Lawrence Berkeley National Laboratory
LBL Publications

Title
Ten Principles for Creating Usable Software for Science

Permalink
https://escholarship.org/uc/item/0w5547i\V

ISBN
9781538626863

Authors

Ramakrishnan, Lavanya
Gunter, Daniel

Publication Date
2017-10-01

DOI
10.1109/escience.2017.34

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/0w5547jv
https://escholarship.org
http://www.cdlib.org/

Ten Principles for Creating Usable Software for
Science

Lavanya Ramakrishnan
Lawrence Berkeley National Laboratory
Iramakrishnan @1bl.gov

Abstract—The volume and variety of scientific data being gen-
erated at experimental facilities requires the seamless interaction
of the scientist’s knowledge with the large-scale machines and
software that is required to process the data. In the last few
years, scientific software tools are being developed to address
these increasingly complex workflow and data management needs.
However, current approaches for designing systems and tools
focus on the hardware and software of the machine and do not
consider the user. Our experience shows us that user experience
research needs to be tightly integrated with the software devel-
opment life cycle for building sustainable software for science. It
has become not just necessary, but critical, to consider the user
interaction in the design of the entire system for data-intensive
sciences that have complex human interaction with the data,
software and systems. The dynamic nature of science projects and
the complex roles of personnel in the projects makes it difficult to
apply classical user research methodologies from industry. In this
paper, we make three specific contributions towards improving
the usability and sustainability of scientific software. First, we
examine the software life cycle in science environments and
identify the differences with commercial software development.
Next, we outline ten principles we have developed to guide user
engagement and software development and illustrate it with
examples from our projects over the last several years. Finally,
we provide guidelines to other eScience projects on applying the
ten principles in the software development life cycle.

Keywords—usability, escience.

I. INTRODUCTION

Next-generation scientific discoveries rely on analyzing the
massive data that is generated at supercomputing centers and
experimental facilities. The key to maximizing insight from
data is the seamless interaction of the scientist’s knowledge
with the large-scale machines and software that is required
to process the data. Current approaches for designing systems
and tools focus on the hardware and software of the machine
and do not consider the user. Thus, current approaches to soft-
ware design are not sufficient when designing next-generation
scientific software to manage complex workflows and data for
data-intensive applications.

Our experience shows us that user experience research
needs to be tightly integrated with the software development
life cycle for building sustainable software for science. User
experience research has been used effectively for about 30
years in consumer electronics products and web interfaces.
Although the sustainability of scientific software is subject
to different constraints compared to commercial products, a
critical factor in both cases is the adoption by the target user
community.

Daniel Gunter
Lawrence Berkeley National Laboratory
dkgunter@lbl.gov

In the past 30 years, a significant body of practice and
knowledge has been developed on how to improve the quality
of the user experience. Usability processes have been shown to
not only improve user experience but also to heavily impact the
design of the underlying frameworks. User research methods
have been shown to result in gains in productivity, improve
performance of underlying systems, produce cost-savings and
reduce the cost of fixing software failures [1]. However, the
dynamic nature of scientific collaborations and data analyses
projects makes it difficult to apply classical user-centered
design methodology to development of scientific infrastructure.

In the last several years, we have used user research
methods in our research and software development projects.
We have developed and modified practices to be suitable for
the scientific community. We have used a variety of tech-
niques — including participant observation, interviews, heuristic
evaluation, and usability studies — to understand, collect, and
refine user requirements and improve usability of software
products. We have used these techniques in our projects to
improve user interfaces for data exploration and analyses,
workflow APIs [2], and building data management tools [3].
Our collaborations have included various scientific domains,
including bioinformatics, materials, environmental, and climate
sciences. These methods influence not only the user experience
but also the design of the overall system and the software
development life cycle. It enables teams to focus on user
needs early and often and remove biases and preferences of
the designers. Software based on user needs has a streamlined
implementation path and has a greater chance of adoption.

In this paper, we outline ten principles we have devel-
oped to guide user engagement and software development.
Our methods create a fundamental shift in the design and
development of tools for next-generation scientific software
by focusing on the user and the user experience. Specifically,
we make three contributions in this paper.

e We examine the software life cycle in science envi-
ronments and identify the differences with commercial
software development.

e We outline ten principles for building usable software
systems and illustrate with examples from our projects.

e We provide guidelines to eScience projects for applying
the ten principles in the software development life cycle.

The rest of the paper is organized as follows. In Section I,
we outline background on our projects, software development
life cycle and discuss related work. We outline the unique
characteristics of software for public science in Section III. We

outline the ten principles and illustrate its impact in the context
of our projects in Section IV. We discuss methodologies that
can be used to apply the ten principles in the context of the
software development lifestyle and present our conclusions in
Sections V and VI

II. BACKGROUND

In this section, we detail the current software development
life cycle practices and related work.

A. Software Development Life Cycle

The classic software development life cycle (SDLC) has
at least three primary stages: requirements, design, and imple-
mentation and testing. These phases are present in all software
development models from the Waterfall Model of the 1960s
and 1970s [4], through the 1990s “Rational” Unified Software
Development Process [5], to current agile and lean software
process models. Some models have implementation and testing
as separate stages, have additional stages for deployment and
maintenance, and/or expand upon the requirements phase. But
for the purpose of this paper, these three basic stages capture
all the essential aspects.

A common mistake in our environment is to attempt to
address usability issues exclusively during a single phase.
For example, developers often assume they need to think
about usability only in the design phase, i.e., to consider both
requirements and implementation as relatively unaffected by
usability concerns. Alternatively, some groups assume user
interfaces can be built at the end. These practices cause two
problems: (a) usability is considered too late to improve the
requirements that drive the design, (b) usability is considered
too early to help with feedback from the implementation and
testing, which drive the next iteration. Usability should be
considered at all phases of the software development life cycle
and strongly influences the focus on user-desired functionality
in the end product.

B. Related Work

This paper addresses, broadly, the process of designing
usable software, or “usability engineering”, as it is called in the
discipline of Human-Computer Interaction (HCI). Much has
been written on methods, applications, and tools for usability
engineering in HCI textbooks, journals, and conference papers.
An entire volume of Springer’s Human-Computer Interaction
series [6] is dedicated to the interplay between usability, HCI,
and software engineering. This volume addresses many issues
touched on here in more depth, but is not targeted at the
needs of the scientific community. For example, none of the
chapters deal with the peculiarities of the software for science
environment. Our principles attempt to be accessible to people
from software engineering, scientific, and HCI backgrounds,
and streamlined for application in a very dynamic environment.

User research has been shown to be valuable in all stages
of software development life cycle [7], [8], [9], [10], [11], [12],
[13]. User research has been applied to various scientific do-
mains including experimental cosmology, energy consumption,
and biological light microscopy projects [14], [10], [13], [15],
[16]. The importance of taking into account human factors
has been recognized in prior human data interaction [17],

[18], [19]. Previous work places users into groups of data
producers and consumers and discusses how the decoupled
nature of scientific research is increasing the complexity of
data integration [20].

In [21], Nielsen lays out a step-by-step guide to applying
usability methods at various stages in the software life cycle.
In [22], Gould distills four basic principles of designing usable
systems: (1) Early and continuous focus on the users, (2)
Early and continual user testing, (3) Iterative design, and
(4) Integrated design (i.e., all aspects of usability evolving
together).

More recently, the popularity of “agile” design methodolo-
gies has led to an examination of the effect shorter iterative
cycles of development have on the usability engineering pro-
cess [23].

In previous work [24], the authors provide ten rules for
developing usable software in computational biology. A couple
of these rules, and in particular “Rule 2: Collect Feedback
from Prospective Users”, is similar in spirit to the principles
described here. However, the purpose of the rules in the paper
are to provide concrete guidelines for people who lack formal
training in software engineering, i.e. scientist/developers as
discussed in Section III below, who are creating their first
software for general use. Thus, the rules mostly focus on the
mechanics of writing usable software and do not explore more
deeply how to integrate usability into all stages of the software
development life cycle.

Previous work has also investigated how software is de-
veloped for scientific applications and identifies the iterative
process and some of the challenges with applying software
development practices [25], [26], [27], [28], [29], [30], [31].
This paper focuses on ten high-level principles that are partic-
ularly important to consider in the constrained and specialized
environment of scientific software.

III. SOFTWARE FOR PUBLIC SCIENCE AS A UNIQUE
ENVIRONMENT

The principles described below grew out of our experience
developing open (i.e. non-classified and mostly open-source)
software, under public funding, to support a scientific mission.
This environment has unique aspects not found at corporations,
universities, or classified research laboratories.

In this context, we prefer to use the term “software for
[public] science” to the terms “scientific computing” or “com-
putational science”, to make it clear that we are interested in
the broader body of scientific software and not just software
used for simulation models. We are concerned with the body of
software that is used to execute the algorithms, to collect, store,
analyze, and disseminate results (from simulation, experiment,
or observation), and to support collaborative science in its
many forms [32]. Most of this software has user-facing com-
ponents (e.g., graphical interfaces, command-line interfaces, or
APIs), and is affected by usability issues.

Invisible profit models. User satisfaction or user adoption
are not first-class software metrics in the scientific environ-
ment. The reasons for this are partially cultural but, more
fundamentally, are economic. The projects operate on grant
money, in which value of work is determined indirectly by

funders’ impressions of value to the users, and not directly
by consumers in a market. Also, unlike commercial products,
the software is often a small part of the overall budget for
a scientific mission. Similarly, another pervasive but subtle
aspect of our environment is that work to improve software
usability is often not explicitly called out in project deliverables
and budgets. The ability to persuade key decision makers of
the value of a type of work is crucial to its inclusion in project
budgets. Usability research and development suffers from its
relative invisibility in two of the main metrics used for judging
software: performance and research publications. Usability
does strongly affect the overall design and the adoption, but
without ground truth of sales and profits, adoption numbers
are difficult to measure accurately.

Exploratory iterative workflows. Usability for scientific soft-
ware must also take into account some of the distinctive
aspects of the scientific workflow. In our environment, sci-
entists typically need to perform exploratory research that
involves a complex combination of data and modeling, pos-
sibly using the computational resources in batch-scheduled
supercomputers or moving terabytes of data for analysis. Work
is often driven by short cycles tied to publication deadlines.
Individual researchers often perform variations of the same
analysis over and over, developing work-arounds for software
quirks. Different researchers may use different software tools
for the same tasks. Reproducibility of results is an ongoing
challenge. This creates an environment that is both dynamic
(many tools and systems) and resistant to change (repeatability
and deadlines). As a result, the boundaries of the software
development life cycle are less clear. Requirements gathering,
design, and implementation are not strongly differentiated.
The release phase is often implicit since users exchange
software pieces through informal methods including emails,
etc. Sometimes even getting code to be put under version
control requires convincing the developers that this is not
equivalent to a release.

Diverse and intertwined teams and roles. Many scientific
projects consist of teams ranging from a handful up to hun-
dreds of people who have widely varying domain knowledge
and software skills. Scientists may know how to program,
and programmers may have domain knowledge due to former
training or long association with a given domain. There is
not often a clear distinction between tool creators and tool
users, and particularly on larger teams the bulk of the user
population may be the project participants. The usability
testing and requirements process needs to consider the diversity
of roles on a project, how the new software will accommodate
or replace existing tools, and the political realities of how
the developer/scientists on the project can be brought into
alignment with that decision.

Metrics of success. The metrics by which success of scientific
software are measured are often not explicit, obvious, or even
understood by the participants. As stated in a recent workshop
on sustainable software for science [33], it [is not] known
if there is a common set of metrics for scientific software.
Some commonly used metrics are anecdotes from key projects
or users, number of users/usages, number (and impact) of
associated scientific publications, and technical measurements
such as speedup or scalability. Unlike a commercial environ-
ment where number of users is always a major factor, in this

environment the metrics are less clear. As we explained earlier,
usability is rarely understood to be a separable important
aspect of software. Nonetheless, human nature being constant,
the usability of the software does have a large influence on
the other metrics. The main difference in this environment is
that the pathways by which this occurs may be hidden and
unacknowledged.

Diverse user groups. Finally, a defining aspect of creating
usable software for science is understanding the diverse user
community. Even users within the same domain have var-
ied requirements of the software (e.g., experimentalists and
theorists). Scientific research is inherently specialized and
fragmented, partially due to the depth of knowledge required
and partially due to the exploratory nature of science itself —
each researcher to some extent searches for their own niche
in the field. The impact on software usability is that talking
to a single user community may not actually help with the
needs of their neighboring, and to the layman almost identical,
researchers. Thus, the “guerrilla testing” model [34] of picking
somebody at random to check the usability of the product will
only get you so far, and to produce something meaningful you
must think first about who you are trying to help, and how you
are going to get feedback from all the sub-disciplines in that

group.

IV. TEN PRINCIPLES

In this section, we describe the ten principles that we
consider important for developing usable scientific software
and illustrate them with examples from our projects. These
principles can be associated with phases of the Software
Development Life Cycle (SDLC) described in Section II-A.
This association is shown in Figure 1. In the requirements
phase, apply the principles for understanding the users, their
context, and their actual problems. In the design phase, focus
on designing software that fits the users and use focused
testing of prototypes to assess whether the design meets the
user’s metrics and trade-offs. In the implementation and testing
phase, the principles point towards testing the software again
with users, keeping in mind that the aesthetics are not as
important as the mental model of the design, and prepare
to carry what you have learned back to the next iteration of
requirements.

P1 Solve the right problem first. Computer scientists
often focus on the research problem that they are interested
in, which might be a longer-term outlook. However, a good
science engagement strategy will solve the right problem, the
one that is affecting the users foday, first.

For example, in a science engagement with users of
LBNL’s Advanced Light Source beamline, we were focused
on learning their long term data problems. The goal was to
modernize the data pipeline so users would be able to analyze
the data in near-real-time instead of storing it and then manu-
ally feeding it to the analysis tools later. However, the user had
a complex system of managing data on external hard disks and
was simply running out of space. Losing experimental data,
particularly when using large and expensive equipment, is very
painful. In this case, it was critical for us to solve the current
problem to engage the user as well as understand the other
problems in the pipeline. Other challenges were masked by
this overwhelming situation. Our initial work built confidence

Requirements

Software

Development

Lifecycle
5 | Test after building

6 | Clean interfaces / bad design

Iterate early and often

Implementation / Testing

Fig. 1.

for future engagement but also led to productive discussions
about future work.

P2 Understand user motivations. It is important to un-
derstand the user’s motivation to participate in the science
engagement: what do they want to change and why do they
want it. Understanding a user’s motivations for the engagement
is a good indicator of their time investment in the project and
also willingness for change.

For example, complex scripts to manage simulation runs
may be quite tolerable in the short run if they are relatively
static and there are more serious issues elsewhere in the
workflow. On the other hand, scripts that fail regularly, causing
postdocs or staff to spend many hours chasing down bugs (on
one project it became a running joke that a postdoc needed to
“get a cot in their office” for round-the-clock tending to the
workflows), will be at the top of the list for refactoring. It may
not be obvious to an outsider under which category a given
set of scripts falls, as the elegance and aesthetics of the script
code may correlate badly with the importance of fixing them.

P3 Understand the context of use. It is important to
understand the context of use of the system to be designed.
If we don’t know when, where, and how the scientists are
doing their work, the system we build probably won’t be
useful. For example, in one of our projects, scientists were
collecting data in knee-deep water. In this scenario, the users
need to use mobile devices often in precarious conditions with
spotty wireless signals. This insight could not have been gained
during interviews or discussions in a meeting room. Observing
the user’s work pattern in the natural surrounding was not only
necessary but essential to ensure success of the front-end and
back-end design of the system.

Another example is scientists using a high-energy beamline
at a national laboratory. Typically a researcher has only a few
days of “beam time” to collect their data, and then possibly
months to analyze it. In this environment, simple analyses
that provide real-time feedback and help them guide their
experiment are much more useful than advanced analysis tools

Mapping of the Ten Principles to the software development life cycle

N\

Test before building
Build for the right user

Understand user’s metrics

wlo|N|o

Cost/benefit for science team

that require too much time and effort to produce results. Again,
insights can only be gained if we one were to observe a
scientist’s work practice at the beamline.

P4 Validate and verify what you have heard. We often
struggle with dealing with the chaos of conflicting user require-
ments, including, “what do they actually mean?”. User research
processes enable you to work through these requirements to
come up with clear recommendations and priorities.

For example, when designing a new system for bioinfor-
matics analyses, we talked to users about what they needed
for their research. Some users gave examples of how they
needed programmable and extensible systems for complicated
workflows. Other users wanted to be able to add their own
software to the system. Taken alone, these requirements would
have led to a system that exposed much of the underlying com-
plexity to the expert user. However, in other user interviews
we found that many users wanted software that would simplify
and streamline their current struggles with the command-line
tools. By talking to different groups of users with structured
user research processes, we were able to avoid the trap of
building a system for (only) the first set of users.

Another example of this approach is a methodology we
developed to validate the requested features of an API. We
interviewed users about how they “felt” about each feature,
asked them to rank the features in order from most to least de-
sirable, and finally asked them to describe conceptual problems
or missing features. The combination of emotional response
and numerical ranking feedback provided much better context
for discussing the features with the domain scientists than we
had gained from informal and unstructured discussions alone.
More details of this experiment are available online [35].

P5 Test before building; test after building. It is critical
to test how an user will interact with a system before even
building the system, and subsequently test again with early
prototypes. It is important to test mock-ups of design as well
as early prototypes.

In another project, we built a workflow scripting environ-

ment for scientists. We used innovative new procedures for
usability testing of the APIs. The first round was based on
just using a paper version of the API to write pseudo-code.
The results of this process improved specific features of the
API [2]. After developing a product, we performed a second
round of usability study to study the effectiveness of using
that API more thoroughly, and over a longer time period. This
kind of testing goes beyond simply answering bug reports to
understand the way experienced users fit the software into their
workflows.

P6 Clean interfaces can’t make up for bad design.
Many interface designs start from the mistaken assumption that
the main challenge is good aesthetics, i.e., a “clean” design.
However, we all have experience with Uls, either in software
or the physical world, that look nice but are difficult to use.
To avoid this trap, user interfaces need to be an essential part
of system design so that they end up working with, rather
than against, the target users’ mental model(s). Similarly, a
bad interface may cause problems for a good backend design.

For example, we found in one case that users preferred a
file level UI to a new UI that was “clean” but abstracted from
files, since their mental model of the data layout was already
based on files.

P7 Build for the right user. It is important to identify
who the users of the system are and build for them. “What
would I do?” may be extremely misleading, if you are not
representative of the end user. You have to continually ask
yourself whether you are really modeling a real user, or just
targeting someone who is convenient for you to think about
(like yourself!).

For example, in a research project, we discovered that since
the tool was initially built for experimentation purposes by
computer scientists, there was no clear mechanism provided
to access the output data from the runs. When the tool started
getting used by science users, this was a hurdle and needed to
be fixed.

In another project, the initial development of a graphical
interface for bioinformatics tools included a number of ad-
vanced options that were well-understood by the developers
and their community, but not at all obvious to a large and
important subset of the user community. In response to this
realization, many tool options were re-classified as “advanced”,
given reasonable defaults, and hidden until a user explicitly
decided to view them.

P8 Understand the user’s metrics. When computer en-
gineers think about porting codes to HPC, they tend to think
about performance of the codes. This is only one part of
the picture. Productivity, publication deadlines, etc. are often
the user’s metrics and needs to be taken into account when
designing the system.

When we talk to users, they consistently worry about their
own time — time waiting to run, time debugging, etc. — as the
primary metric. If the extra overhead of running on HPC is
wasting too much of a user’s time, performance gains of the
code itself may be eclipsed.

P9 Cost / Benefit for the science team is different from
the development team. It is important to remember that the
cost/benefit analyses that a science team might do is often
different from the analyses that a development team might do.

For example, a development team might be willing to invest
in performance improvements in the code. However, the time
investment in this might not look beneficial to the scientist if it

does not improve the science result in some way. The money
spent on better performance or code refactoring could have
paid for new features or more analysis.

For example, on one project in bioinformatics, developers
spent months dramatically improving the speed of access to
large data stored on tertiary backups. However, the project
lead later explained that, while impressive, this represented
only about 1% of their analyses, and did not help the other
99% of the data being stored on disk in databases.

P10 Be willing to iterate (early and often). It is important
to be willing to iterate and engage the users early and often.
It is critical that developers don’t get attached to their designs
and are willing to pivot the development process.

For example, in one project we planned to use Docker
containers (portable execution environments) as the mechanism
for releasing new versions of the software to the users. In early
project meetings, we showed slides of the design and nobody
objected. However, when we later asked the users directly if
they would actually run the Docker containers, it turned out
that all the users were “experts” who had no trouble updating
their installation from Github directly. Moreover, they needed
to integrate with non-free commercial software that could not
easily be included in the Docker container. This conversation
took about five minutes, yet saved a couple of weeks of effort
wasted on refining Docker release mechanisms that nobody
would use.

V. APPLYING THE PRINCIPLES IN THE SOFTWARE
LIFECYCLE

In this section, We provide a set of processes for applying
the principles in each phase of the software development life
cycle (SDLC), as described in Section II-A and Figure 1.
Figure 2 connects the specific processes used, in each phase
of the SDLC, to the corresponding principle(s). The diagram
also categorizes processes by whether they primarily involve
user interaction, planning and/or design, or programming.

A. Requirements Phase of SDLC

Principles 1 through 4 are important during the require-
ments phase of the software life cycle for understanding
the users, their context, and their actual problems. In the
requirements phase, the three primary processes are a) to
identify the target users, b) perform interviews and participant
observations, and c) create use-cases or mockups and validate
these by discussing them with the target users.

Identify target users (P1, P2). It is critical to identify at
the outset which scientists will serve as representatives of the
intended audience of the tool. The challenges of doing this
in a diverse project were discussed earlier. An approach that
we have found effective is to ask project management for a
high-level breakdown of the different sub-groups, and then to
go into those subgroups and ask some very simple questions:
(a) what are the main things you do, (b) how do you do them
now, (c) if you could improve one thing, what would it be?
The answers to these questions help us infer the targe audience
for a new tool.

One thing that we learned not to do was to assume that
project management can identify target users for us. Too often,
we found that management’s knowledge of what people did

Processes

Requirements

Principles

f\ldentify target users =—————= 1 Solve the right problem
N Interviews/observatior>< 2 Understand user motivations

Design

@ Develop Use-cases< ™~ 4

mm Create prototypes

&3 Usability Studies (1)
Implementation and Testing

, Implement prototypes

83 Usability Studies (2)

E}’ Update roadmap

Legend ‘

& User interaction @ Planning/design

3 Understand context of use
Validate and verify

5 Test before/after building

6 Clean interfaces / bad design

7 Build for the right user

8 Understand user’'s metrics

9 Cost/benefit for science team
10 Iterate (early and often)

Bl Programming

Fig. 2. Application of the Ten Principles in each phase of the the Software Development Life Cycle

day-to-day was missing important details. Also, you will note
that none of the questions asks the users directly whether they
actually are the target audience. We have found that there are
at least two problems with this approach. First, users often
misinterpret what the new system is actually supposed to do
and give misleading answers. At this stage, there is often
a terminology and knowledge gap between the target users
and the software developers. Second, people may skew their
answers depending on whether they are interested in engaging
with the software design process or not. Asking people directly
about their work removes these potential filters that can bias
the answers.

Interviews and observation (P3, P4). The team must un-
derstand the work practices, work goals, what the scientists
would like to achieve, and current similar tools. This can be
accomplished by interviews and participant observation (i.e.,
watching people work).

We have found that scientists are usually eager to brain-
storm about ways to improve their current setup, i.e., to engage
in design discussions. Sometimes, though, you find that the
team repeatedly cancels or postpones discussions to deal with
“other issues”. Rather than interpreting this as a rejection of the
process, it is more likely that you are not focusing on the right
problem (P1), and you should probably stop and re-evaluate
the issues being included in the design discussions.

Develop use-cases (P4). The use-cases are high-level descrip-
tions of important goals, that come from the interviews and
observation. Typically, the designer and developer comes up
with the use cases, but another approach is to try and get
some members of the science team to write down the use-
cases from their perspective. Either way, it is very important
to try and circle back to a majority of the users you talked
to in the previous stages and talk through the use cases with
them. Inevitably, there are misunderstandings in terminology
and goals that are revealed.

When introducing ideas for new software into the existing
workflow, we are essentially asking for scientists to spend their
time on our task instead of theirs. Learning a new software tool
may seem fun to a computer scientist, but is often seen as a
necessary evil by a user. Scientists, like developers, are acutely
aware of aspects of their workflow that either waste time or
reduce quality of results. Scientists will be more willing to
try a new tool if it addresses a problem they have with their
current workflow.

It is also important to remember that part of the value of
user research to the team, in addition to the technical skills, is
as a force for change. Do not succumb to “group think” and
complacency about the current solution, even as you remain
practical about what can be done right now. At the appropriate
times, it is important to advocate the value of re-thinking and
re-factoring design and usability aspects of the software, as a
complement to short-term fixes.

B. Design Phase of the SDLC

Principles 5, 7, 8, and 9 are important during the design
phase of the software life cycle for designing software that
fits the needs of the users and assessing whether the design
meets the user’s metrics and trade-offs. In this phase, the
two primary processes are to create prototypes and perform
usability studies.

Create prototypes (PS. In the first iteration for a use-case,
develop a low-fidelity prototype that is believed to address
the work goals identified by that use-case. For a graphical
user interface, this may take the form of a paper prototype
or a quick “clickable” prototype. API prototypes can take
the form of a document describing the function definitions.
Documentation and example code aid in early usability tests.

In subsequent iterations, the prototype will be refined, e.g.,
moving from paper to a detailed wire-frame or a semi- func-

tional HTML page. For API design, a high-fidelity prototype
will take the form of partially functional code.

Conduct a Usability Study (P5). Conduct a usability study
with target users identified during the requirements phase.
Usability studies provide a methodology to conduct and learn
from these tests. Traditionally, the methodology has been used
for web interfaces [36], but we have found it is applicable to
APIs as well. We recommend the following guidelines:

a. Preparation time: Allocate a few minutes for the test par-
ticipant to absorb the material and scenario, particularly
when testing an APL.

b. Scenario: Ask users to work through the scenario, think-
ing out loud.

c. Feedback: Provide feedback on demand but do not in-
tervene unless a participant cannot continue with the
exercise. The feedback provided should be minimal and
guide the scientist towards the solution rather than provide
the solution.

d. Follow-up. The study should be followed up with an open
discussion. The discussion should cover aspects of the
tests the users felt comfortable or uncomfortable with.
Additionally, ask followup questions to see whether the
material was understandable and if the participants can
see themselves using it for their work.

The usability test results should answer the questions of
whether the prototype is built for the right user (P7), supports
a user’s metrics (P8), and is clearly worth the effort in terms
of benefit to the science team (P9). The diversity of scientific
users pointed out in Section III needs to be considered.
Feedback from different classes of users will answer different
kinds of usability questions — Does it do what we wanted?,
Is it sensible and clear to all users?, Does it make sense in
the broader context. The answers to these questions will in
turn determine whether a redesign is required, project priorities
need to be changed, or both.

Sometimes, there might be a need to completely redesign
the software at this stage. It will be many times more costly
to redesign the software after it has been implemented or
deployed. In our experience, the development team tends to
be more attached to their work than they want to admit.
Pride in your work is good, but this is really a reflection
of the different cost/benefit for the development and science
teams (P9). Elegant software is not in itself a benefit for the
science team, but it can lead to a series of rationalizations
for not redesigning a component that really needs to change.
However, sometimes redesigning software might be essential
for software maintenance. If you think you might need to
redesign part or all of the system, you need to seek out some
other opinions, e.g., talk to one or more colleagues who are not
involved in the project, and listen carefully to their feedback.

After evaluation, repeat the prototyping and testing cycle,
increasing the fidelity and functionality of the prototype at each
iteration.

C. Implementation and Testing

Principles 5, 6, and 10 apply in the implementation and
testing phase of the SDLC for testing the software again with
users, keeping in mind that aesthetics are not sufficient and

the mental model of the design needs to be considered. The
team needs to prepare to carry what you have learned back to
the next iteration of requirements phase. In the implementation
and testing phase, the primary processes are to implement the
software, conduct usability studies, and update the roadmap.

Implementation. The software to be implemented will be a
continuation of the prototypes developed during the design
phase. Although your implementation will draw on all the
knowledge gained to this point about how users work and
what the interface should look like, in reality there will be
a number of ad-hoc micro-design decisions that still need to
be made. It is not practical to conduct a full usability study
for each of these, but it is very useful to have some users who
are willing to let you informally bounce these decisions off
them as a lightweight way of testing (P5) the usability as you
go. In the usability studies, you will learn more about how
well these friendly users correlate with the larger group, and
improve your interpretation of their feedback.

Conduct a Usability Study (PS5, P6). Once you have a
working prototype, you need to repeat the usability studies that
you conducted in the design phase (Section V-B). In addition
to the feedback, we have found that it is very satisfying to the
users to see that their earlier input resulted in real changes to
the software.

When reviewing an interface with potential users, it is not
enough to ask simple, idealized tasks; make sure you ask them
how they would achieve most complex tasks they perform
today, since after all that is the intent of the software. Also
simply ask directly whether the software is actually easier to
use than what they have right now. This approach will help
to catch lingering problems with the assumed “mental model”
(P6), i.e., the way in which the users’ workflow and artifacts
are connected by the software and its commands. Mental model
issues can be missed with simplistic views of what the users
do, and these can lurk in the steps skipped during testing of
prototypes.

Update roadmap (P10). For any development process, you
will have some form of roadmap that states where to focus
effort in the next iteration. You should now be armed with
information to choose a sensible focus. In terminology recently
made popular by The Lean Startup [37], you are using what
you learned from the “Measure” and “Learn” phases of the
cycle to choose the next Minimum Viable Product (MVP) to
develop in the subsequent “Build” phase.

As the lean startup approach emphasizes, a key ingredient
to success is to not assume more knowledge than you actually
have, and stay modest in the scoping of the next iteration.
For example, just learning that users need a certain set of
visualizations of their data does not mean you should drop
everything and design a general purpose visualization frame-
work. Instead, take the shortest path to actually creating the
visualizations that are most needed (which may, of course,
involve using an existing visualization framework) and use the
next iteration to determine what kind of additional framework,
if any, is necessary. We have found that scoping to an MVP in
each iteration is just as useful and applicable in the scientific
software context as it apparently is for software startups.

VI. CONCLUSION

The ten principles described in this paper draw on our
experience with the creation of usable scientific software
in dynamic science projects. Our experience shows us that
usability principles and user experience research need to be
tightly integrated with the software development life cycle for
building sustainable software for science. This paper provides
a foundational framework for incorporating users into current
software development life cycles of scientific software.

Our broader goal is to shift the culture in scientific com-
puting to make usability concerns an equal partner with those
for hardware and software development. This will require a
large community awareness and change. We believe this work
provides a starting point for a conversation that can lead to
discussion about workshops at eScience and including usability
in the review criteria of proposals and papers (akin to recently
introduced data management plan or reproducibility efforts).

ACKNOWLEDGMENT

This work and the resources at NERSC are supported by
the U.S. Department of Energy, Office of Science and Office
of Advanced Scientific Computing Research (ASCR) Energy
under Contract No. DE-AC02-05CH11231, program manager
Lucy Nowell. The authors would also like to thank Sarah Poon,
Deborah Agarwal, and others for their valuable suggestions
and feedback.

REFERENCES

[11 T. Gilb, Principles of Software Engineering Management. — Boston,
MA, USA: Addison-Wesley Longman Publishing Co., Inc., 1988.

[2] L. Ramakrishnan, S. Poon, V. Hendrix, D. Gunter, G. Z. Pastorello,
and D. Agarwal, “Experiences with user-centered design for the tigres
workflow api,” in 2014 IEEE 10th International Conference on e-
Science, vol. 1, Oct 2014, pp. 290-297.

[3] D. Ghoshal and L. Ramakrishnan, “MaDaTS: Managing data on tiered
storage for scientific workflows,” in ACM Symposium on High Perfor-
mance Parallel and Distributed Computing (HPDC’17). ACM Press,
2017.

[4] W. W. Royce, “Managing the development of large software systems:
concepts and techniques,” in Proceedings of the 9th international
conference on Software Engineering. IEEE Computer Society Press,
1987, pp. 328-338.

[5] I Jacobson, G. Booch, J. Rumbaugh, J. Rumbaugh, and G. Booch, The
unified software development process. Addison-wesley Reading, 1999,
vol. 1.

[6] A. Seffah, J. Gulliksen, and M. Desmarais, Human-Centered
Software Engineering - Integrating Usability in the Software
Development Lifecycle, ser. Human—Computer Interaction Series.
Springer Netherlands, 2006. [Online]. Available: https://books.google.
com/books?id=NkMp0_spR5QC

[71 W. Albert and T. Tullis, Measuring the user experience: collecting,
analyzing, and presenting usability metrics. Newnes, 2013.

[8] C. R. Aragon and S. S. Poon, “Designing scientific workflow man-
agement systems for data-intensive astrophysics projects,” in Designing
Cyberinfrastructure to Support Science Workshop, CSCW 2008: ACM
Conference on Computer Supported Cooperative Work, 1998.

[91 S. S. Poon, R. C. Thomas, C. R. Aragon, and B. Lee, “Context-linked
virtual assistants for distributed teams: an astrophysics case study,”
in Proceedings of the 2008 ACM conference on Computer supported
cooperative work, 2008.

[10] T. Boellstorft, Ethnography and virtual worlds: A handbook of method.
Princeton University Press, 2012.

[11] S. B. Davidson and J. Freire, “Provenance and scientific workflows:
challenges and opportunities,” in SIGMOD 2008. ACM, 2008.

[12]

[13]

[14]

[15]

[16]
[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

(271

[28]

[29]

(30]

[31]

[32]

[34]

D. Nicolini, Practice theory, work, and organization: An introduction.
Oxford University Press, 2013.

J. A. Maxwell, Qualitative Research Design: An Interactive Approach,
3rd ed., ser. Applied social research methods series, v. 41. Sage
Publications, Inc, 2012.

C. Aragon and S. Poon, “The impact of usability on supernova dis-
covery,” in Workshop on Increasing the Impact of Usability Work in
Software Development, CHI 2007: ACM Conference on Human Factors
in Computing Systems, 2007.

C. Macaulay, D. Sloan, X. Jiang, P. Forbes, S. Loynton, J. R. Swedlow,
and P. Gregor, “Usability and user-centered design in scientific software
development,” IEEE Software, vol. 26, no. 1, pp. 96-102, 2009.

J. Nielsen, Usability engineering. Elsevier, 1994.

P. Ziegler and K. R. Dittrich, “Three decades of data integration-all
problems solved?” in IFIP congress topical sessions. Springer, 2004,
pp- 3-12.

A. Halevy, A. Rajaraman, and J. Ordille, “Data integration: the teenage
years,” in Proceedings of the 32nd international conference on Very
large data bases. VLDB Endowment, 2006, pp. 9-16.

L. J. Seligman, A. Rosenthal, P. E. Lehner, and A. Smith, “Data
integration: Where does the time go?” IEEE Data Eng. Bull., vol. 25,
no. 3, pp. 3-10, 2002.

C. Goble and R. Stevens, “State of the nation in data integration for
bioinformatics,” Journal of biomedical informatics, vol. 41, no. 5, pp.
687-693, 2008.

J. Nielsen, Usability Engineering. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 1993.

J. D. Gould, “How to design usable systems,” in Human-computer
interaction. Morgan Kaufmann Publishers Inc., 1995, pp. 93-121.

M. Brhel, H. Meth, A. Maedche, and K. Werder, “Exploring
principles of user-centered agile software development: A literature
review,” Information and Software Technology, vol. 61, pp. 163 —
181, 2015. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S0950584915000129

M. List, P. Ebert, and F. Albrecht, “Ten simple rules for developing
usable software in computational biology,” PLOS Computational
Biology, vol. 13, no. 1, p. €1005265, 2017. [Online]. Available:
https://doi.org/10.1371/journal.pcbi. 1005265

D. Heaton and J. C. Carver, “Claims about the use of software engi-
neering practices in science: A systematic literature review,” Information
and Software Technology, vol. 67, pp. 207-219, 2015.

J. Segal, “Software development cultures and cooperation problems: A
field study of the early stages of development of software for a scientific
community,” Computer Supported Cooperative Work (CSCW), vol. 18,
no. 5-6, p. 581, 2009.

C. Goble, “Better software, better research,” IEEE Internet Computing,
vol. 18, no. 5, pp. 4-8, 2014.

Z. Merali, “Error: why scientific programming does not compute,”
Nature, vol. 467, no. 7317, pp. 775-777, 2010.

“How computers broke science and what we
can do to fix it,” http://theconversation.com/
how-computers- broke-science-and- what- we-can-do-to-fix-it-49938.

J. Segal and C. Morris, “Developing scientific software,” IEEE Software,
vol. 25, no. 4, pp. 18-20, 2008.

J. C. Carver, “Software engineering for computational science and
engineering,” Computing in Science & Engineering, vol. 14, no. 2, pp.
8-11, 2012.

M. R. Benioff, E. D. Lazowska et al., “Computational science: ensuring
america’s competitiveness,” Report to the President, President’s Infor-
mation Technology Advisory Committee, Washington, DC, 2005.

D. S. Katz, S. T. Choi, K. E. Niemeyer, J. Hetherington, F. Loffler,
D. Gunter, R. Idaszak, S. R. Brandt, M. A. Miller, S. Gesing, N. D.
Jones, N. Weber, S. Marru, G. Allen, B. Penzenstadler, C. C. Venters,
E. Davis, L. Hwang, 1. Todorov, A. Patra, and M. de Val-Borro,
“Report on the third workshop on sustainable software for science:
Practice and experiences (WSSSPE3),” CoRR, vol. abs/1602.02296,
2016. [Online]. Available: http://arxiv.org/abs/1602.02296

S. Krug, Don’t Make Me Think: A Common Sense Approach to the Web

[35]

[36]

(37]

(2nd Edition). Thousand Oaks, CA, USA: New Riders Publishing,
2005.

S. Poon. (2015) Evaluating the proposed capabilities to be supported
by an api. [Online]. Available: http://Ibl-udablog.blogspot.com/2015/
12/evaluating- proposed- capabilities-to-be_1.html

S. Krug, Rocket Surgery Made Easy: The Do-It-Yourself Guide to
Finding and Fixing Usability Problems. New Riders Publishing, 2009.
E. Ries, “The lean startup— the movement that is transforming how
new products are built and launched,” New York: Crown Business, 2012.

