
A Secure Data Enclave and Analytics Platform for
Social Scientists

Yadu N. Babuji, Kyle Chard, Aaron Gerow, Eamon Duede
Computation Institute

University of Chicago and Argonne National Laboratory
{yadunand,chard,gerow,eduede}@uchicago.edu

Abstract—Data-driven research is increasingly ubiquitous and
data itself is a defining asset for researchers, particularly in the
computational social sciences and humanities. Entire careers and
research communities are built around valuable, proprietary or
sensitive datasets. However, many existing computation resources
fail to support secure and cost-effective storage of data while also
enabling secure and flexible analysis of the data. To address these
needs we present CLOUD KOTTA, a cloud-based architecture
for the secure management and analysis of social science data.
CLOUD KOTTA leverages reliable, secure, and scalable cloud
resources to deliver capabilities to users, and removes the
need for users to manage complicated infrastructure.CLOUD
KOTTA implements automated, cost-aware models for efficiently
provisioning tiered storage and automatically scaled compute
resources.CLOUD KOTTA has been used in production for several
months and currently manages approximately 10TB of data and
has been used to process more than 5TB of data with over 75,000
CPU hours. It has been used for a broad variety of text analysis
workflows, matrix factorization, and various machine learning
algorithms, and more broadly, it supports fast, secure and cost-
effective research.

I. INTRODUCTION

Data is fast becoming a crucial, defining, asset for re-
searchers. Entire fields, including those new to computational
practices, are quickly embracing data-driven research. How-
ever, the increasing scale and complexity of analysis and the
fact that datasets are often proprietary, or sensitive, creates
unique new challenges. The centrality of data has inspired
new processes that are designed for specific datasets, which
typically results in tightly coupled environments that discour-
age reusability and agility. To support the needs of data-driven
research, we developed CLOUD KOTTA1, a unique cloud-based
framework that enables the secure and cost-effective manage-
ment and analysis of large, potentially sensitive datasets.

To address the growing reliance on data in research (par-
ticularly in the social sciences and humanities) scholars are
increasingly replacing on-premise infrastructure with cloud-
based solutions such as those offered by Amazon Web Ser-
vices (AWS). This trend is not difficult to explain: cloud
platforms provide high reliability, availability, and download
performance without encumbering researchers with managing
on-site infrastructure. The adoption of cloud-based services
has also afforded new avenues for exploration. For example,
when storage is co-located with elastic computing capacity
with which data can be analyzed, aggregated, and integrated

1Available at https://github.com/yadudoc/cloud kotta.

on-demand, researchers can take bigger risks and explore new
analyses more flexibly. CLOUD KOTTA enables this kind of
agility across fluid groups while also ensuring scalability,
security, and data provenance.

Cloud-based infrastructure also has the advantage of helping
centralize disparate teams. For example, given the sensitivity,
value, and size of many datasets, it is often not feasible to
replicate and download entire datasets for analysis on local
computers or clusters. In many cases, circuitous approval
procedures are necessary to gain access to data, and users
must adhere to strict data-use agreements. Migrating data from
the environment where it is hosted adds further complexity in
this respect, and cloud-based strategies can exacerbate these
challenges. So, when it comes to cloud-based infrastructure,
it is important for researchers to develop a unified strategy.
CLOUD KOTTA offers a strategy that is cost-effective, secure
with respect to data policies, offers sustainable short- to long-
term storage, and is scalable for demanding workloads.

CLOUD KOTTA is designed to address the requirements of
two canonical use cases: managing community datasets se-
curely and providing scalable compute resources. The first use
case is motivated by a growing need for researchers to make
valuable datasets available to certain research communities.
This might be required by funding agencies or institutions,
though, it is generally helpful to share data when establishing
new research groups. The most important requirements for this
use case are that CLOUD KOTTA be:

• Secure: Data should be stored securely and accessible
only to authorized and authenticated users.

• Scalable: Data can be large, the storage system should
scale to the data.

• Reliable: Data should be stored reliably, using backups
in case of failure or corruption.

• Available: Data should be available to geographically
distributed users.

• High performance: Large amounts of data should be
moveable easily and quickly for analysis, download, and
archival.

• Cost-effective: Costs associated with data storage should
be minimized to encourage use.

The second use case is motivated by a large-scale move-
ment towards data-intensive research. As data sizes grow
and analyses become more computationally intensive, the

ar
X

iv
:1

61
0.

03
10

5v
1 

 [
cs

.D
C

] 
 1

0 
O

ct
 2

01
6

https://github.com/yadudoc/cloud_kotta


Fig. 1. Logical Architecture of CLOUD KOTTA

requirements often exceed the computational capabilities of
individual researchers. As such, researchers need to be able
to scale analyses from individual computers to distributed,
parallel modes of computing. To address these priorities,
CLOUD KOTTA should be:

• Secure: Authorizations should control what data can be
analyzed and which analyses should be isolated.

• Scalable: Analyses should scale to data, exploit paral-
lelism where possible, and leverage large scale computing
infrastructure for efficient performance.

• Cost-effective: Costs should be comparable or lower than
using local compute resources.

• Easy to use: Interfaces should make it simple to access
the underlying infrastructure.

II. ARCHITECTURE & IMPLEMENTATION

The CLOUD KOTTA architecture is depicted in Fig. 1. The
entire system is comprised of a web interface and REST
API for accessibility; a set of event-based management and
monitoring software to ensure reliable job execution; a com-
pute layer that provides cost efficient compute resources; a
fast and cost-effective storage layer; and an extensible and
customizable security fabric that permeates all of the above
components.

CLOUD KOTTA is designed to be deployed on Amazon Web
Services (AWS), the ecosystem of its intended users. Where
possible, CLOUD KOTTA leverages existing cloud services as
they are scalable, reliable, secure, and cost-effective. The entire
CLOUD KOTTA system is open source and can be deployed
using a reproducible CloudFormation configuration which can
be further customized to match target workloads.

A. User Interface

CLOUD KOTTA offers three interfaces: a web interface, a
REST API, and a command line interface (CLI) accessible
from the login node. This range of interfaces supports broad
usage scenarios, enabling intuitive web access for web-based
users and advanced programmatic and CLI support to facilitate
customizable and automated invocation by technical users.

The supported interfaces support the same operations in-
cluding, for example, browse datasets, upload new data, view
and download results from previous analyses, submit and man-
age analyses. As with the entire CLOUD KOTTA architecture,
the interfaces are secured, restricting access to authenticated,
authorized users. The general architecture is centered around
data stored in AWS Simple Storage Service (S3) buckets.

Users can browse accessible data that they are permitted to
access in S3, and they can also upload files to their own
private S3 buckets. Once uploaded, files are available to be
specified as inputs to submitted jobs. To support dynamic
sharing scenarios, such as emailing colleagues the results of an
analysis, CLOUD KOTTA provides support to construct short-
term, anonymous URLs.

Submitting an analysis requires a description of the appli-
cation (scripts, executables, etc), a list of inputs (S3, external
URLs), a list of output files to be saved, and a maximum
wall-time. In addition to supporting jobs with arbitrary exe-
cutables, applications can be templated to create pipelines with
simplified user interfaces. That is, other users wishing to re-
use an analysis can simply complete a customized form with
the required parameters. Users submit jobs via web forms in
the Web interface, or by specifying the job as a JSON file for
the CLI and REST interfaces.

B. Storage Layer

CLOUD KOTTA’s storage layer uses a mix of AWS storage
services that provide different guarantees regarding access
time, durability, and availability with different cost models.
The types of storage used by CLOUD KOTTA are:

• Elastic Block Storage (EBS): a high performance block
storage model that can be mounted as a file system on
an EC2 instance.

• S3 standard: a reliable object store that provides high
performance access via HTTP(S).

• S3 infrequent access: an object store with reduced stor-
age cost at the expense of availability.

• Glacier: an archival storage model that provides high
durability at a low price with high data retrieval times.

CLOUD KOTTA utilizes a caching model that is implemented
using automated data life-cycle policies that manage data
migration between storage tiers based on access patterns.
Frequently accessed data resides on S3, as it is fast and highly
available, whereas data that is accessed infrequently is moved
to Glacier, as it provides durable, low cost storage at the
expense of longer retrieval time. Fig. 2 illustrates the storage
tiers used in CLOUD KOTTA’s data model. Transferring data to
lower tiers helps minimize the cost associated with providing
high availability. The primary store for data in CLOUD KOTTA
is S3. When data is analyzed, it can either be staged directly
from S3 to ephemeral instance storage or EBS (which is
subsequently mounted by an instance). Similarly, archived data
stored in Glacier or S3 infrequent access buckets is staged to
S3 when needed before being staged for analysis. Outputs are
staged back to S3, guaranteeing durability.

CLOUD KOTTA’s data model has important advantages over
a static storage configuration. While EBS provides low-latency
access, it is more than three times as expensive as S3-Standard
and, in addition, must be mounted as a file system on a live
machine to access data. By storing data in S3, a small overhead
is incurred to stage data for compute, however, this latency is
nominal in most cases and comprises a fraction of the time it
takes to provision and execute a job. In addition to the cost



Fig. 2. Storage tiers in CLOUD KOTTA and the heuristics used to minimize
storage costs. Some costs may differ across regions and configurations.

benefits, S3 provides support for rich access control features,
as well as the ability to publish and access data directly via
HTTP.

C. Compute Layer

The analyses for which CLOUD KOTTA is designed often
comprise independent, long running, loosely coupled jobs.
To support this class of workload, CLOUD KOTTA offers a
scalable compute layer built upon elastic pools of Elastic
Compute Cloud (EC2) instances.

EC2 is a virtualized computing environment in which users
can lease virtual machines (VM) with varying computational
resources. Instances are organized by region and Availability
Zone (AZ). Regions represent different geographic locations
whereas AZs are datacenters located within a specific region.
Pricing models differ between AZs and, due to the independent
failure models, users can achieve high reliability by distribut-
ing applications across AZs. EC2 instances are provisioned
according to a market model in which users pay for the
resources consumed.

CLOUD KOTTA can be configured to use two different EC2
market models. On-demand instances are offered at a fixed
hourly price where instances live until they are terminated by
a user. Spot instances are offered using a dynamic price model
where users “bid” a maximum hourly price and instances are
terminated by AWS if the market price exceeds the user’s bid.
Spot markets are typically a fraction of the on-demand price.

CLOUD KOTTA is designed to support two classes of work-
loads: short development jobs requiring quick responses, with
minimal compute resources, and longer running production
tasks that are computationally intensive, but more tolerant of
delays. To meet the needs of these two asymetric workloads,
CLOUD KOTTA offers two independent pools of compute
resources. The development pool is comprised of on-demand
instances, with at least one instance accessible at all times.
To minimize the cost of executing computationally intensive,
long running, yet delay tolerant production workloads, we
utilize spot instances. CLOUD KOTTA relies on an automated
bidding model to provision resources across AZs (to avoid
price fluctuations in an AZ). Administrators can configure the
bidding model to use static or policy-based bid prices (some
fraction of the equivalent on-demand price, for example).

While using spot instances can significantly reduce costs,
instance revocations are inevitable. To mitigate the problems

associated with instance termination, CLOUD KOTTA manages
queues that ensure jobs that do not complete are resubmitted
to the queue and executed again on a new instance. By
provisioning spot instances on-demand, CLOUD KOTTA can
meet the demands of what are often sporadic and bursty
workloads while also helping minimize costs [1]. CLOUD
KOTTA currently uses a pre-defined EC2 instance type for
each of it’s queues. In future work, we will integrate CLOUD
KOTTA with cost-aware provisioning [2], [1] and profiling [3]
approaches to improve the selection of instance types based
on cost and execution time.

D. Job Management

CLOUD KOTTA uses a job management layer to control
the execution of arbitrary user analyses on the compute layer.
User submitted tasks include the input files, execution scripts,
and output files. Users must also choose if the task is a
development or production job. When tasks are submitted, the
description is stored in a database such that it can be accessed
by the job management layer and the instances executing
the analysis. To execute the task, the job management layer
determines the user’s access permissions, associates the user’s
role with the description, and places the job in the appropriate
queue.

We leverage a queue model as it provides a reliable method
for distributing jobs across a pool of EC2 instances. Worker
nodes (EC2 instances) poll the queue for waiting tasks. If a
task is available the worker moves it from a pending queue
to the active queue. This active queue is used to manage
execution and ensure that no tasks are lost. The worker
retrieves the task description from the database and begins
execution. In the case where spot instances are used, we must
account for unreliability of the underling infrastructure. To do
so, the job management layer includes a monitoring service
that periodically checks instance health (e.g., for termination
or other failures). If instances are terminated, the monitoring
service will resubmit the task to the pending queue. Through-
out execution, the worker node writes job status markers to the
database. This information provides worker statistics (CPU,
I/O and RAM utilization) and job progress, both of which
are accessible to the user to monitor job execution. Upon
completion, the worker will stage output data to S3, and update
the database with the completion code of the task.

E. Security

The final layer of CLOUD KOTTA is the security fabric that
permeates the system. CLOUD KOTTA uses Amazon’s OAuth 2
model (Login with Amazon) for authentication. Users are able
to login using their Amazon credentials and CLOUD KOTTA is
therefore not responsible for managing user passwords. Before
being granted access to the system, users must first be regis-
tered in CLOUD KOTTA’s database and given an appropriate
role. When users login using the OAuth 2 workflow, CLOUD
KOTTA is given a short-term delegated access token. This
token can be used to retrieve information about the user from
Amazon as well as to use services as the user.



CLOUD KOTTA is built around a role-based access control
model in which users are assigned roles, for example kotta-
public-only and kotta-read-WOS-private, where WOS refers
to the private Web of Science dataset. Policies associated
with roles define permissions for specific resources (e.g., data
access in S3). Given that all access is controlled by roles,
worker nodes must assume a role before they can access
restricted data. Other CLOUD KOTTA services are also given
appropriate privileges by internal roles such as web-server,
task-executor. These roles, unlike user roles, have access to the
internal database, queues, notification systems and are capable
of controlling scaling functionality. This role based access
model limits validity of credentials to a small window limiting
the risk of exposing valuable long-lived credentials. To adhere
with the principle of least privilege, CLOUD KOTTA users are
initially given no roles or privileges. They are incrementally
granted permissions when required.

Data authorization and access control is implemented on
S3 buckets. By default, access is not permitted unless it is
explicitly granted via a policy. S3 buckets are associated with
policies that prescribe permissions. Policies are then associated
with roles that give permissions to users. The data stored
on S3 buckets are server-side encrypted and accessible only
from a Virtual Private Cloud (VPC) Endpoint. This guarantees
that traffic between the S3 bucket and the compute instances
remain private.Output data is also stored in S3. It is initially
created as a private object only accessible to the creator. As
CLOUD KOTTA is used by collaborating groups of users, it is
important that data can be shared. To provide this capability,
we use short-term signed URLs, like those used by other Cloud
services (e.g., Google Drive and DropBox) that provide short
term access to the holder of the URL.

CLOUD KOTTA implements a strong security model be-
tween instances and other services. The compute layer is
hosted within a private subnet enclosed within a VPC. This
ensures that compute instances are not directly accessible via
the internet. Worker nodes are associated with a task-executor
role that has few privileges (e.g., it cannot access any data)
However, this is a trusted role that can be used to change to a
user role for a short period of time. This is crucial as it enables
a worker node, executing on behalf of a user, the ability to
inherit the user’s role and therefore access any data needed by
the job. This approach ensures that even a running task is only
able to access data for which the user is authorized to access.
After staging data, the worker returns to the task-executor role
to execute the job.

Finally, CLOUD KOTTA records every action performed
by the system to ensure that data access and usage can be
thoroughly audited. This information is recorded in a database
such that administrators can export an audit log for any dataset,
user, or service.

III. USAGE & APPLICATIONS

CLOUD KOTTA has been deployed and used over the past
six months by a range of computational social scientists.

Fig. 3. Monthly usage of CLOUD KOTTA since deployment.

Active use cases for CLOUD KOTTA include text analysis, se-
mantic word embedding, matrix factorization, optical character
recognition, and social network analysis. Here we describe
usage and illustrate some representative analyses.

A. Usage

CLOUD KOTTA has been used to develop, test and run a
broad range of analytics on an array of datasets. CLOUD
KOTTA currently manages datasets that collectively total
nearly 10TB of data. It has been used for varied development
cycles ranging from researchers running off-the-shelf tools
on sample data, to teams of programmers developing and
testing new methods on large, proprietary datasets. Throughout
its development, CLOUD KOTTA was designed to speed up
development and analysis cycles in a secure and flexible
manner, while reducing costs induced by disparate and often
idle compute resources. To-date, CLOUD KOTTA has been used
to process over 5TB of data with over 75,330 CPU-hours.
As our implementation of CLOUD KOTTA has solidified and
become more robust, usage has grown (see Figure 3). The
observed usage patterns affirm the choice of elastic cloud
computing infrastructure as both data access and compute
usage are particularly sporadic with peaks of over 7,000
compute hours in a single day and other days with none.

B. Applications

CLOUD KOTTA currently hosts a number of proprietary
and sensitive datasets that have been used for a variety
of workloads. CLOUD KOTTA has been primarily used to
develop and run time-intensive text analyses, large scale matrix
factorization, and optical character recognition (OCR). Other
use cases have also been deployed with CLOUD KOTTA, but
these three exemplify cases for which CLOUD KOTTA was
designed: they are exploratory, large scale, and require private
data that is shared among a strict set of users.

1) Text Analysis: One of the first use cases that was
developed to run on CLOUD KOTTA is a tool-chain for text
analysis. The analysis, designed to run on large collections of
text, consists of four phases, each with separate inputs. The
jobs consists of a series of pre- and post-processing scripts
and wrapping natural language models. For these jobs, data is
normalized and divided into logical bins, submitted to seman-
tic analysis and post-processed to provide organized output.



Fig. 4. Interactive analytics based on the analysis of researchers’ publications.
Shown is the author-to-topic network highlighting connections via topic #89,
about Markov models.

The semantic model – the central analysis – includes doc2vec,
word2vec [4] and various probabilistic topic models [5], [6].
These tend to be memory and compute intensive.

This workflow has unique challenges that can discourage
exploration and slow development. It tends to involves free
parameters at various phases, the scaling profile of many
semantic models is unpredictable and the veracity of results is
often measure qualitatively, making exploratory runs crucial.
CLOUD KOTTA allowed our users to efficiently explore the
parameter space to optimize a models’ specification. One
particular example is the Author-Topic (AT) Model [5], a
probabilistic graph model that fits distributions of words, doc-
uments and authors to topics observed in texts. With CLOUD
KOTTA, a multi-dimensional grid search was performed to
assess the quality of various specifications attenuating the
number of topics, and various fitting parameters that affect the
interpretability of topics. Each run took approximately three
days and 16GB of RAM. The final outputs of these runs were
used to develop an interactive platform for researchers (Fig.
4) to generate explore commonalities and to propose future
collaborators based on their existing work [7].

2) Matrix Factorization: Another use case where CLOUD
KOTTA has been used was in developing a new method
of multiple imputation (MI). When faced with lossy data,
researchers often use MI to fill in missing values. Traditional
MI establishes a missingness pattern on a given response
which is then used in a regression with non-missing responses
as parameters. The “multiple” aspect of MI is that after being
imputed, new values can be used to increase the accuracy of
imputing still-missing values. MI is cross-validated to assess
stability and provide error-bounds. As a result, MI is computa-
tionally intensive and imposes strong statistical assumptions.
A more fundamental weakness of parametric MI, however,

is that it disregards latent structure in the response matrix.
Low rank and low norm matrix factorization offer alternatives
to parametric MI that can exploit patterns throughout the
response structure [8].

In developing and testing low rank and low norm alter-
natives to MI, CLOUD KOTTA was used to run a range of
tests simultaneously. These models were implemented in Julia,
a relatively new scientific programming language. Because
there is a stochastic component to low rank and low norm
models, cross-validation on a held-out set of data was used
to evaluate results over many random folds. Once the models
were developed, CLOUD KOTTA was able to execute a large
batch of validation jobs to provide pooled results. In these
sets, a single run on a 2,500 by 122 matrix used 32 cores
on a single instance and 100 GB of RAM for 10 hours. This
made CLOUD KOTTA’s ability to run multiple jobs in parallel
a crucial feature over the course of development.

3) Optical Character Recognition: A third application for
which CLOUD KOTTA has been used in production is OCR.
OCR is the process of extracting text, figures, tables, and
other features from rasterized images of documents. OCR is
effectively a kind of object recognition that relies on trained
models of character classification – models that are compu-
tationally intensive. CLOUD KOTTA was used to run OCR
software on over 10 thousand grant proposals and scholarly
texts. Processing these documents required 20 hours using 10,
32-core instances and 75GB of RAM. With CLOUD KOTTA ,
what would have taken over a month on personal hardware,
was finished in a single day.

IV. RELATED WORK

Computational social science communities are investigating
a broad range of approaches for hosting proprietary datasets
and conducting scalable analytics. For example, researchers
have used hybrid cloud models [9], extended common tools
to analyze data at scale [10], and developed environments
for securely analyzing data in controlled VMs [11]. CLOUD
KOTTA is unique in its support for a wide range of data, a
general architecture that accommodates many use cases, and
by its automated, scalable storage and analytics environments.

Many scientific communities now have a broad range of
data repositories available for storing and accessing differ-
ent types of data (e.g., biomedicine [12], climate [13], and
astronomy [14]). Systems are typically developed around a
static data repository that requires significant administrative
overhead to populate, curate and manage. Each has inde-
pendent identity management sub-systems that have been
developed to control access to data. But more importantly,
most existing systems are static, isolated data environments,
that provide minimal management capabilities separate from
compute resources. Science gateways [15] aim to bridge this
gap by abstracting the complexity of using large scale com-
puting infrastructure. These systems typically provide access
to shared datasets (e.g., in a repository) and resources through
high level interfaces (workflows, portals, etc.). Examples of



commonly used gateways include CyberGIS [16] for geo-
science and iPlant [17] for ecology. Most science gateways are
built on more traditional High Performance Computing (HPC)
infrastructure. However, recent work has focused on cloud-
based solutions [18], [19]. CLOUD KOTTA acts as a fabric
on which next generation data repositories and cloud-hosted
gateways could be developed in a domain-agnostic setting.

CLOUD KOTTA can deploy customized, cloud-based clusters
similar to a number of other systems. For example, Cloud-
Man [20] and StarCluster [21] allow uses to deploy clusters for
hosting and executing workflows. These systems, and others,
are designed to aid the creation of clusters for semi-permanent
usage. Other systems, such as Globus Galaxies [19] and Make-
flow [22], enable on-demand and elastic cluster provisioning
in response to workload. CLOUD KOTTA is unique, however,
in its use of commodity AWS services and its broad focus on
providing a framework for secure data storage and analysis.

V. SUMMARY

CLOUD KOTTA provides a secure and scalable data enclave
and analytics environment for computational and data-drive
social sciences. It addresses a gaping hole in the current
infrastructure available to researchers, providing a model via
which, even resource limited researchers can gain access to
scalable data storage, elastic computing capacity, and cutting
edge analysis algorithms without deploying and operating their
own infrastructure. Moreover, it provides these capabilities
while also optimizing performance and cost using automated
data management and compute provisioning techniques.

In the six months since deployment CLOUD KOTTA has
quickly grown to host a dozen private datasets (e.g., IEEE,
Web of Science, and ACM) as well as several public datasets
(e.g., US patents and Wikipedia). It has been used by dozens
of researchers, students, and teachers to perform a wide variety
of text analysis, machine learning, image recognition, and
network analysis algorithms.

Our future work focuses on building an ecosystem around
CLOUD KOTTA by developing a suite of data analytics frame-
works from which users can more easily conduct analyses.
We will continue to engage social scientists to add datasets to
the system while looking to extend its capabilities to other
disciplines. We are particularly interested in further devel-
oping algorithms for improving data lifecycle and compute
management to better meet the needs of users with respect to
performance, time, and cost.

ACKNOWLEDGMENTS

The authors thank Nandana Sengupta, Nathan Bartley, and
Cha Chen for developing applications on CLOUD KOTTA .
This research was supported by grants from the John Tem-
pleton Foundation to the Metaknowledge Research Network,
IBM for Computational Creativity, and a gift from Facebook.

REFERENCES

[1] R. Chard, K. Chard, K. Bubendorfer, L. Lacinski, R. Madduri, and
I. Foster, “Cost-aware cloud provisioning,” in Proceedings of the 11th
International Conference on e-Science, August 2015, pp. 136–144.

[2] R. Chard, K. Chard, K. Bubendorfer, L. Lacinski, R. Madduri, and
I. Foster, “Cost-aware elastic cloud provisioning for scientific work-
loads,” in Proceedings of the 8th International Conference on Cloud
Computing (CLOUD), June 2015, pp. 971–974.

[3] R. Chard, K. Chard, B. Ng, K. Bubendorfer, A. Rodriguez, R. Madduri,
and I. Foster, “An automated tool profiling service for the cloud,” in
Proceedings of the 16th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing (CCGrid), May 2016, pp. 223–232.

[4] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
“Distributed representations of words and phrases and their composi-
tionality,” in Advances in neural information processing systems, 2013,
pp. 3111–3119.

[5] M. Rosen-Zvi, T. Griffiths, M. Steyvers, and P. Smyth, “The author-
topic model for authors and documents,” in Proceedings of the 20th
conference on Uncertainty in artificial intelligence. AUAI Press, 2004,
pp. 487–494.

[6] J. Zhang, A. Gerow, J. Altosaar, J. Evans, and R. J. So, “Fast,
flexible models for discovering topic correlation across weakly-related
collections,” in Proceedings of Empirical Methods in Natural Language
Processing, 2015.

[7] A. Gerow, B. Lou, E. Duede, and J. Evans, “Proposing ties in a dense
hypergraph of academics,” in Social Informatics. Springer, 2015, pp.
209–226.

[8] M. Udell, C. Horn, R. Zadeh, and S. Boyd, “Generalized low rank
models,” arXiv preprint arXiv:1410.0342, 2014.

[9] S. Abramson, W. Horka, and L. Wisniewski, “A hybrid cloud architec-
ture for a social science research computing data center,” in Proceedings
of the 34th International Conference on Distributed Computing Systems
Workshops (ICDCSW), June 2014, pp. 45–50.

[10] M. A. Saleem, B. Varghese, and A. Barker, “Bigexcel: A web-based
framework for exploring big data in social sciences,” in Proceedings of
the IEEE International Conference on Big Data (Big Data), Oct 2014,
pp. 84–91.

[11] J. Zeng, G. Ruan, A. Crowell, A. Prakash, and B. Plale, “Cloud comput-
ing data capsules for non-consumptiveuse of texts,” in Proceedings of
the 5th ACM Workshop on Scientific Cloud Computing (ScienceCloud),
2014, pp. 9–16.

[12] M. Mailman, M. Feolo, Y. Jin, M. Kimura, K. Tryka, R. Bagoutdinov,
L. Hao, A. Kiang, J. Paschall, L. Phan, N. Popova, S. Pretel, L. Ziyabari,
M. Lee, Y. Shao, Z. Wang, K. Sirotkin, M. Ward, M. Kholodov, K. Zbicz,
J. Beck, M. Kimelman, S. Shevelev, D. Preuss, E. Yaschenko, A. Graeff,
J. Ostell, and S. Sherry, “The NCBI dbGaP database of genotypes and
phenotypes.” Nature Genetics, vol. 39, no. 10, pp. 1181–1186, 2007.

[13] “National Climatic Data Center (NCDC),” http://www.ncdc.noaa.gov/,
web site. Accessed: May, 2016.

[14] “SIMBAD Astronomical Database,” http://simbad.u-strasbg.fr/simbad/,
web site. Accessed: May, 2016.

[15] N. Wilkins-Diehr, “Special issue: Science gatewayscommon community
interfaces to grid resources,” Concurrency and Computation: Practice
and Experience, vol. 19, no. 6, pp. 743–749, 2007.

[16] Y. Liu, A. Padmanabhan, and S. Wang, “CyberGIS gateway for enabling
data-rich geospatial research and education,” in Proceedings of the IEEE
International Conference on Cluster Computing (CLUSTER), Sept 2013,
pp. 1–3.

[17] D. Stanzione, “The iPlant collaborative: Cyberinfrastructure to feed the
world,” Computer, vol. 44, no. 11, pp. 44–52, Nov 2011.

[18] W. Wu, H. Zhang, Z. Li, and Y. Mao, “Creating a cloud-based life sci-
ence gateway,” in Proceedings of the 7th IEEE International Conference
on e-Science, Dec 2011, pp. 55–61.

[19] R. Madduri, K. Chard, R. Chard, L. Lacinski, A. Rodriguez, D. Sulakhe,
D. Kelly, U. Dave, and I. Foster, “The Globus Galaxies platform: de-
livering science gateways as a service,” Concurrency and Computation:
Practice and Experience, vol. 27, no. 16, pp. 4344–4360, 2015.

[20] E. Afgan, D. Baker, N. Coraor, H. Goto, I. M. Paul, K. D. Makova,
A. Nekrutenko, and J. Taylor, “Harnessing cloud computing with galaxy
cloud,” Nature Biotechnology, vol. 29, pp. 972–974, 2011.

[21] “StarCluster,” http://star.mit.edu/cluster/, web site. Accessed: May, 2016.
[22] M. Albrecht, P. Donnelly, P. Bui, and D. Thain, “Makeflow: A portable

abstraction for data intensive computing on clusters, clouds, and grids,”
in Proceedings of the 1st ACM SIGMOD Workshop on Scalable Work-
flow Execution Engines and Technologies. ACM, 2012, pp. 1:1–1:13.

http://www.ncdc.noaa.gov/
http://simbad.u-strasbg.fr/simbad/
http://star.mit.edu/cluster/

	I Introduction
	II Architecture & Implementation
	II-A User Interface
	II-B Storage Layer
	II-C Compute Layer
	II-D Job Management
	II-E Security

	III Usage & Applications
	III-A Usage
	III-B Applications
	III-B1 Text Analysis
	III-B2 Matrix Factorization
	III-B3 Optical Character Recognition


	IV Related Work
	V Summary
	References

