does not match the expectations of the scientist
interpreting it.

An alternative approach is augmenting the processed data
with information derived from the available context by using
knowledge about the underlying data processing. This tech-
nique has been successfully applied in data quality propagation
[1547706 ]. While the data quality approach was limited
to a particular aspect of the context for a limited set of
operations, we propose an approach which is more generic
with regard to processing operations and context information
with the risk of being less meaningful to the user. In particular,
we propose a lightweight technique for propagating the data
context regardless of its origin. The preservation of the context
is measured in terms of information theoretic metrics.

conductivity is used to determine if the water pumped
from a nearby well is suitable for human consumption
[hessd-8-2503-2011 ]. As part of the data processing an
automated outlier detection and correction mechanism is
implemented [loureiro2004outlier, liu2004line ]. The data
is used by a complex algorithm detecting if there is a rapid
change in conductivity. Rapid changes in water conductivity
are indicative of river water flowing too rapidly in the ground.
Rendering ground water unsuitable for human consumption.
Based on the results of the algorithm a decision is made to
stop the pumping. How can we be sure that the decision is
made on the basis of correct data, and not corrected outliers?

Both scenarios rely on data properties: i) Has the data been
normalised? ii) Is the datum an outlier? to be available in
subsequent data processing steps.

B. Application example

In the hydrology department of a large university staff
members and PhD candidates are encouraged to share their



data. Together with the data scientists annotate the values,
that is, supply datum level meta-data. The annotations usually
correlate with events occurring during the data acquisition (i.e.
data was acquired during sensor maintenance, exceptionally
high water discharge values as barrage doors where open,
etc.) Other annotations indicate that the datum is a corrected
outlier. Implying extra care needs to be taken since the datum
represents a computed and not a measured value. Hence meta-
data represents data properties which are of interest to the
scientists.

Scientists then share their data both inside and outside the
institution.

A part of the daily routine of most scientists is spent
preparing the data for analysis. That is, computing aggrega-
tions, usually of the same time-spans, and removing outliers.
Since most of the studies require similar data preparation it
is decided to ask scientists to share their clean data. That is,
data without outliers, and aggregated in common time frames.
The most common aggregations are hourly, daily, and monthly
averages. Further for the daily averages the values around
midday and midnight are considered more representative, as
such two weighted daily aggregations are made. Further data
may consist of different data types. Water conductivity values
may be a single scalar but wind speed and direction are usually
stored in one same vector.

Scientist then notice that most of the pre-aggregated data
lacks meta-data. Further the authors of the few annotated
data sets complain of the time spent manually annotating the
results. A lightweight, generic, preferably automated technique
is required to allow the sharing of the meta-data.

Since the annotations are unconstrained, i.e. the scientist
are free to specify them, interpreting the annotations is not
possible. Hence, only the presence or absence of the annotation
can be relied on.

Further care has to be taken that the annotations preserve
their relationship to the data. That is, it would be unwise to
annotate a daily average if only a datum representing a 2
minute time span is annotated. However on an hourly average
it may make sense. This difference relies on the operation.
That is, the hourly and the daily average operate on the same
data with the same annotations, but only one of the results is
annotated. The operation properties, i.e. daily versus hourly
aggregation, contribute to the annotation of the result.

C. Contributions

This article proposes a simple automated lightweight mech-
anism for propagating annotations. That is, to annotate the
output of aggregations with datum level meta-data present in
the input of the operation. We deal in particular with opera-
tions where the result is a linear combination of the inputs.
fz1, -+ ,zn) = >, wx;. And do so whilst preserving the
properties of the data, that is the annotation, and the properties
of the operation. Our technique is optimal with regards of two
preservation criteria, information preservation, and annotation
distribution preservation.

The mechanism is evaluated by comparing the data prop-
erty presence before and after the propagation, with the help of

information theoretic measures based on the Jensen-Shannon
divergence.

II. RELATED WORK

Previous work differs on the representation and manipu-
lation of data and operation properties. Data properties can
be classified according to the strictness of their definition and
their origin: value, semantic or process. We outline here some
of the related work organised in terms of the definition of
data properties and provide a description of how operation
properties are considered in each case.

When data properties are value dependent and strictly
defined like in the case of numerical accuracy, completeness
and variability. Klein [1547706 ] proposes the re-calculation
of the data quality metric on the output of the operation. The
data properties are, in this case, a function of the data. This
precludes the operation properties from participating in the
annotation of the output.

Another algorithmic definition of annotations is that of out-
lier [loureiro2004outlier ] [liu2004line ]. However detecting
them in the output of an operation is not always possible.
Leaving as only possibility to propagate the data property, from
the input, instead of recognising it in the output values.

When dealing with collections of multimedia

[hare2005saliency ] or textual [springerlink:10.1007/s11042-008-0249-

] documents annotated with semantic meta-data. Properties
are propagated by annotating new documents based on
their similarity. The propagation is assisted by an ontology
organising the data properties. The data properties are hence
constrained to a pre-defined set of related values and need not
be value dependent. Operation properties do not play a role in
this kind of system since the documents are not transformed.

When the data properties are un-restricted and/or gen-
erated by the computation process, as for provenance data
[journals/sigmod/SimmhanPG05 ], no ontology can describe
the relations between an unbound number of data properties.
Further the properties not being data related inference from
the output values is impossible. In this scenario operation
properties have to be considered.

Previous work considering the operation in the propagation
of annotations is restricted to a full description of the operation.
Relational algebra is used as the sole way of describing the
operation. For example [bowers2006calculus ] offers a generic
algebra enabling the propagation and inference of semantic
meta-data over data transforms. When re-computing data qual-
ity metrics [1635146 ] the operations are also specified using
relational algebra. Other systems in the biological domain
[conf/cidr/ArefEO07 ] enable the derivation of data proper-
ties for relational query results. Mondrian [mondrian2006 ],
another of such systems, focuses on supplying an interface to
generate and populate the annotations.

Our approach ignores the meaning of the data property,
and relies only on relevant properties of the operation.

In previous work by the same authors annotation propa-
gation is described as a clustering under constraints problem
in [6274029, Amiguet:2010:ADS:1871902.1871904 ] for both
aggregating and interpolating operations. The present work



focuses on the representation and manipulation of data and
operation properties enabling the propagation on data reducing
operations, such as aggregations.

III. METHOD OUTLINE
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Fig. 1: Method participating elements

Propagating data properties across operations can be
achieved with the help of a mapping between input and
output data property representations. Further the mapping has
to preserve both data and operation properties by taking into
account both types of properties during mapping construction.

Data properties, represented as annotations, need not be
value related. That is the property may also depend on at-
tributes of the measure or the processing environment. Hence
the properties may not be directly detectable in the output
data. The representation of all possible annotations on the
input or output data structure is called an alphabet (See Fig.
[] (Alphabet)).

Further operation properties (See Fig. (1| (Properties)) help
identify which of the inputs participate in the computation
of the result and if all inputs contribute equally. Operation
properties are represented as a partial order amongst elements
of the input and output alphabets (See Fig. [I| (Partial Order)).
We will describe a technique to construct a partial order
preserving operation properties. We illustrate the operation
properties with the help of weighted and un-weighted average
calculations on different data structures (See Fig. EI) and (See
Fig. @) respectively.

Besides operation properties the mapping (See Fig. |1| (I/O
Mapping)) has to preserve also data properties. This is ensured
by maximising the data property information as part of the
propagation. This maximisation is measured with the help
of the output annotation distribution (See Fig. [I] (Output
Annotation Distribution)).

We shall now illustrate each element of the method in more
depth and explain the techniques involved. Starting with data
properties and their representation.

IV. DATA PROPERTIES

In related work (See Section [[I) we provide a wealth of
examples of what are possible sources of data properties.

Besides value related properties like outlier, there are process
properties, common in provenance data, and semantic proper-
ties.

The only common element between the three kinds of
properties is their presence.

We are then left, only, with the possibility of representing
the presence or absence of a property. Hence a representation
can be built by attaching a 1 or a 0, respectively, at the
corresponding data structure position. An annotation is hence
the name for the representation of a property.

We will now in turn introduce how the data properties are
represented and subsequently quantified.

A. Alphabet construction

The alphabet is constituted of all different configurations
of annotations on top of a data structure. Regardless of it being
the input or the output of the operation. For example, when
averaging four values (See Fig. [3] (z1;22;x3;24)) we have
four elements which can be independently annotated. Hence
all permutations of four zeros and ones in the operation input
denote its input alphabet. Similarly all the combinations of one
0 or 1 construct the output alphabet (See Fig. [3| (z,)).

B. Annotation distribution

Given an alphabet we count how many times each element
occurs in a data set. This count, once normalised, constitutes
the annotation distribution. The count can be made in the input
or, after propagation, in the output. Giving the input distribu-
tion for the input. And the output annotation distribution for
the output.

To evaluate changes in the annotation we perform a third
measure. We count the number of times the input alphabet
elements occur in the output of the operation. That is after the
input data set has been propagated, this measurement is called
the output stream distribution.

The different annotation distributions defined here play
diverse roles in the propagation and evaluation of annotations.

V. OPERATION PROPERTIES

We have seen that operation properties play a role in the
propagation of annotations (See Section [[I). Further only
the presence or absence of a data property is relevant to
the propagation of the annotation (See Section [IV). Hence
out of all possible properties only ones helping determine
the presence or absence of the property in the output are
of interest. For example, if an operation is weighted or un-
weighted determines if all the inputs contribute equally or not
to the output. And by extension how much an annotated input,
relative to the others, contributes to the output. Further an
operation in which not all inputs contribute to an output, such
as a vector average (See Fig. [), is said to have the property
of localisation.

The present work deals only with linear operations, leading
to the following principle: The more annotated an input, the
more likely is the output to be annotated. Owing to the
additive nature of the linear combination of inputs in the
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operation. This enables the construction of a partial order
[davey2002introduction ] between the alphabet elements,
annotations, of the operation input. We represent operation
properties as partial orders.

A. Un-weighted operations
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Fig. 3: Weighted and un-weighted average operations

In Un-weighted operations all inputs participate equally
in the computation of the result. Hence only the number of
annotations present is important, not their respective locations
in the input. Inputs with the same number of annotations
are equivalent. This creates equivalence classes amongst the
alphabet elements, arranged in the partial order (See Fig. [2]
(b))). Further the more annotations in the input the more likely
is the output to be annotated. Giving an order in which the
elements with a higher number of 1s are placed closer to the
lower extreme of the partial order (See Fig. 2] (b)).

B. Weighted operations

In weighted operations the weight associated with each
input indicates its importance in the computation. We can then
use the weights associated to each input for the construction of
the partial order. The partial order may contain empty classes,
that is it does not need to preserve the distance between
alphabet elements. As such only the relative weights define
the partial order of the operation. This can be seen in Table [I|
where two order associations (Order 1 and Order 2), yielding
the same partial order (See Fig. 2| (c)), are calculated from two

different weight sets (See Fig. [3](b;c)). The order association is
calculated by summing the weights of the annotated elements
in the input alphabet.

TABLE I: Order association for the input alphabet elements,
weighted average operation (See Fig. E] (b))

Input  Order 1 Order 2
0000 0 0
0001 1 1
0010 5 7
0100 5 7
1000 1 1
0011 6 8
0101 6 8
0110 10 14
1001 2 2
1010 6 8
1100 6 8
0111 11 15
1011 7 9
1101 7 9
1110 11 15
1111 12 16

Further it can be noted that the partial order for an un-
weighted operation can be constructed by assigning the same
weight to all the inputs. Un-weighted operations are then a
specific case of weighted operations in which all elements
contribute equally.

C. Localised operations

In localised operations not all inputs contribute to all
outputs. This is the case in a vector average operation (See
Fig. [). The two outputs (See Fig. ] (x,; ¥,)) only depend on
x; and y; respectively. This allows to compute independently
both outputs. The property is reflected in the partial order (See

Fig. 2] (d)).
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Fig. 4: Localised operation example: Vector average

In localised operations the position of the annotation in
the input plays a role. An annotation in the x values only
contributes to the annotation of the output x,. This property
makes the representation of the partial order a diamond (See

Fig. [ (d)).

Localisation enables the construction of the partial order
with the help of the cross product. That is the partial order
for the input of the vector average operation (See Fig. 2] (d))
is the cross product of the partial orders for two independent
un-weighted averages (See Fig. [2] (a)).

VI. MAPPING CONSTRUCTION

With the data properties represented as alphabet elements
(See Section [[V), their information quantified with the help
of the annotation distribution (See Section [[V-B)), and the
operation properties represented as partial orders (See Section



we can now focus on the construction of the mapping
enabling the propagation of annotations.

For annotations to retain their information, both data and
operation properties have to be preserved. This implies the
information contained in the input annotations needs to be
preserved in the output.

We present here our method for propagating annotations
whilst maximising the information preserved in the output. A
technique for combining mappings enabling the propagation
over operations with larger output data structures is also
described.

A. Adaptive approach

The adaptive approach requires as inputs the input annota-
tion distribution and both the input and output partial orders.
The aim of the approach is to maximise the information,
i.e. the entropy, of the output annotations. There exist two
equivalent techniques one being an optimisation for small
output alphabets.

The first technique consists of an exhaustive search through
all the possible mappings. Computing the output distribution
for each valid mapping, and selecting the one with the highest
entropy. The output distribution is computed summing for each
output the input probabilities of the input elements mapped to
it. The complexity for this technique resides in the enumeration
of all valid mappings which can be lengthy for large input and
output alphabets.

The second technique can only be applied to operations
whose output partial order consists of only two elements. This
is the case of a large class of operations, i.e. all aggregations
of simple data types. To maximise the entropy of the output
distribution the same probability should be assigned to both
outputs. This is achieved by finding the median of the input
cumulative distribution.. However the bin sequence of the
input cumulative probability distribution needs to be adapted
to reflect the input partial order. That is the probabilities of the
elements belonging to equivalence classes are summed, since
their elements can not be differentiated, and the ordering has
to match that of the input partial order.

B. Mapping combination

When an operation is localised a mapping can be con-
structed for each independent output. The independent map-
pings can be combined to form a suitable propagation map-
ping. The combination of mappings is done by performing the
cross product of all the mappings amongst themselves. This
approach enables for the optimised version of the adaptive
approach to be used for the derivation of the independent
mappings.

It further allows to decompose complex data structures
into smaller ones, determine the mapping for the partial data
structure, using the optimised method, and then recombine to
obtain a total mapping. This offers a speed advantage for large
localised operations.

VII. EVALUATION

We aim to evaluate two aspects of our method: i) The
adaptability of our method to diverse kinds of annotations and
ii) mapping composability in the case of localised operations.

Before we delve into the two experiments certain aspects
of the experimental setup and the evaluation metrics are worth
considering.

A. Experimental setup

In order to evaluate our technique two things are required,
data and a baseline technique for comparison. We explain here
in greater detail how the synthetic data used in our experiments
is generated and the manual propagation technique used as a
baseline.

1) Data generation: Both experiments are performed on
synthetic annotations. The annotations are generated with a
uniformly distributed function giving values between zero and
one. Then four arbitrary thresholds (Al= 0.95; A2= 0.80; A3=
0.5; A4=0.2) are selected to annotate data values above them.
Generating four input annotations with four different distribu-
tions (See Fig. 5] (Input)). For instance A1 represents a typical
outlier annotation since very little data are generally outliers.
A4 represents a process or provenance based annotation since
most of the data would be originating from the same sensor
or operation.

2) Manual propagation approach: A naive way of con-
structing the propagation mapping is to assign manually the el-
ements of the input alphabet to elements of the output alphabet.
This task can be tedious and error prone for operations with
large output alphabets. This technique is used as a baseline for
the propagation.

B. Evaluation metrics

We have seen previously that propagation aims to preserve
the annotation. This can be interpreted twofold, to preserve the
input distribution, or to maximise the entropy of the annotation.
Both interpretations are evaluated with measurements based on
the Jensen-Shannon Divergence (JSD).

The preservation of the input distribution is evaluated by
measuring the JSD between input annotation distribution and
output stream distribution (See Section [[V-B)). The lower the
divergence the more preserved the annotation.

The second interpretation, maximisation of the annotation
entropy, is evaluated as the JSD between the output stream dis-
tribution and the equi-probable distribution. The equi-probable
distribution having the most entropy and entropy being a
concave function any deviation will result in less entropy. We
show in appendix (A) how JSD relates to entropy.

C. Adaptability

The first experiment aims to verify the adaptability of
our propagation technique (See Section [VI-A). For this we
compare the propagated annotations across an un-weighted
average (See Fig. [3] (a)) between the manual and the adaptive
techniques. For the manual technique, three mappings are
selected, two extremes. minimum and maximum propagation,



and a third one in the middle. That is two mappings with all
elements, except the extremes, assigned to propagate or not
respectively and a third mapping in which half the elements
propagate.

The propagations are then compared with the help of the
evaluation metrics defined earlier (See Section [VI[-B).

D. Operation property representation

The second experiment aims to verify that for localised
operations mappings can be combined. That is, the same an-
notation preserving mapping can be obtained in two ways, by
directly applying the adaptive technique (See Section [VI-A),
or by applying the adaptive technique to each localised part of
the input and then combining the two independent mappings
(See Section [VI-B). As part of the experiment we also evaluate
the propagation of the two separate inputs.

This is evaluated by propagating annotations across an
average vector operation (See Fig. ) and measuring with the
help of the metrics defined earlier(See Section [VII-B)).

VIII. RESULTS

We now present the results of the two experiments de-

scribed earlier (See Section [VIII-A) and (See Section [VIII-BJ.

A. Adaptability

The first column (See Fig. E] (Input)) presents the his-
tograms of the input annotation distribution for four different
annotations (Al, A2, A3, A4). The second column depicts
the histogram of the output stream distribution for our pro-
posed adaptive technique (See Fig. 5] (Adaptive)). Third and
successive columns present the histograms of the output stream
distribution for three manually selected mappings, minimum,
middle and maximum (Min, Mid, Max) respectively.

Annotation preservation can be seen in the two following
ways in the output stream distribution histograms: i) The
more resembling the output stream distribution and the input
annotation distribution histograms are the more preserved the
input distribution is. ii) The more equi-probable the output
stream distribution, the more entropy the annotation holds, i.e.
the more information is preserved. This is represented by a
more flat output stream distribution histogram.

1) Input distribution preservation: is achieved by the mid-
dle manual mapping (See Fig. 5] (Mid)) since for all anno-
tations its output stream histogram is the most resembling
to the input annotation histogram. This is further verified in
figure [6] since the middle (Mid) mapping always has the lowest
divergence with the input distribution (JSD I/O).

2) Entropy maximisation: is achieved by the adaptive
method (See Fig. [5] (Adaptive)) since for each annotation it
shares the histogram with the most entropy amongst all the
histograms of the manually constructed mappings. That is, in
the case of annotations Al and A2 with the minimum mapping,
for annotation A3 the middle mapping and for annotation A4
the maximum mapping. Hence the adaptive method performs
as well as the manual method, without the need of inspecting
the data and manually constructing the mapping. This is

further verified in figure [] where the divergence with the equi-
probable distribution (JSD Equi/O) is always the lowest for the
adaptive method, always matching the lowest of the manually
set thresholds for each annotation.
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Fig. 5: Input stream histograms for Annotations

(A1,A2,A3,A4) and output stream histograms for three
different techniques (Separate, Combined, and Exhaustive)
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Fig. 6: Pairwise JSD (equi-probable distribution, output stream
distribution) and (input stream distribution,output stream dis-
tribution) for manual thresholds (Min,Max), Adaptive and
Equiprobable (Mid), and annotations (A1,A2,A3, A4).

B. Operation property representation

In figure [/ the same propagation behaviour can be seen for
all four annotations, with regards to both the preservation of
the input annotation distribution and the entropy maximisation
criteria. That is, due to the localisation of the inputs the prop-
agation can be handled independently (See Fig. [7] (Separate))
giving the same annotation preservation as for our mapping
combination technique (See Fig. [/| Combined) and the non
optimised version of the adaptive technique which we call
exhaustive (See Fig. [/| (Exhaustive)).

This result can be interpreted in two ways: i) When propa-
gating annotations across a localised operation we can compute



an independent mapping for each input or a global mapping
with our adaptive technique warranting that we find the same
optimal mapping with regards to information preservation. ii)
It further supports the idea that a family of operations is
characterised by a single partial order.

JSD Equi/O .
Jsb 1/0

SeparateCombinedExhaustive SeparateCombinedExhaustive

Technique

o) A3 d) A4

JSD Equi/O s
JSD 1/0 wemm—m

SeparateCombinedExhaustive SeparateCombinedExhaustive

Technique Technique

Fig. 7: Pairwise JSD (equi-probable distribution, output stream
distribution) and (input stream distribution,output stream dis-
tribution) for Separate, Combined and Exhaustive search tech-
niques, and Annotations (A1,A2,A3,A4).

IX. CONCLUSIONS AND FUTURE WORK

We have shown that suitable representations of data and
operation properties can be found and manipulated in order to
propagate data properties to the output of linear data reducing
operations. Further a given set of operation properties can
uniquely identify an operation.

We presented a generic technique for the construction of
partial orders describing operation properties and two mapping
construction techniques preserving data properties. Such a
preservation can be interpreted in two ways, preservation of
the input distribution or preservation of the information of
the data properties. We present an optimal technique for the
information preservation evaluated in terms of the Jensen-
Shannon Divergence. The manual technique used as a bench-
mark in the experiments is optimal with regards to distribution
preservation.

Two experiments where carried out on synthetic data. One
to verify the preservation of data properties and a second to
verify the composability of propagation mappings in localised
operations. The composability result further validates the ap-
plicability of our adaptive technique to more complex data
structures for localised operations.

In future we aim to extend the technique to other classes of
operations. Notably non-linear and data expanding operations
such as interpolation.

APPENDIX

We infer the maximisation of entropy as the difference
between equi-probable and output stream distributions. The
lower the divergence is, the higher the entropy of the output
stream distribution.

This is illustrated in the following argument. The Jensen-
Shannon Divergence (JSD) is expressed in terms of the entropy
of two statistical distributions P and @ as JSD(P, Q) =
H(Z2) — L(H(P) + H(Q)) [briet2009properties . If
we consider that P is an equi-probable distribution we have
H(ZE9) < H(P) and H(Q) < H(P) so we can maximise
JSD(P,Q) with H(P) — S H(P) where 1 < a < 2. Having
1 < «a when H(Q) = 0 and o < 2 because P # . Giving
JSD(P,Q) < 252H(P). Thus JSD(P,Q) is bound by
0 < JSD(P,Q) < $H(P).Soaslongas P # Q. JSD(P,Q)
is positive and greater than 0. So once () diverges from
the equi-probable distribution JSD(P, Q) becomes positive.
Entropy is a continuous function hence JSD(P, Q) is also a
continuous function. The divergence is hence progressive, the

more entropy is lost the more the divergence increases.



