

Delft University of Technology

A columnar architecture for modern risk management systems

Gonçalves, Romulo; Zlatanova, Sisi; Kyzirakos, Kostis; Nourian, Pirouz; Alvanaki, Foteini; van Hage, Willem

DOI
10.1109/eScience.2016.7870929
Publication date
2016
Document Version
Accepted author manuscript
Published in
Proceedings of the 2016 IEEE 12th International Conference on e-Science

Citation (APA)
Gonçalves, R., Zlatanova, S., Kyzirakos, K., Nourian, P., Alvanaki, F., & van Hage, W. (2016). A columnar
architecture for modern risk management systems. In Proceedings of the 2016 IEEE 12th International
Conference on e-Science (pp. 424-429). Article 7870929 IEEE.
https://doi.org/10.1109/eScience.2016.7870929
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/eScience.2016.7870929
https://doi.org/10.1109/eScience.2016.7870929

A columnar architecture for modern risk
management systems

Romulo Goncalves1, Sisi Zlatanova2, Kostis Kyzirakos3, Pirouz Nourian2, Foteini Alvanaki3, Willem van Hage1

1Netherlands eScience Center, The Netherlands
{r.goncalves,w.vanhage}@esciencecenter.nl

2TU Delft, The Netherlands
{s.zlatanova, p.nourian}@tudelft.nl

3CWI, The Netherlands
{kostis.kyzirakos,f.alvanaki}@cwi.nl

Abstract—3D digital city models form the basis for flow simu-
lations (e.g. wind flow and water runoff), urban planning, under-
and over- ground formation analysis, and they are very important
for automated anomaly detection on man made structures. They
consist of large collections of semantically rich objects which
have many properties such as material and color. Such user’s
data structure perception is leading to complex storage schemas.
The number of table relations to manage and the large data
storage footprint drawbacks are then extended with the fact that
not all the systems have a "real" 3D data type.

In this work we would like to show our efforts to develop
a new kind of Spatial Data Management System (SDBMS)
where topological and geometric functionality for 3D raster
manipulation will become part of the relational kernel and not
an add-on. With it spatial analysis tailored to different use case
scenarios is done on-demand and fast enough to support real-time
interaction in modern risk management systems.

I. INTRODUCTION

Digital 3D city models play a crucial role in research of
urban phenomena; they form the basis for flow simulations
(e.g. wind streams and water runoff), analysis of underground
formations and man made structures which provide crucial
information for effective risk management systems.

An urban scene, represented as a 3D city model, consists
of large collections of semantically rich objects which have a
number of properties such as use, function, and year. They
are commonly reconstructed by segmenting and triangulat-
ing a point cloud thereby creating a surface representation.
Representing urban objects (e.g. buildings, roads, trees, etc.)
as surfaces has drawbacks while calculating intersections and
volumes, and creating cross-sections is complex. Furthermore,
modeling volumetric objects, such as walls, water, and under-
ground, requires the deployment of complex shapes [18].

Such users data structure perception is leading to complex
storage schemes. The storage scheme designed for systems like
Oracle Spatial, Grass, and PostGIS has limitations such as the
management of many tables when the selection predicate is on
the 3D city model semantics. The number of table relations
to manage and the large data storage footprint drawbacks are
then extended with the fact not all the systems have a "real"
3D data type. PostGIS, highly adopted in eScience projects,
is a clear example.

We have tackled all these issues by re-designing the con-
ceptual model and the storage model. For conceptual model
we have adopted a voxel-based city model, a path considered
novel and promising [18]. Voxels are the volumetric represen-
tation of pixels. Alongside a length and a width, voxels also
have height thereby forming a cube in 3D space. Voxel storage
offers a number of interesting simplifications, use cases, but
also challenges. One of the major challenges is its storage and
efficient handling by Spatial Database Management Systems
(SDBMSs). With different semantic level of detail (e.g., LOD
in CityGML [16]) models and coverage of in- and out- side
empty spaces, the voxelization of an entire city will generate a
massive 3D grid of voxels at different resolutions with a large
number of semantic attributes attached [18].

It is clear a dense flat relational table is not ideal to
store such massive 3D grid. The holy grail is an architecture
which allows effective compression to reduce storage foot-
print, and efficient data retrieval to access only the attributes
of interest at a specific resolution. Such key features is what
distinguishes a column-oriented architecture from a record-
oriented architecture and the reason for their efficiency on
analytic workloads [5].

Despite column-oriented architectures emerge as the right
candidate and the efforts to extend them for spatiotemporal
analysis over large data sets [8], [6], [12], [13], their flat
storage model is not yet suitable to store a large 3D city
model. To do so, we extended a column-store to also support
a nested column-oriented storage for 3D city models. The
chosen format is Parquet [1]. It is an effective storage model
for sparse data sets with a nested structure (the different
LODs). Its flat columnar format fits well the column-oriented
programming model.

With our contribution, spatial analysis tailored to different
use case scenarios is done on demand and fast enough to be
used by modern risk management systems.The adopted storage
model, Parquet [1], opens doors to also exploit state-of-the-art
processing technologies, such as Spark, to scale out to country
size. Furthermore, the simplicity of the conceptual model gives
the opportunity to use interactive front-ends borrowed from
gaming for real-time interaction with the surroundings.

 2016 IEEE 12th International Conference on eScience, 23-27 October 2016, Baltimore, USA

The remainder of the paper is as follows. Section II de-
scribes the storage strategies and their challenges. Section III
presents the general architecture. Section IV shows the steps
already taken to put the vision in action. The article ends with
future plans in Section V and a summary in Section VI.

II. BACKGROUND

In this section we do a top-down description of our solution,
i.e., from the conceptual model to the storage model. For the
conceptual model we first identify its advantages followed
by the challenges in supporting it on current SDBMSs. For
the storage model we give a description on the challenges in
mapping a voxel-based conceptual model into a flat and nested
column-oriented storage.

A. Voxels

Our world can be represented in voxels by gridding the 3D
space and specifying what each cell represents by semantically
"attaching" every cell/voxel to a real world object. Storing
volumetric spaces such as air, water and underground is
possible.

Every object is defined by set of voxels, with set’s length
depending on the level of detail (LOD). The storage unit base
is a 3D voxel of certain size and each voxel’s characteristics
e.g. type (wall, glass, roof, door, etc.), color, density, etc. is
then stored as a semantic property. Such data type atomicity
avoids the use of a set of multiple geometries, approach
currently used in other spatial RDBMSs to store 3D city
models [18].

Representing real world objects by a single geometry type
(3D cube) instead of collection of polygons/polyhedron greatly
simplifies a range of geometric operations: volumes and areas
are calculated by simply counting the number of voxels
that form an object; 3D bisections become simple selection
operations; dynamic Levels-of-Detail (LOD) as objects can
be resampled with larger cubes [18].

B. Storage challenges

The storage and indexing of 3D voxels linked with proper-
ties, such as voxels created to simplify a point cloud, two
approaches can be considered, a homogeneous voxel grid
versus a heterogeneous voxel collection. The former allows for
factorization of invariant properties from the data structures,
while the latter is better suited to sparse models such as a 3D
city model with different LODs.

A homogeneous voxel grid is easy to define using a
flat relational schema, i.e., real-world objects are formed
by semantically grouping voxels together via foreign key
relations and relational views. The scheme normalization is
used to reduce the storage footprint at the cost of expensive
spatial joins. The schema normalization storage footprint is
proportional to the size of each voxel. Hence, efficient data
access becomes dependent on efficient column compression
techniques and effective storage of geometric empty spaces.
The latter is very important because it strongly affects the data
set size. If empty spaces were also materialized in the storage

Fig. 1: "Record-wise versus columnar representation of nested data" [14]

scheme, the storage of the whole of The Netherlands as e.g.
10 cm blocks would result in many petabytes of data.

A heterogeneous voxel grid poses extra challenges com-
pared to a homogeneous voxel grid due to the preservation of
the geometry semantics when converting vector to raster data.
The object’s semantics depends on the semantic level of detail
(LOD) [18]. For example, the buildings LOD1 are buildings,
LOD2 semantic is extended with ground surface, wall surface,
and roof surface; LOD 3 has in addition to LOD 2 window
and door; LOD4 room, ceiling surface, interior wall surface,
floor surface, closure surface, door, window, building furniture
and building installation. Hence, depending on the LOD, a
voxel can have different semantic tags, e.g. (building, roof),
(building, wall), (building, wall, window), etc. The LOD has a
clear nested data organization and a sparse structure because of
the in- and out- empty spaces. Furthermore, not all the levels
in the nested structure are defined due to incompleteness or
absence of vector information for a specific LOD.

C. Nested column-oriented storage

For efficient storage and data retrieval at different resolu-
tions we embraced a column-oriented format for voxel-based
3D city models. Columnar formats have several advantages.
Organization by column allows better compression, as data is
more homogeneous. For large data sets the I/O is improved
since it is possible to efficiently scan a subset of the columns
while reading the data. Of course, better compression also
reduces the bandwidth to read input data [4]. By storing
together values of the same primitive type, a columnar format
provides more efficient encoding and decoding.

Hence, to store nested data structures in flat columnar
format, the schema is mapped to a list of columns in such
a way that records are written and read back to its original
nested data structure in an efficient way. Figure 1 illustrates
the record-wise versus columnar representation of nested data.
In the columnar representation all the values of a nested field
are stored contiguously. For example, A.B.C can be retrieved
without reading A.E, A.B.D, etc [14].

D. Parquet

In our work we use the well known Hadoop format called
Parquet [1]. It stores nested data structures in a flat columnar
format using a technique outlined in the Dremel paper from
Google [14]. Parquet file layout is represented in Figure 2. Its
internal structure is designed for efficient data skipping during

Fig. 2: Parquet file layout

query processing. The metadata stored in the file header and
column-page header allows a kernel during predicate evalua-
tion to skip data blocks and have lazy predicate evaluation over
compressed data. At the same time, this metadata is used in our
in-situ data access strategy, which is explained in Section III-B,
to reduce the amount of data imported during query execution.

Parquet captures the record structure of each value through
two integers called repetition level and definition level. During
query processing they are used to fully reconstruct the nested
structure 1.

Definition level. It is used to store the level of which the
field is NULL. From 0 at the root of the schema up to the
maximum level for the column. When a field is defined then
all its parents are also defined. The definition level records at
which level it started being null.

Repetition level. It is used to define when a new list starts
in a column of values. It marks the level at which we have to
create a new list for the current value.

Storing definition levels and repetition levels efficiently.
For each primitive type it is necessary to store three sub
columns. Due to the columnar representation the storage
overhead is low. The depth of the schema defines the number
of levels. For instance with 3 bits it is possible to store 7 levels
of nesting. Required fields do not need definition level, and
fields that are not repeated do not need repetition level.

Figure 3 represents the nested structure for a voxel-based
city model. The LOD is used for the definition level. It is
assumed that if a object has LOD2 semantics, it will also has
LOD1 semantics, i.e., all the voxels inherit the semantics from
the parent. The repetition level is the number of sub-divisions
a parent voxel has. As an example, an object is semantically
identified as a building in LOD1 while in LOD2 it might be
composed by a set of sub-voxels to define walls, floor surface
and etc.

III. A 3D RASTER SDBMS

A voxel-based 3D city model is best managed in a spatial
DBMS as each voxel has a semantic relation to a real world
object and various attributes (e.g. color, material, porosity,
reflection properties, etc). Furthermore, a single spatial DBMS

1For a detailed explanation with examples we recommend the read of:
https://blog.twitter.com/2013/dremel-made-simple-with-parquet

Fig. 3: LOD in Parquet

offers all functionality in one place, avoids the need for
multiple software tools with associated high volume data
transfer and format transformations.

During the last decade many DBMSs have been successfully
extended with support for spatial and geo-spatial applications.
For instance the OGC implementation specification, defining
basic geometry types like points and polygons, is followed in
PostGIS, Oracle, MySQL, Microsoft SQL Server, and Mon-
etDB. To implement it they use their user-defined functions
(UDF) functionality augmented in some cases with spatial
search accelerators. However, contemporary DBMSs still lack
advanced functionality and efficient implementations needed
for analysis of voxel-based models.

We might argue that Oracle Spatial, Graphs 12c, and
PostgreSQL 9.2 are developing extensions to support 3D
geometries, even in GIS packages, only GRASS has support
for voxels, but it still stores them as flat files. The systems
are still in their infancy and they offer limited functionality.
Due to the complexity of their software stack, deep integration
with the database engine is even further away.

A. Column-oriented architecture

For our work we have extended a modern column-store,
MonetDB [9], which steps away from traditional SDBMS
which are all record-oriented architectures. Through vertical
partitioning of relational tables column-store significantly re-
duce data access. In our case, vertical partitioning is exploited
to reduce the number of columns to be imported as explained
in Section III-B. Such data organization improves data com-
pression, simplifies data skipping strategies and it suits well
vector processing [4].

Currently through the works [8], [6], [12], [13], MonetDB
spatial features have been matured to provide core technology
components for geo-spatial big data analytics. Atomic spatial
types and their operations are becoming part of the relational
kernel and not an add-on. All the operations are available for
spatial applications through integrated environments, such as
R and Python, and a SQL front-end.

Fig. 4: MonetDB’s spatially enabled architecture

Currently the system is equipped with SQL primitives for
building complex spatial analysis pipelines over 3D point
clouds, more concretely: geometry-based selections (rect-
angular query window, 3D bounding box), attribute-based
selections (point intensity, RGB, multi-spectral properties),
conversion to Triangulated Irregular Network (TIN) and tri-
angulation using constrained Delaunay. It also provides the
option to export the results into a pre-defined format, such
as X3D, GeoJSON and LAS/LAZ format, to be loaded into
visualization tools.

In the context of 3D city models, MonetDB is currently
being extended with SQL operations to manipulate voxel
attributes: 3D selections (contains, within, intersects); re-
gridding of homogeneous voxel grids; semantic categorization;
volume based aggregation; and also rendering for interactive
visualization tools such as Cubiquity [2], more details in
Section V-B.

Our architecture, represented in Figure 4, is an attempt to
couple under the same storage descriptive spatial data, such as
point clouds, vector data and 3D rasters semantically enriched.
It creates the grounds to have direct and on the fly conversion
to a data type tailored to the type of user interaction.

B. Dynamic data access

The need of large area coverage and up to date information
to support near real-time decisions was the reason for us to
explore in-situ data access, i.e., data is kept in its original
format while scalable and distributed processing functionality
is offered through a DBMS.

Our work adopts the same strategy defined in [8] where the
authors presented a solution for in-situ data access to large
NetCDF data repositories. The work stands on the shoulders
of previous work called data-vaults [10]. In this article we
have extended it to support Shapefiles, Parquet and LAS/LAZ
file format.

The in-situ data access is possible due to the large amounts
of metadata (data of data) existent on file formats such as
Parquet and LAS/LAZ formats. Such metadata is used for
effective data skipping, but also to collect data insights, e.g.
summaries and samples, without having to process the entire
data set.

The dynamic data loading comprises of three phases: the
attachment of a file, the import of the file’s content and the
collection of statistics to boost query optimization. During the

attachment, the file’s metadata is loaded into a special DBMS
catalog. At query time, such a catalog is inspected to decide
whether the file has information relevant to the query. In such a
case the file’s content is imported into the database, otherwise,
it is not.

The data import happens in two ways, if the file format
has each attribute sequentially stored then the import memory
maps each attribute as a column, otherwise, the data is
converted and loaded into the database as temporary data. In
the latter case, cache policies, such as Least Recently Used
(LRU), are used for data eviction.

IV. VISION IN ACTION

Our 3D raster SDBMS emerges from efforts in providing
a scalable and generic solution for eScience projects with
spatio-temporal data analysis. It is a continuous work standing
on the shoulders of [8], [6], [12], [13]. In this section we
summarize the steps taken towards a fully functional solution.
The complete system evaluation is out of the scope of this
article. An extended version with such evaluation will be
submitted to a referee journal.

A. Voxel data Management

A 3D raster is commonly obtained from a existing 3D vector
model or 3D discrete measurements such as point clouds. The
vector model contains structured data and it is represented
according to the rules of either GIS or BIM models. GIS
models are used for modeling natural phenomena and man-
made objects while newly constructed man-made objects such
as buildings, bridges, etc, typically available in BIM models.

Our work supports 3D vector-raster conversion of vector
models stored in CityGML2 and it uses the voxelization prin-
ciples defined in [15]. The voxelization of surfaces and curves
are a customization of the Topological Voxelization approach
presented in [11] and they ensure correct representation of
geometries, topology, and semantics [15].

One object at the time is voxelized and the results saved into
a Parquet file. Instead of voxelizing sequentially an entire city,
the voxelization is done in parallel by tiling it. For each tile a
Parquet file is created. For efficient data access, a Parquet file
size is kept above 1GB to maximize the length of the stored
column. Such optimization, and the fact objects distribution is
not uniform, the tiling is not uniform.

B. Point cloud voxelization

The voxelization library [15] additionally provides an ex-
tension for voxelization of point clouds. The methods provide
an easy management of connectivity levels in the resulting
voxels, they are not dependent on any external library except
for primitive types and constructs, therefore, easy to integrate
them into a DBMS.

The in-situ data access combined with efficient spatial
selections allows voxelization of point cloud on demand and
near real-time. It allows us to extract a series of point-clouds
of certain region to determine volume differences of nature

2http://www.citygml.org

Fig. 5: Semantically enriched voxels from a point-cloud [7]

objects, or visualize quickly the impact of introducing or
removing a man-made structure [15], [18].

For risk management such flexibility and efficiency allows
rescue teams to study a building in a question of seconds.
As an example, Figure 5 illustrates a large building of the
Technical University of Delft (TUDelft). It maps the building
into a series of points (red - stairs, yellow - floor and black-
walls) while the voxels mapping empty spaces above the
floor between objects using a color gradient, orange means
objects are close by while blue means they are far away. The
compact representation of the each voxel allows analysis of
the possible routes and the available space to define escape
trajectory routes.

C. Efficient spatial selections

For a performance profiling we have used the benchmark
defined in [17]. The results are compared with the most
efficient solution in [17], LAStools from Rapidlasso3.

1) Setup: The experiments are conducted in a server with
double capacity as the one used in [17]: instead of 16 Intel
Xeon CPUs, it has 32 CPUs; instead of 128GB of main
memory, it has 256GB; and instead of 2 x 41TB SATA in
RAID 5 configuration, it has SAS (Thunderbolt) with 24
x 2TB disks. Despite the difference, input and intermediate
data fits in memory. MonetDB was set to only use 16 cores.
Regarding the software, we used the JUN2016 branch of
MonetDB (M) and the latest version of LAStools (L).

LAStools is assisted by a DBMS (LD) to store each file
bounding box in order to avoid the inspection of each file
header. It also required us to run lassort and lasindex to boost
query performance. Such pre-query stage had the same cost,
around 18 hours, as a complete data import for MonetDB.

3http://rapidlasso.com

2) Data: Massive 3D discrete measurements have been
obtained through airborne LiDAR (Light Detection and Rang-
ing) or terrestrial scanning campaigns. As an example, the
height map of the Netherlands, the Actueel Hoogtebestand
Nederland 2 (AHN2)4 which is stored and distributed in more
than 60,000 LAZ files, contains 640 billion points. The data
is only composed by X, Y and Z coordinates, i.e., no extra
benefit for column-oriented architectures compared to record-
oriented architectures.

3) Queries: The queries are a series of small (c), large (l)
space selections using simple (S) or complex (C) polygons.
Table I’s first line has which type of query and all other lines
has the hot-run execution times for LAStools (L), LAStools
combined with a DBMS (LD) and MonetDB (M). Due to space
constraints, we have omitted all the queries for which it was
not possible to obtain result in less than 1000 seconds or if it
was 10 times worse.

4) Results: The 18 hours reported for pre-query data load-
ing and preparation are automatically reduced thanks to our
in-situ data access approach, i.e., only data relevant for the
queries is imported using the file’s metadata loaded during
the attachment phase. For query performance, only for very
small selections or simple polygons, LAStools combined with
a DBMS, performs better than our solution. For all other
queries with exception of query 24 and 27, our solution out-
performs LAStools. It is important to notice that selections
or aggregations on other attributes would be hard to express
for the file-based solution and would required the inspection
of all files’ header. Furthermore, the numbers obtained by our
open-source solution are comparable with the best commercial
solution with customized hardware [17]. Overall our solution
stands as the best DBMS solution.

D. Query execution

The used column-store, MonetDB, has operator-at-the-time
paradigm with output of each operator being materialized
before being passed as an argument to the next operator. The
feature simplifies the integration of a nested column-oriented
format, such as Parquet, since it allows us to un-nest a column
and materialize it when needed.

One of the advantages of columnar processing is late mate-
rialization, i.e., tuples are re-constructed as late as possible in
the query plan. It allows column-oriented architecture to have
a low memory footprint during query execution, especially
during the filtering phase. The extended operators, indepen-
dently if they are processing nested or unested data, continue
to support late materialization.

4http://www.ahn.nl

TABLE I: EFFICIENT SPATIAL SELECTIONS OVER A MASSIVE POINT CLOUD DATA SET

Typ sS sS sS sS sS sC sS sC sC sS sS sS lC lC sS sS sS lS lS lS lS lS lS lC lC
Q 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 21 22 23 24 26 27 28 29

LD .07 .16 .07 .16 .7 1.52 0.55 3.72 2.34 .08 .05 .26 412 102 .49 .04 0.32 2.28 142.0 313 234 282 .13 x x
L .9 .87 .78 .92 33.2 32.8 32.29 36.2 34.8 .88 .84 1.03 829 424 1.39 .75 1.18 20.74 x 828 x x 923 x x
M .2 .41 .22 .5 .36 .66 .25 .69 .54 .24 .24 .44 24.9 23.6 .41 .08 .73 1.5 99.9 35.9 363* 17.2 .16 224 108

The scan- and aggregation operators were modified to be
aware of the repetition level. The definition level is only used
by projection operators to un-nest the data and do tuple re-
construction. The tuple re-construction happens in the presence
of a blocking operator, or a result constructor, or when it needs
to combine nested data with flat data.

V. FUTURE PLANS

Once fully operational, we will study thoroughly the robust-
ness of the proposed conceptual model and the efficiency our
storage model using in-house projects. At the same time, we
will design support for horizontal scalability and for interactive
visualization of voxel-based 3D city models.

A. Horizontal scalability

With voxels stored in Parquet, our current work aligns with
on going advances for large scale spatial processing in the
cloud. As future work we intend to explore the possibility
of 3D data manipulation of large scale voxel-based 3D city
models using GeoSpark [3]. GeoSpark was built to efficiently
exploit the internals of Spark5. It extends Resilient Distributed
Datasets (RDDs) to form Spatial RDDs (SRDDs). For efficient
data parallelism it efficiently partitions SRDD data elements
across machines and introduces novel parallelized spatial
geometric operations.

GeoSpark is still in an early development stage and it only
supports few geometries (point, rectangle, and polygon), two
spatial indexes (R-Tree and Quad-Tree). On top of that, it also
supports spatial queries, e.g., range queries, K nearest neighbor
(KNN) queries, and join queries on large-scale spatial datasets.
Its major advantage is the fact it is built on top of Spark.
By using Spark infra-structure, Hadoop friendly file formats
such as Parquet can be directly ingested and used for large
spatial analysis. In addition to our single-server mode using
MonetDB, we will also provide cluster-mode using Spark
(both providing integrated R and Python environments).

B. Interactive visualization

For interactive visualization we plan to explore Cubiq-
uity [2] as an extension of Unreal Engine 46. Cubiquity is
a voxel engine written in C++ and released under the terms of
the MIT license. It allows the creation of volumetric (voxel-
based) environments which can be dynamically modified, i.e.,
it enables dynamic digging, building, and destruction.

Cubiquity is a flexible and powerful voxel engine, e. g.,
create terrains with caves or defined environments built from
millions of colored cubes. It supports both smooth terrain
and colored cubes type environments, multiple volumes which
can exist in transform hierarchies and direct voxel access for
implementing procedural generation.

5https://spark.apache.org/
6https://github.com/volumesoffun/cubiquity-for-unreal-engine

VI. SUMMARY

In this work we have presented an architecture for a 3D
column-oriented raster DBMS and so far our efforts on its
implementation. The uniqueness of our solution stands on the
combination of a novel concept model for 3D city models,
a voxel-based one, with a efficient nested column-oriented
format to explore the 3D city model at different levels of detail.

It is designed to iteratively load data from different sources
and where topological and geometric functionality for 3D
raster manipulation is part of the relational kernel and not
an add-on. It is the first DBMS based solution with in-situ
access to spatial data repositories and on demand voxelization.
With it, spatial analysis tailored to different use case scenarios
is done on demand and fast enough to be used by modern
risk management systems where real-time interaction is a key
feature.

REFERENCES

[1] https://parquet.apache.org/.
[2] https://bitbucket.org/volumesoffun/cubiquity.
[3] http://geospark.datasyslab.org/.
[4] D. J. Abadi, S. Madden, and M. Ferreira. Integrating compression and

execution in column-oriented database systems. In Proceedings of the
ACM SIGMOD, 2006.

[5] D. J. Abadi, S. Madden, and N. Hachem. Column-stores vs. row-stores:
how different are they really? In Proceedings of the ACM SIGMOD,
2008.

[6] F. Alvanaki, R. Goncalves, M. Ivanova, and et al. GIS navigation boosted
by column stores. PVLDB, 2015.

[7] F. Fichtner. Semantic enrichment of as point cloud based on a octree
for multi-storey path finding. MSc Thesis, TUDelft, 2016.

[8] R. Goncalves, M. Ivanova, F. Alvanaki, J. Maassen, K. Kyzirakos,
O. Martinez-Rubi, and H. Muhleisen. A round table for multi-
disciplinary research on geospatial and climate data. IEEE e-Science,
2015.

[9] S. Idreos, F. Groffen, N. Nes, S. Manegold, and et al. Monetdb: Two
decades of research in column-oriented database architectures. IEEE
Data Engineering Bulletin, 2012.

[10] M. Ivanova, Y. Kargin, and et al. Data Vaults: A Database Welcome to
Scientific File Repositories. SSDBM, 2013.

[11] S. Laine. A topological approach to voxelization. Eurographics
Symposium on Rendering, 2013.

[12] O. Martinez-Rubi and et al. Benchmarking and improving point cloud
data management in monetdb. SIGSPATIAL Special, 2015.

[13] O. Martinez-Rubi, M. L. Kersten, R. Goncalves, and M. Ivanova. A
column-store meets the point cloud. FOSS4G-Europe, 2014.

[14] S. Melnik, A. Gubarev, J. J. Long, G. Romer, S. Shivakumar, M. Tolton,
and T. Vassilakis. Dremel: Interactive analysis of web-scale datasets.
VLDB’10, pages 330–339, 2010.

[15] P. Nourian, R. Gonçalves, and et al. Voxelization algorithms for
geospatial applications: Computational methods for voxelating spatial
datasets of 3d city models containing 3d surface, curve and point data
models. MethodsX, pages 69 – 86, 2016.

[16] A. Stadler and T. H. Kolbe. SPATIO-SEMANTIC COHERENCE IN
THE INTEGRATION OF 3D CITY MODELS. ISPRS Archives –
Volume XXXVI-2/C43, 2007.

[17] P. van Oosterom, O. Martinez-Rubi, and et al. Massive point cloud data
management: design, implementation and execution of a point cloud
benchmark. Computer Graphics, 2015.

[18] S. Zlatanova, P. Nourian, R. Gonçalves, and A. V. Vo. Towards 3d raster
gis: on developing a raster engine for spatial dbms. ISPRS WG IV/2
Workshop: Global Geospatial Information and High Resolution Global
Land Cover/Land Use Mapping, 2016.

