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Abstract—The use of cloud resources for processing and
analysing medical data has the potential to revolutionise the
treatment of a number of chronic conditions. For example, it
has been shown that it is possible to manage conditions such
as diabetes, obesity and cardiovascular disease by increasing
the right forms of physical activity for the patient. Typically,
movement data is collected for a patient over a period of several
weeks using a wrist worn accelerometer. This data, however,
is large and its analysis can require significant computational
resources. Cloud computing offers a convenient solution as it
can be paid for as needed and is capable of scaling to store and
process large numbers of data sets simultaneously.

However, because the charging model for the cloud represents,
to some extent, an unknown cost and therefore risk to project
managers, it is important to have an estimate of the likely data
processing and storage costs that will be required to analyse a
set of data. This could take the form of data collected from a
patient in clinic or of entire cohorts of data collected from large
studies. If, however, an accurate model was available that could
predict the compute and storage requirements associated with a
piece of analysis code, decisions could be made as to the scale
of resources required in order to obtain results within a known
timescale.

This paper makes use of provenance and performance data
collected as part of routine e-Science Central workflow executions
to examine the feasibility of automatically generating predictive
models for workflow execution times based solely on observed
characteristics such as data volumes processed, algorithm settings
and execution durations. The utility of this approach will be
demonstrated via a set of benchmarking examples before being
used to model workflow executions performed as part of two
large medical movement analysis studies.

I. INTRODUCTION

Historical and ongoing research projects are investigating
the links between levels of physical activity and chronic
conditions such as Type II Diabetes and Myotonic Dystrophy
Type I12. The most common method for monitoring the
physical activity of a subject is via the use of wearable devices
such as accelerometers. Typically these take the form of a
wristwatch that captures data at 100Hz over a period of several

1http://www.directclinicaltrial.org.uk/
2http://optimistic-dm.eu/

weeks. Devices such as the GENEActiv3 and Actiwatch4 are
commonly deployed and a wide body of research has been
published using data captured in this way [1].

Movement data takes the basic form of a long timeseries
containing three distinct channels of data captured from three
perpendicular axes (X, Y & Z). An analysis of the patterns
within this data can give an insight into a number of underlying
conditions: Activity level [2], sleep quality [3] and, gait [4]
which can be used to indicate quality of life, aid in assessments
and measure rehabilitation of some medical conditions.

In conjunction with this movement data capture, in many
studies, patients attend clinics periodically in order to discuss
progress with a clinician. They will often have other mea-
surements, such as weight, blood glucose etc. taken and their
physical activity inspected.

The issue, however, is that as the wrist worn accelerometers
measure movement data over three axes at approximately
100Hz for many days, the quantity of data to be analysed
is large - a typical data file is approximately 800MB in size
and comprises some 100 million rows of data. Once collected,
the analysis procedure [5] for this data involves categorizing
the acceleration signals into one of several categories for
instance: Sedentary, Light Activity, Walking and Running.
This is then used to make recommendations as to suitable
exercise plans for that specific patient. Further analysis may
also be conducted [6] which can answer different research
questions such as whether the patients sleep is affected by a
change in medication or investigate exercise patterns across a
large population.

Although the task of processing data for a single patient is
tractable, clinical studies have collected movement data from
large numbers of participants and analysing this data requires
larger scale facilities. The sizes of three studies are shown in
Table I

Clearly, given an hour of typical processing time for a
simple analysis, the task of processing data from a complete

3http://www.geneactiv.org
4http://www.philips.co.uk/healthcare/product/HC1046964/

actiwatch-spectrum-activity-monitor



TABLE I
MOVEMENT STUDY SIZES

Study Participants Data Size
Newcastle 85+ 1000 300GB

Whitehall 4300 4TB

UK Biobank 100k 24TB

study is not a trivial one. For example, using the information
shown in Table I, an analysis of the Whitehall study using
an algorithm such as PAC1 [5] would take approximately six
months of continuous computation on a single PC ignoring
any data preparation and transformation required. This raises
issues regarding the both provision of appropriate resources
to complete an analysis in an acceptable time frame and also
keeping track of the analysis process and software versions
used.

This tracking requirement is particularly important as move-
ment analysis algorithms are the subject of active research with
improvements and fixes published frequently. For example,
one popular algorithm [6] has seen thirteen releases in a two
year period in order to fix bugs and increase functionality.

The use of workflows to coordinate the analysis of data
generated in these projects is increasingly common. The
developers of algorithms such as PAC1 and GGIR are experts
in classifying movement based on accelerometery. However,
in the context of a long running study there are usually study
management issues such as participant tracking and reporting,
and other associated data prepraration tasks. Workflow engines
mitigate some of these issues by providing suites of services
used in traditional Extract, Translate, Load pipelines [7] which
are convenient in this context too. The availability of these
services allows the algorithm developers to focus on the
medical aspects of their work and use in-built tools for the
other tasks. The framework that the workflow will execute
within usually also deals with concurrent executions and
dependency resolution, again relieving the algorithm developer
from having to consider these issues.

The e-Science Central cloud data analytics platform is an
Open Source multi-user system for the storage and analysis
of a wide range of data sets [8]. It provides data storage and
sharing facilities along with a workflow engine designed to
operate at large scale within a hosted cloud environment.

Within clinical and pre-clinical trials, usually a data analyst
within the project team will determine the algorithmic needs
of the study and develop the workflows which will generate
reports. During the study the staff collecting the data, often in
a clinic, will upload that data into e-Science Central where the
workflow developed by the analyst will process it. When these
workflows are executed, they are queued for execution by one
of several servers dedicated to the task of running workflows
(Workflow Engines). In order to maintain a fair access to these
Workflow Engines, it is important to balance the calculation
time between all of the users of the system and to schedule
workflow execution over a range of resources. Predicting the

runtime of any given workflow, therefore, is a vital first step
towards achieving this and is also critical for the provision
of the estimated cost and storage requirements associated
with running a trial. Additionally, because workloads on the
system can require the addition of significant numbers of
workflow engines, a prediction of the likely end time for
these workloads would enable workflow engines to be brought
online proactively and shut down in a more timely manner.
This is particularly pertinent given the uneven processing
requirements in these studies - devices are usually recovered
sporadically when clinics run and lead to higher processing
requirements at these times. At other times there will be little
or no requirement for processing resources.

This paper describes a system which captures live perfor-
mance data and uses it to build a suite of models that can
be used to predict various characteristics of workflows. These
models can be updated on demand or in response to the
collection of a sufficient quantity of additional logging data.

Although the performance modelling work presented in this
paper was carried out using the e-Science Central platform, the
methodology and indeed the code developed is applicable to
any system that can be instrumented to produce the correct
form of performance logging data. The contributions of this
paper fall largely into three areas:

1) Estimating the future performance of software compo-
nents based on predictive models trained on historical
data.

2) The ability to combine a number of models of individual
unit operations in the same order as they would be
invoked in arbitrary workflows and the ability to predict
the likely performance of these workflows.

3) A system to capture and store historical performance
data and generate suites of predictive models from it.

This paper is structured as follows: The following Section
provides context and compares the work in this paper to
previously published research. Section III gives an overview of
the architecture of e-Science Central and how the performance
data is captured. The process for generating and managing
predictive models is described in Section IV and these are
evaluated against medical workloads in Section V. Finally,
conclusions are drawn in Section VII.

II. RELATED WORK

A significant quantity of research has been performed in
an attempt to predict the execution time of software in order
to improve scheduling, particularly within Grid and HPC
environments. Some researchers have considered complete ap-
plications [9]–[11] whilst others have attempted to decompose
these into components as we do [12], [13]. The work presented
in by Duan [12] is of particular interest as it closely resembles
ours but focuses on Grid deployment scenarios. One of the key
differences is our use of the ‘Panel of Experts’ pattern [14]
to generate multiple predictive models of each service rather
than their use of a Radial Basis Function neural network. We
have found that it is imperative to include multiple modelling



techniques as some components will model significantly better
or worse depending on the technique used.

The work by Cushing [15] discusses how to scale Map-
Reduce style problems based on the expected execution time.
The aim here is to reduce the overall computation time by
dedicating more resources to components which are expected
to take a longer duration. In addition they aim to prevent
starvation of future components due to a previous one having
not completed execution. We do not restrict our execution
pattern to Map-Reduce, although we are able to construct such
a pattern using e-Science Central workflows.

Within the context of cloud computing, Roy [16] use au-
toregressive moving averages to predict the current workload
of a system. However, they are concerned with scaling cloud
architecture to minimise response time in a web application
rather than scientific workflow applications which exhibit
different characteristics.

Work by Miu [17] considers other features of the input
data other than the size when generating predictive models
for algorithms such as those found in the Weka toolkit. This
work is, in some respects, more ambitious than ours but also
more expensive in terms of computing power required and
knowledge of the algorithm being modelled. We consider each
service as a black box and make no attempt to include features
other than the size of the input data and the code configuration
parameters within our models. In future we would like to
encompass other features of the input data but this would
increase the complexity of the system. In addition we have
found that many of the services used within scientific workflow
applications deployed within e-Science Central to date are
amenable to simple analysis based on the size of the input
data including physical activity analysis and image processing
algorithms [5], [6], [18].

The work around the Prophesy project to develop a general
purpose performance analysis system is most similar to our
approach [19]. However, they focus on lower level instru-
mentation of the source code than we do where our ‘build-
ing blocks’ are workflow services. Further, they require the
source code to be available in order to insert the performance
monitoring hooks during the compilation phase. Instead, our
work has focused on instrumenting the execution environment
to allow any code deployed into the environment to benefit
from performance capture.

The literature around the Prophesy system also details some
approaches to leveraging multiple predictive models to gener-
ate a prediction for a larger unit of work [20]. As their work is
principally aimed at lower level functions with more complex
inter-relationships they generate what can be considered to be a
cross-product of model relationships between each ‘kernel’ of
computation. Our approach differs in that we only consider the
effects of the data transferred from one component to another
and, given that we are dealing with higher level components
without such inter-relationships, we do not need to compute
the cross-product of all components. We also show that it
is feasible to use the output of one predictive model as the
input to another whereas other systems simply consider the

summation of the predictions from each model [21].

III. ARCHITECTURE

e-Science Central is a portable ‘platform-as-a-service’ that
can be deployed on a variety of hardware platforms ranging
from a Raspberry Pi to public/private clouds and supercom-
puting infrastructures. Cloud computing has the potential to
give scientists the computational resources they need, when
they need them. However, cloud computing does not make it
easier to build the often complex, scalable secure applications
needed to support scientists. e-Science Central was designed
to overcome these obstacles by providing a platform on
which users can carry out their research, and build high-level
applications. Using a web browser, users can upload data,
share it in a controlled way with colleagues, and analyse the
data using either a set of pre-defined blocks, or their own,
which they can upload or create online. A range of data
analysis and programming languages are supported, including
Java, Javascript, R and Octave.

The blocks which are hosted within e-Science Central
can be combined into larger units of computational work,
workflows, which compose multiple re-usable components to
perform data analysis. Workflows in e-Science Central only
include data flow – control flow, outside of each block, is not
provided. However, as workflows are able to execute other
workflows a simple recursive structure can be described but the
termination condition must be expressed within a specialised
block. We have found through extensive work with scientists
in varying application areas that data flow alone is sufficient
to suit their needs [22]. The benefit of supporting pure data
flow, as we will see in Section IV, is that it greatly simplifies
the process of generating predictive models of the workflow
execution time. Workflows are created using an online editor
which supports drag and drop workflow creation from a palette
of both common and user supplied blocks. Blocks themselves
can be created using another online editor or common software
development tools such as Maven.

Versioning is an integral storage feature in e-Science Cen-
tral, allowing users to work with old versions of data, blocks
and workflows. All objects (data, files and workflows) are
automatically versioned when they are updated by the user.
From the perspective of modelling blocks, this allows us to
directly compare the execution time of different versions of
the same block and use the previous version when insufficient
data is available for the current version of the block (see
Section IV-B). In addition to each block being versioned, they
may be parameterised with different runtime configurations.
Such parameters include the source of the data to import,
initialisation parameters for algorithms and other runtime
settings. These parameters are included in the data collected
for model construction wherever possible (specifically when
the parameter has, or can be represented as, a numerical, non-
categorical value).

Workflows are enacted by a set of workflow engines which
typically run on separate machines from the main e-Science
Central server. A workflow within e-Science Central differs



from the more traditional workflow model in that the data flow
it represents is executed entirely on the workflow engine and
does not typically make calls to external services. The indi-
vidual blocks within the workflow are separate code libraries
that are downloaded to the workflow engine (or potentially
installed using the operating system package manager) where
they then operate upon the data generated by the workflow
execution. Because the workflow engines themselves perform
all of the computational tasks required in order to execute a
workflow, adding more workflow engines increases the pro-
cessing power of the system. Depending on the characteristics
of the workload, we have been able to support over 200
workflow engines using a single server. Each workflow engine
executes a workflow by analysing the directed acyclic graph
which represents it. From this, a sequence of block executions
is constructed which allows the engine to execute them in an
order which ensures that the input data is available for each
block within the workflow when required.

Each time a block in a workflow is executed, a provenance
message is sent to a queue for persistence in the provenance
database. Currently, the provenance message for a workflow
block includes details of the code used within the block,
the data sets the block operated on, the configuration of the
block and the user running the workflow. This information
was selected because it contains sufficient data to recreate
the actions performed on a given piece of data within the
system [23]). During the development of the performance
modelling system described in this paper, the provenance
capture platform was extended to include performance data
which was stored in a separate provenance database. The
approach adopted was to log all of the available parameters of
the execution of blocks within workflows that could possibly
be used to predict performance. Specifically, the following per-
formance attributes were logged in the performance database:

• Execution time This is the total time taken for a block
within the workflow to execute. The time is measured
from the time that the process executing the block is
started to the time it terminates. This time measurement
does not include the time taken by the workflow engine to
deploy any code that the block depends on and is there-
fore a direct measurement of code execution time and
not a combination of code execution time and workflow
management overhead.

• Block settings Each block within the workflow can be
configured with a number of settings. These settings are
block specific and can have a significant influence on the
time taken for a block to run. For example, a modelling
block might include a parameter for specifying the model
complexity. This would have a dramatic effect on the
block execution time. The performance capture system
logs any numerical block property in the performance
database. References to data stored within the e-Science
Central file system are treated slightly differently in that
the size of the document is logged as a parameter in the
performance database. The data capture was limited to

numerical properties in this case because the modelling
tools selected do not operate on non-numerical data. If,
however, classification algorithms that consider categori-
cal data were found to yield useful predictions, additional
block settings could be captured trivially.

• Data volumes The volume of data consumed by each
block is a critical parameter for modelling execution time
and is captured in the performance database where it
is linked to individual block inputs and outputs. Model
building algorithms can then access the information about
the total volumes of data passing through workflow
blocks.

• Machine characteristics The type of the machine ex-
ecuting workflow blocks is logged because it enables
block executions to be grouped by machine type when
building models. The actual machine data (CPU speed,
memory type etc) is not used for modelling as it is
impossible, with the current version of e-Science Central,
to know in advance which engine within the execution
pool will execute a given workflow. It can, however, be
used to select the appropriate model to use to estimate
workflow termination time once it has started and the
exact characteristics of the selected workflow engine are
known.

The data within the Performance server is consumed asyn-
chronously from a JMS queue which prevents it from affecting
the performance of the system that it is monitoring and
allows multiple sources of performance metrics to send data
concurrently. When received, the data is persisted into a
Postgres database. In order to generate the models we make
use of the Apache Commons Maths 3 library and a JavaEE
application server to host the code. This simplifies access to
the performance database and the provision of the various APIs
which allow the data to be consumed by other systems. The
models, once constructed, are stored in the database and allow
predictions to be generated and comparisons between different
models of same block to be made.

The actual selection of the parameters used in any model is
delegated to the specific model building algorithms deployed
within the system. This approach was adopted because the
modelling system has been designed to build multiple pre-
dictive models for each workflow block, each of which is
likely to include a different subset of the performance data
contained in the database. The capture of this comprehensive
set of parameters also allows models to be built of properties
other than execution time. For example, the data captured
could allow models to be built relating the physical RAM
consumed by a block to the quantity of data processed.

There are two ways that the models and predictions can
be consumed by other interested parties: a simple web appli-
cation is provided to allow users to view performance data
and generate predictions whilst a REST based API allows
integration with the core e-Science Central server and other
external systems.

Although currently we are only concerned with modelling
performance data collected from e-Science Central workflows,



Performance 
data

Performance Server

e-Science 
Central Server

Predictions

Model data

Web UI

R
ES

T
JM

S

Other 
Querying 
Systems

Model 
building

FTM

LR

Other 
Execution 
Engines

e-Science 
Central 

Workflow 
Engine

Fig. 1. Architecture of the Performance Server

the architecture is generic and can interface with other systems
in order to generate and consume performance data. For
instance, workflow enactors such as Taverna or Galaxy could
be instrumented to submit performance data into the system.
The only modification required would be to the logic for
combining the predictive models generated for each block or
action within the workflow. Indeed it is not limited to capturing
workflow based execution data: any system which is able to
log the performance characteristics of a task could submit data.
In addition, we have integrated the prediction code into the e-
Science Central workflow editor to allow real time feedback
to users as they are creating their workflows.

IV. MODELLING PERFORMANCE

Within e-Science Central, workflows can be considered as
a linked set of individual software components (blocks) which
act sequentially upon items of data. Execution proceeds in the
following manner:

1) The workflow is analysed to discover all of the blocks
that contain no input connections. These are defined as
data source blocks that act to bring data to the server
hosting the workflow engine.

2) Once the data source blocks have been identified, an
execution thread is started which starts from the first
data source block and propagates data through all of
downstream blocks, which are executed in an order
which ensures that all of the required input data items for
each block have been produced by any linked upstream
blocks.

3) Execution terminates once all of the possible execution
paths from the data source blocks have been traversed.

The basic structure of an e-Science Central workflow is
illustrated in figure 2 which shows a number of connected
blocks (B1...Bn). Each of these blocks can contain a property
set that defines its behaviour (P1...Pn). The analysis pass of
the workflow execution process will identify B1 as the single

P1 P2 Pn

O1 O2 On

D1 D2 Dn

C1,2 C2,n C2,n+1

B1 B2 Bn

Fig. 2. e-Science Central workflow structure

data source block. The execution thread will first execute B1

using the property set, P1. This will take a period of time,
D1, and produce a piece of output data, O1. This data item
will be propagated to the second block in the workflow, D2,
along the connection, C1,2. The second block, B2, will then
be executed using it’s property set, P2, and input data set, O1.
This process will take D2 seconds.

From this it can be seen that the total actual execution
duration for the workflow, Dwf can be expressed as:

Dwf =

n∑
i=1

Di (1)

To generate an estimated execution duration for the work-
flow, ˆDwf , a summation of duration estimates for the individ-
ual workflow blocks is therefore required:

ˆDwf =

n∑
i=1

D̂i (2)

This approach is applicable to the e-Science Central work-
flow engine because it does not attempt to execute any blocks
in parallel, so the total execution time can easily be calculated.
For cases where workflow paths can be operated in parallel,
the longest duration for each parallel path must be summed in
order to predict the total execution time. In order to generate
a prediction of the execution duration for a particular block,
D̂i, a relationship needs to be defined that relates execution
duration to the various attributes of the block that can influence
performance. In general the execution duration for a block will
be a function of the input data size to the block, Oi−1, the
actual code within the block and the block parameter settings,
Pi (see Section III). The estimated duration of any block
within the workflow can therefore be calculated using:

D̂i = fDi(Pi, Oi−1) (3)

where fDi represents the predictive duration model for
the ith workflow block. From this, it follows that the total
workflow duration can be predicted by:

ˆDwf =

n∑
i=1

(fDi(Pi, Oi−1)) (4)

Because the duration estimate for each block within the
workflow is dependent upon the size of the data flowing into
it, the process of estimating the duration of a multi-block
workflow is complicated by the fact that, for non data source
blocks (i.e. most blocks within the workflow) a value for the
input data size must also be estimated. If the output data size



for a block is assumed, like the duration estimate, to be a
function of the input size (Oi−1) and the block settings (Pi),
the output data size for a given block within a workflow can
be modelled using:

Ôi = fOi(Pi, ˆOi−1) (5)

Where fOi represents the predictive output size model for
the ith workflow block. During the process of producing a
duration estimate for an entire workflow, this size estimate is
propagated throughout the workflow in place of the actual data
sizes. It follows, therefore that as the size of the workflow
increases, the model prediction will be degraded by both
the errors in predicting the duration of each block and also
the errors accumulated by propagating size estimates to each
duration prediction. The availability of accurate models which
can predict the quantity of data produced by executing indi-
vidual blocks is therefore central to accurately estimating total
workflow execution time. Section V will investigate whether,
for the workflows examined in this paper, this is indeed the
case.

A. Model Types

The relationship between block duration and observed exe-
cution data for blocks within an e-Science Central workflow
can fall into one of three broad categories:

1) The block duration can be estimated using a linear
combination of the execution data contained within the
performance database. In this case a simple linear model
of the form y = mx + c can be used to estimate the
execution duration.

2) The block duration follows a non-linear relationship
between execution time and the captured performance
data. In this case one of a number of non-linear models
(for example, polynomial regression or a neural network)
can be used to estimate execution duration. During
our experiments, none of the deployed blocks exhibited
a non-linear relationship so these model types were
not considered. It should, however be noted that some
of the blocks studied in this paper could eventually
demonstrate a non-linear relationship as larger data
volumes are processed. In this situation it would be
fairly straightforward to add additional model types to
the performance modelling system allowing non-linear
duration models to be constructed.

3) The block duration exhibits no correlation to any of the
observed execution data. In this situation, the duration
prediction for the block is modelled as the average
execution time for all observed executions of the block
contained within the performance database.

The performance modelling system can maintain models
for each version of each block observed during workflow
executions and generate duration predictions using the most
appropriate model on demand. This requires models to be
managed (Section IV-C) and also the facility to generate
some sort of prediction even in situations where the quantity

of observed data is insufficient to create one of the models
described above (Section IV-B).

B. Model Fallbacks

One of the key requirements for the performance modelling
application is to provide a robust prediction of performance
properties that are refined as more data becomes available.
Therefore, a number of fallback predictions are provided to
cater for situations where models are unavailable for a block.
This could be because a block has never been executed or
that the data collected at the current time is unsuited to
generating predictions. The following fallback logic has been
implemented:

1) If there is no model available for a specific version of
a block a version agnostic model is used. This model
is constructed from all of the executions of a block and
covers data collected from all versions.

2) If there are no models of any sort for a block, but there
is at least one observation for a block, average values
for execution duration and output size will be used.

3) If there is no data of any sort for a block, the average
duration for all blocks will be used and the average
output data size will be used for predicting output sizes.

4) If the system has just been initialised and no data of any
type is present, no prediction will be returned.

The reasoning behind the above logic is to return a predic-
tion wherever possible and to always return the best prediction
that the system can provide at a given point in time. Predic-
tions returned are marked with a quality flag which indicates
whether the prediction has been generated using data collected
for the correct version of a block or whether any fallback
predictions have been used.

C. Model management

Because the nature of a block cannot generally be deter-
mined a priori, the performance modelling system must be
able to determine automatically whether the execution duration
of a block is linear, non-linear or uncorrelated with respect
to the observed data. In order to achieve this, the system
builds every type of model contained within its library for
each block. In the experiments presented in this paper, this
involved building linear and mean predictor models at each
model update step. This pattern has been adopted for some
earlier chemical modelling work [14] and has been referred
to as the “panel of experts” approach. Once built, the model
demonstrating the best performance on a set of test data is used
to generate duration predictions until the next model update
step. During the generation of the results shown in Section V,
the models were updated only once, after the initial data sets
had been collected. In an actual deployment, an automatic
model updating strategy would be required. This could be
triggered, for example by the availability of a significant
quantity of new observations, an increase in model prediction
error or the age of the models within the library passing some
threshold. Regardless of the strategy adopted, the process of
rebuilding the models is identical: a model update message is



sent to the performance server which then initiates a number
of model update threads. These threads rebuild the models
without requiring an interruption to the data collection process.

V. EXPERIMENTAL RESULTS

In order to demonstrate the suggested approach to modelling
workflow performance, a number of experiments were per-
formed. Initially, these focused on running simple workflows
containing a set of trivial blocks under ideal conditions to
investigate whether it was indeed possible to generate reliable
performance models. Experiments were then performed using
the same simple workflows in a more challenging Cloud envi-
ronment (Amazon EC2) to establish the level of inaccuracies
introduced be operating within a multi-tenanted environment.
The next set of experiments focused on running a workflow
containing blocks performing more complex work. These were
performed in Amazon EC2.

A. Simple workflow tests

The workflow studied in the initial experiments contained
ten simple Java blocks that are provided with every installation
of e-Science Central. These blocks perform basic data manip-
ulation tasks and are therefore more IO than CPU intensive.
As such, the execution of these blocks is likely to be very
highly correlated to the data volumes being passed through
them. The workflow used is shown in figure 3 and contains
the following basic blocks:

All models built during these experiments were compared
using the Root Mean Squared Error measurement (RMSE),
and the correlation (r2) between the predicted and observed
execution durations.

1) Experiment 1: For the first experiment, the workflow
shown in figure 3 was executed 250 times with a set of
randomly generated input files ranging in size from 7KB to
14MB. These files were pre-generated and one was selected at
random for each of the 250 executions. The same sets of data
were transferred to Amazon EC2 for the second experiment.
The results of this experiment demonstrated that:

1) It was possible to generate an accurate prediction of the
volumes of data produced by each of the blocks studied.
For example, the volume of data produced by the Import
File block is predicted with almost 100% accuracy using
a linear model with the size of the imported file captured
as a block property as it’s single input variable.

2) For the majority of blocks, it was possible to gen-
erate an accurate prediction of execution time based
upon the size of the input data and the captured block
configuration parameters. For example, figure 4 shows
the duration prediction model for the Shuffle block
(RMSE=0.344,r2=0.999).

3) For some blocks, the duration model, at the data sizes
tested, did not generate a good prediction. For example
the model for the Import File block demonstrated a
poor fit to the observed data (see figure 5). However,
an examination of the spread of execution times shows
a fairly small spread when compared with other data

intensive blocks. It is likely that, at the scales tested (a
maximum data size of 14MB), the imported file sizes
do not take a significant time to copy to the workflow
engine meaning that there is an insufficiently rich set of
data to build any meaningful predictive models.

Fig. 3. Simple data generation workflow

This set of 250 workflow executions yielded 2500 obser-
vations within the performance database which were then
used to build the suite of predictive models. In order to
assess the performance of these models when applied to
different workflows (containing a subset of the blocks shown
in figure 3), a different workflow was constructed which again
processed a set of randomly generated data (figure 6).

This workflow was executed multiple times and for each
execution, the actual duration was recorded along with a
duration estimate generated by the performance monitoring
system (RMSE=4.077,r2=0.997). The results of this exercise
are shown in figure 7. Figure 7 shows a number of runs
executing significantly faster than predicted. An examination
of the results shows that these are the final executions of the
experiment. Because the workflow engine executes multiple
workflows concurrently, towards the end of any run, in the
current setup, there is a strong chance that one workflow will
be left executing alone. This workflow will not be competing
for resources (filesystem, CPU etc) with other workflows and,
as such, executes faster than predicted by the model.

2) Experiment 2: The second experiment carried out was
a direct repeat of the first, but performed on a public cloud
(Amazon EC2). The installation was configured in a manner
typical of many e-Science Central installations and comprised
a single server machine containing the JBoss application
server and Postgres database with two additional machines,
each containing a workflow engine. All machines used were
m1.xlarge instances configured with 4x 2GHz Intel Xeon
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Fig. 4. Prediction of execution duration of the Shuffle block on local server
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Fig. 5. Prediction of execution duration of the Import File block on local
server

Fig. 6. Testing workflow
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Fig. 7. Execution duration prediction for new workflow

CPUs and 15GB RAM. Once again, 250 executions of the
simple calibration workflow shown in figure 3 were started and
the results captured using the performance monitoring system.
The results of this experiment also indicated a good model
performance (see, for example figure 8, which illustrates the
model performance on the Shuffle block), albeit with a slightly
larger spread in predicted execution times when processing
larger data files.
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Fig. 8. Prediction of execution duration of the Shuffle block on Amazon EC2

VI. MOVEMENT PREDICTIONS

Having determined the feasibility of generating models via
the use of the ambient provenance and performance data
capture architecture show in Figure 1, the next experiment
produced predictive models of a set of movement analytics
routines operating within the e-Science Central platform. Al-
though the plaform has been deployed in multiple studies,
the models built in this section focus on a standard library
provided in R (GGIR) [6] that process raw accelerometry data
collected from wearable devices. This library was selected



because it has seen the widest adoption of the various algo-
rithms contained in the system and has the largest collection
of performance data available. The algorithm itself comprises
two operational phases:

• Part 1: Is a computationally expensive process that is
performed once for each data file. Its purpose is to
generate a set of metadata that can be used to facilitate a
range of different analyses and produce various summary
reports.

• Part 2-n: Once the summary metadata has been generated
a set of second phase analyses can be carried out to
generate reports.

The workflows modelled therefore follow a standard pattern:
Data import and parsing, GGIR part 1 metadata generation
then GGIR part 2 report generation. Data was collected from
each of the two GGIR phases over a set of studies with the
aim of generating duration and output size models.

Models for execution duration were genarated using data
gathered from the Optimistic (Observational Prolonged Trial
In myotonic dystrophy type 1 to Improve Quality of Life
Standards, a Target Identification Collaboration) study, which
was operated by Newcastle University with data collection
distributed between Newcastle, Munich, Nijmegen and Paris.
This study focussed around approximately 300 people with a
genetic diagnosis of myotonic dystrophy type 1, 18 years old
and able to walk independently [24]. As part of this study,
participants were asked to visit an assesement centre at least
five times over a seventeen month period and were required
to use a wrist worn accelerometer.
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Fig. 9. GGIR Part 1 Duration Model

Data gathered from the three centres was uploaded to a
central e-Science Central installation where workflows auto-
matically performed a GGIR Part 1 processing step, followed
by the generation of a customised report (a GGIR Part 2
operation). Interesting, the GGIR Part 1 model demonstrated a
roughly linear performance up until the execution time reached
about 1200 seconds. Subsequently, the code took substatially
longer than predicted to execute. After an investigation, it

became apparent that the data files were uploaded by to the
e-SC server by the various study centres in batches. This had
the effect of a number of files competing for resources on the
system, with the effect that some executions took longer than
predicted. The output size model (i.e. the size of the generated
report) demonstrated a broadly linear response with the actual
metadata size being in the range 7-10MB for each participant
collection exercise. It is also apparent from the graphs that the
majority of durations and output size predictions are clustered
in a fairly tight area. The most likely cause of this observation
is the fact that the study protocol produced very similar data
file sizes as the participants all wore the devices for broadly
similar periods of time.
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Fig. 10. GGIR Part 1 Generated Data Size Model

An updated version of the GGIR algorithm, which combines
both Part 1 and Part 2 demonstrates this clustering behaviour
more clearly, with an upper predicted execution time of
approximately 1400 seconds. (Figure 11).
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Fig. 11. GGIR Version 2 Duration Model



VII. CONCLUSIONS

This paper has demonstrated that, for the set of workflow
components studied it is feasible to build reliable predictions
of the execution time and volume of data produced from past
executions and configuration parameters. These models have
been shown to be robust in both controlled, local, environ-
ments and using shared virtualised environments provisioned
in a commercial cloud provider. The components modelled
include internal e-Science Central blocks and also open source
algorithms used in the analysis of data in clinical trials. Using
these models it is possible to predict the performance of large
workflows, a capability which has been implemented in the e-
Science Central Performance Server. Further work will include
assessing the reliability of these predictions during subsequent
studies which are scheduled to begin mid 2016.

Although we have only integrated the performance capture
and modelling system with the e-Science Central platform,
both the concepts and code should be applicable to any system
that can generate performance logging messages in a similar
format.
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