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Abstract—Distributed Stream Processing Systems (DSPS) like
Apache Storm and Spark Streaming enable composition of
continuous dataflows that execute persistently over data streams.
They are used by Internet of Things (IoT) applications to analyze
sensor data from Smart City cyber-infrastructure, and make
active utility management decisions. As the ecosystem of such IoT
applications that leverage shared urban sensor streams continue
to grow, applications will perform duplicate pre-processing and
analytics tasks. This offers the opportunity to collaboratively
reuse the outputs of overlapping dataflows, thereby improving
the resource efficiency. In this paper, we propose dataflow
reuse algorithms that given a submitted dataflow, identifies the
intersection of reusable tasks and streams from a collection of
running dataflows to form a merged dataflow. Similar algorithms
to unmerge dataflows when they are removed are also proposed.
We implement these algorithms for the popular Apache Storm
DSPS, and validate their performance and resource savings for
35 synthetic dataflows based on public OPMW workflows with
diverse arrival and departure distributions, and on 21 real IoT
dataflows from RIoTBench. We see that our Reuse algorithms
reduce the count of running tasks by 38 − 46% for the two
workloads, and a reduction in cumulative CPU usage of 36−51%,
that can result in real cost savings on Cloud resources.

I. INTRODUCTION

One of the fast growing sources of data is from Internet of
Things (IoT) deployments, where sensors and actuators collect

observational data from and enact control signals on physical

and virtual infrastructure [1]. While consumer IoT devices like

FitBit and Nest are popular, Smart Cities offer a canonical use

of IoT technologies to provide effective citizen services, and

improve the efficiency of the utility infrastructure. Examples

of these Cyber-Physical Systems (CPS) include smart power
grids where real-time load measurements from consumers

help with demand-response optimization [2], and intelligent
transportation where street sensors and camera feeds are used

to manage traffic lights, transit frequency, and pricing [3].

Smart City deployments make streaming data available from

possibly millions of sensors, and need to analyze and process

them in near real-time to make decisions or provide services.

Distributed Stream Processing Systems (DSPS) offer a fast
data platform to compose continuous dataflow applications

that execute constantly over one or more streams. DSPS

like Apache Storm, Flink and Spark Streaming [4], [5], [6]

are designed to scale-out across commodity clusters and

Cloud Virtual Machines (VMs), and operate on 1000’s of
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messages/sec. They are commonly used to compose IoT and

Smart City applications hosted on the Cloud, and access sensor

streams pulled from the edge into the data-center [7], [8].

Motivation. As Smart City installations expand, thousands

of public observation streams on traffic, pollution, weather,

etc. from diverse domains will be available for integration and

analysis. One can expect an explosion of innovative services

and “apps” that perform online analytics over these streams,

even personalize it for individuals. E.g., an app may correlate

weather observation streams (turning cloudy) with power grid

generation streams (solar output drop) to predict when surge-

pricing might be triggered by the utility to offset demand. This

can help users (or their digital agents) schedule, say, a recharge

of their electric vehicle or their smart washing machine.

Cloud-hosted DSPS will form the scalable analytics engine

for composing and executing these continuous dataflows,

collocated with the data streams. At the same time, there will

be duplication of tasks by the numerous dataflows that operate

on these shared streams, which may each perform similar data

pre-processing (parsing, reformat, unit conversion), quality

checks (cleaning, outlier detection, interpolation), and even

analytics (ARIMA time-series predictions, moving window
averages) [9], [10]. This offers the opportunity to reuse parts

of the logic among different dataflows to avoid recomputation,

thereby reducing the costs for using Cloud resources for app

developers and end-users, and the time to deployment as well.

Gaps. Such scenarios are common in eScience applica-

tions where datasets and workflows are reused. Scientific

projects often make Level 1/2/3 datasets, which have been

pre-processed to different degrees using standard routines,

available to their user groups. Similarly, repositories like

myExperiment and OPMW allow the definition and reuse of

scientific workflows by the broader community [11], [12].

Provenance collected from workflow runs have also been

leveraged for data and workflow reuse [13], [14]. Even Apache
Spark uses lineage to avoid recomputing RDDs [15]. Others

have examined stream reuse in wide area networks [16].

While related, the problem we address differs from these

prior works. Reuse of workflows and their outputs happens af-

ter their execution. We instead focus on streaming applications

from diverse users that are actively running and generating

transient data streams. This requires a greater awareness of

the platform runtime, and is performance sensitive. The IoT

community is nascent, spanning startups, citizen scientists, and

utilities. While it is premature for formal dataflow standards to
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be adopted, fast data platforms like Apache Storm and Flink,

evolving IoT libraries, and public Clouds offer the lowest

common denominator [9]. We leverage these.

Contributions. In this paper, we make the following specific

contributions:

1) We motivate (§ II) and formally define (§ III) the problem

of streaming dataflow reuse, including the equivalence
between tasks present in dataflows.

2) We propose algorithms for merging a submitted streaming

dataflow with deployed dataflows at specific points of

equivalence, and similarly, unmerging a merged dataflow

when it is removed, while guaranteeing their output stream

consistency, in § IV.

3) We implement our reuse algorithms in Apache Storm, and

validate it for real and synthetic Smart Utility applications

and public OPMW workflows (§ V).

We also review related literature in § VI, and present our

conclusions and future work in § VII.

II. PROBLEM DESCRIPTION

Continuous or streaming dataflows are composed as a

Directed Acyclic Graph (DAG), where vertices are user logic

or tasks and directed edges are streams that transfer opaque

events between the output of a task to the input of an-

other downstream task. Tasks execute once per input event

to generate zero or more output events, with the ability to

aggregate local state and operate on multiple input events.

Such dataflows, once deployed onto a DSPS, are execute

continuously on their input stream(s) till undeployed.

Such streaming dataflows have been used to compose IoT

applications which execute on the Cloud and operate over

input streams from physical sensors (sometimes online feeds)

that are available publicly [3], [9]. The dataflows themselves

may publish output streams, or have a sink task that persists

the output events to storage. The output streams from each

task in the dataflow can also be considered as an intermediate

stream that has been partially processed through the preceding

dataflow tasks. We refer to these output and intermediate

streams as derived streams that have been processed, in

contrast to the raw streams from sensors.

DSPS like Apache Storm and Flink can run multiple con-

currently dataflows on a commodity cluster or Cloud VMs.

Dataflows submitted to a Storm installation execute indepen-

dently on a common set of hosts configured for the Storm

cluster. Tasks from multiple dataflows can be collocated on

the same machine, but there is no implicit sharing of events

or tasks between different dataflows.

IoT dataflows that use the same raw stream(s) as input(s)

are likely to have similar pre-processing or even analytics

tasks. This is particularly so when Smart Cities make many

observation streams public for startups and citizen scientists to

design novel applications for the residents, running on public

Clouds, or private city-hosted Clouds. As a result, it is likely

that dataflows with significant overlaps between them will run

independently, thus duplicating their efforts.
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Fig. 1: Illustration of dataflows being merged for reuse on

submission, and unmerged on removal.

Fig. 1 illustrates such a scenario where dataflows A,B,C
and D are performing Extract-Transform-Load (ETL) and

Statistical Summarization (STATS) on two streams, from urban

sensing and smart power meters [9]. The dataflows differ in

overall structure but share similar prefix tasks. E.g., Dataflow

A,B and C share the raw stream source and the next two tasks,

while B and C share an additional third task. As a result, these

three dataflows can be “merged” into one dataflow, A+B+C,

where B reuses a copy of the derived stream from A’s Kalman
Filter output, and likewise C reuses a copy of the derived

stream from B’s Sliding Window output. This achieves the

same result as running the three independently, but avoids

duplicate execution of the prefix tasks. We see that dataflow

D has an overlap with A but the source stream is different,

and hence they cannot be merged. Similarly, when dataflow B
is undeployed, then an “unmerge” should bring it to A+ C.

Each of these dataflows may be owned by a different user

who is part of the IoT community, and they collaboratively

wish to reuse the dataflows to reduce their costs due to

redundant computation. While these examples show simple

sequential dataflows being merged and unmerged, there can

be more complex scenarios where DAGs have forks and

joins, dataflows are added and removed in arbitrary order,

and tasks may have additional configuration parameters. While

dataflows make the composition simple, manually identifying

the overlaps with existing dataflows for cost-efficient execution

infeasible in an active Smart City ecosystem with hundreds of

users and their applications.

In this paper, we explore algorithms to transparently reuse

derived streams in submitted dataflows to reduce resource

utilization while guaranteeing that the outputs of the dataflows

are identical to the original ones, even when the reused

404404

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on June 07,2022 at 05:32:30 UTC from IEEE Xplore.  Restrictions apply. 



dataflows are removed. There are specific challenges on cor-
rectness and efficiency that our solution must address.

• We need to automatically identify the derived streams in

existing dataflows that offer the logical equivalent of a

stream in the submitted dataflow. This requires checking

that the ancestors (causal chain, provenance) of the derived

stream matches the one in the new dataflow. The raw

input stream(s), the task types and their configurations must

identical.

• We also need to ensure that this reuse is maximal, and as

far downstream as possible, to take best advantage of the

deployed dataflows.

• We should support the reuse of multiple derived streams
from different dataflows by the same incoming dataflow.

• When a dataflow is removed, the unmerging should retain

the correctness of the remaining (merged) dataflows while

also minimizing the disruption to existing applications.

Dependencies should be accurately resolved.

Next, we formalize this problem and propose dataflow

merge and unmerge algorithms to meet these requirements.

III. PROBLEM FORMULATION

A. Tasks, Streams and Dataflows

An event is a discrete unit of data that is uniquely identified

by an event id, and has a payload whose contents are opaque

to the platform. An abstract task τ = 〈type, config〉 is a user-

defined logic, as determined by its type, which consumes and

operates on one event at a time, and may generate zero or more

events for each event consumed. The behavior of the user logic

is controlled by parameters specified in a config property for

the task, such as the window size for an aggregation task or

the NoSQL URL for an event storage task. A stream is a

logical channel to transfer events generated from a task to a

destination task for consumption.

Let T = {τ} be the universal set of all distinct abstract

tasks. Two abstract tasks are identical if their type and their

config are the same,

τi = τj =⇒ τi.type = τj .type ∧ τi.config = τj .config

Source tasks and sink tasks are special abstract tasks that

serve solely as generators and consumers of event in streams,

respectively. A source task does not consume an input stream,

but produces (raw) events on its output stream based on its

internal logic (e.g., read from a physical sensor), while a sink

task consumes an input stream but does not produce an output

stream (e.g., persist to a NoSQL database). Their type uniquely

identifies the logical name of the source or sink while their

config has a constant value of ‘SOURCE’ or ‘SINK’. The sets

R ⊂ T and N ⊂ T are the universal set of source and sink

tasks, with R∩N = ∅.

Users compose streaming applications as a dataflow defined

as a Directed Acyclic Graph (DAG), D = 〈T, S〉, where T =
{t1, ..., tn} is the set of n concrete tasks (or just “tasks”) that

form the vertices of the DAG, and S = {s1, ..., sm} is the set

of m streams that are the edges of the DAG. Each concrete

task ti ∈ T has an id that is globally unique, in addition to

matching an abstract task’s type and config,

ti = 〈id, typep, configq〉 | ∃τ = 〈typep, configq〉 ∈ T
The same abstract task can appear multiple times as different

concrete tasks in the DAG with different id’s. A stream sk ∈ S

that transfers output events from an upstream task ti to the

input of a downstream task tj is defined as,

sk = 〈ti.id, tj .id〉 | ti, tj ∈ T

We follow interleave semantics when multiple streams are

incident on the same task, i.e., the task is executed once

for each event that arrives on any of its input streams, and

duplicate semantics when multiple streams leave the same

task, i.e., a copy of each event generated by the task is placed

on each of its output streams. Hence, task and stream reuse

are interchangeable. Two convenience functions return the

upstream and downstream tasks an edge is incident on,

up(s) = {ti | s = 〈ti.id, tj .id〉 ∈ S, ti, tj ∈ T}
down(s) = {tj | s = 〈ti.id, tj .id〉 ∈ S, ti, tj ∈ T}

A dataflow has a set of input and output tasks which are

the start and the end boundaries of the DAG, and should be

part of the universal set of source and sink tasks. I = T ∩ R
is the set of input tasks that pass the input event stream(s) for

processing by the DAG, while O = T∩N is the set of output

tasks that manage the output stream(s) of the DAG.

A DSPS engine continuously executes tasks of the dataflow

on distributed resources and orchestrates the event transfer.

While our definition makes no assumptions on the runtime

characteristics or scheduling, our techniques are well-suited

for dataflows executed in a single Cloud data center.

B. Equivalence

Similarity between Tasks. Say we have two concrete tasks ti
and tj . They are said to be type-similar if ti.type = tj .type,

and denoted as ti
T≈ tj . They are said to be config-similar if

they are type similar, and also ti.config = tj .config, denoted

as ti
C≈ tj . The tasks are said to be identical if ti.id = tj .id,

and denoted as ti = tj . Being identical implies that these are

the same tasks, and so require that they also be config similar.

Task similarity is orthogonal to its runtime performance.

Parent of a Task. For a dataflow D〈T, S〉, we define a parent
function, πD : T→ P(T), that takes a task in the dataflow as

input and returns its parent set, which is the set of tasks that

are the immediate upstream predecessors of the given task in

the DAG. The function’s range falls in the power set P of all

tasks. There are no parents for the input task(s) to the dataflow.

For t ∈ T, we have:

πD(t) =

⎧⎪⎨
⎪⎩
{
p | ∃s ∈ S, p ∈ T,

p = up(s), t = down(s)
}

if t ∈ T \ I
∅ if t ∈ I

Ancestor Graph. An Ancestor Graph for a task in a dataflow

is a DAG formed from the task and all its ancestors, along
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with the streams that connect these tasks within the original

dataflow. For a task t ∈ T for a dataflow D〈T, S〉 we have

the ancestor graph recurrence function, αD(t)→ A〈←−T ,
←−
S 〉 |←−

T ⊂ T,
←−
S ⊂ S, defined as:

αD(t) = A〈{t}, {s | down(s) = t, s ∈ S}〉 ∪
⋃

p∈πD(t)

αD(p)

Here, we include the current task and its incoming streams in

the ancestor graph, recursively apply the ancestor function on

the parent set of the task and take the union of the parent’s

ancestor graph. This will recur till we reach the DAG’s input

tasks, which do not have parents. The union of two ancestor

graphs Ai〈Ti, Si〉 and Aj〈Tj , Sj〉 is,

Ak〈Tk, Sk〉 = Ai ∪Aj = 〈Ti ∪ Tj , Si ∪ Sj〉

The ancestor graph for a task indicates the set of operations

that were performed on one or more input tasks to the DAG

in order to derive the input stream to the task. It is similar to

the prospective provenance of the events generated from that

task [13]. Each ancestor graph is connected and forms a DAG.

Every task in the dataflow has a unique ancestor graph, and

it contains at least one of the input tasks to that dataflow. In

a dataflow with a single sink task, the ancestor graph of the

sink task is the entire dataflow.

Maximal Ancestor Graph Set. The ancestor graph set, A,

for a dataflow D〈T, S〉 is given by,

A = {αD(t) | t ∈ T}

An ancestor graph Aj〈Tj , Sj〉 is said to be a sub-ancestor of

another ancestor graph Ai〈Ti, Si〉 if Tj ⊂ Ti and Sj ⊂ Ti,

and we say that Aj ⊂ Ai. A maximal ancestor graph set, Â,

for a given dataflow is the ancestor graph set that only contains

ancestor graphs that are not sub-ancestors of any other ancestor

graph in that dataflow,

Â = Ω(A) = {A | A �⊂ A′, A,A′ ∈ A}

with the function Ω returning the maximal ancestor graph for

any given set of ancestor graphs.

Intuitively, the number of ancestor graphs in the maximal

ancestor graph set in a given dataflow will match the number

of sink tasks for that dataflow. This is because the sink being

the most downstream of the tasks in the DAG will not appear

in any other ancestor graph besides its own. It will also have

the most number of tasks in its ancestor graph.

Task and Ancestor Graph Equivalence. If we have

Ai〈Ti, Si〉 and Aj〈Tj , Sj〉 as the ancestor graphs for tasks

ti, tj ∈ T in a dataflow D〈T, S〉, we say that the ancestors
graphs are equivalent, denoted as A1 ↔ A2, if there exists a

bijective function ε : Ti → Tj ,

ε(t′i) = t′j =⇒ t′i
C≈ t′j , t′i ∈ Ti, t

′
j ∈ Tj

In other words, for each task in the ancestor graph of ti, there

should be a distinct task in the ancestor graph of tj that is

config-similar, and vice versa.

Two tasks ti and tj are equivalent, denoted as ti ↔ tj if they

are config-similar and their ancestor graphs are equivalent. If

two tasks are equivalent, then both their output streams are

identical, and one can replace the other.

De-Duplicated DAG (De-dup DAG). A De-Duplicated DAG
D〈T, S〉 is one in which there exists no two task ti, tj ∈ T

that are equivalent. Each dataflow submitted by the user for

execution should be a de-dup DAG.

Disjoint and Overlapping DAGs. Two dataflows Di〈Ti, Si〉
and Dj〈Tj , Sj〉 are said to be disjoint, denoted as Di � Dj ,

if they do not have any tasks between them that are equivalent,

Di � Dj =⇒ � ∃ti ∈ Ti, tj ∈ Tj | ti ↔ tj

Disjoint dataflows have no tasks that are mutually reusable.

Dataflows that are not disjoint are called overlapping.

Ancestor Intersection of DAGs. We define the ancestor
intersection of two DAGs, given as a function Λ(Di, Dj), as

the set of ancestor graphs for tasks in each of the DAGs that

are ancestor equivalent. WLOG, we choose the ancestor graph

from the task in the first DAG for inclusion in the intersection

set. Given Di〈Ti, Si〉 and Dj〈Tj , Sj〉, we have their ancestor

intersection as:

Λ(Di, Dj) = {αDi
(ti) | ti ↔ tj ∀ ti ∈ Ti, tj ∈ Tj}

The ancestor intersection of disjoint DAGs is an empty set.

The maximal ancestor intersection finds the maximal set

from the returned set of intersecting ancestor graphs,

Λ̂(Di, Dj) = Ω(Λ(Di, Dj))

The maximal ancestor intersection indicates the largest set of

equivalent tasks in the two dataflows, and offers an upper

bound on the tasks that can be reused.

C. Problem Definition

We distinguish between submitted DAGs, that are provided

by users for deployment and execution, and running DAGs
that are actually deployed and executing in the DSPS. Our

goal is to optimize the set of running DAGs for the given set

of submitted DAGs while ensuring the outputs provided to the

users by the running DAGs are indistinguishable from those of

the submitted DAGs. We also wish to do this dynamically, as

the set of submitted DAGs changes, i.e., DAGs are submitted

and removed by users over time.

Say, we have a set of m disjoint and de-dup DAGs, D =
{Di〈Ti, Si〉} that are currently running, and together represent

a collection of n ≥ m de-dup DAGs, D = {Dj〈Tj , Sj〉}, that

were submitted by users for deployment. The following two

constraints hold for the system:

1) Sink Task Coverage. For each sink task tp present in the

dataflows D that were submitted by the users, there exists

some task tq in the running dataflows D that has the same

ancestor equivalence,

∀tp ∈ N ∩ Tj , ∃tq ∈ Ti | tp ↔ tq (1)

2) Task and Stream Minimization. The running dataflows

D must be disjoint and de-dup DAGs. Each task tq and
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stream sr in the running dataflows must appear in the

ancestor graph for some sink task tp in the submitted

dataflows D,

∀tq ∈ Ti, sr ∈ Si ∃tp ∈ N ∩ Tj | tq ∈
←−
Tp ∧ sr ∈

←−
Sp

where Ap〈
←−
Tp,
←−
Sp〉 = αDj (tp) (2)

Here, the first constraint guarantees that there is an equiv-

alent task in the running dataflows for every output task in

each dataflow submitted by the user. This means that the

running dataflows can produce the identical output streams

as the submitted dataflows. The second constraint ensures that

there are no more running tasks, and streams connecting them,

than what is absolutely required to satisfy the equivalence with

output tasks in the submitted dataflows. This, coupled with the

running dataflows being disjoint, ensures that we execute the

least number of tasks required while maximizing reuse. Given

this, our problems are,

1) Merging DAGs. When a new de-dup DAG Dn is sub-

mitted by a user, update the set of running DAGs D such

that Constraints 1 and 2 hold for the new set of submitted

DAGs D∪Dn, while ensuring that tasks equivalent to the

output tasks of Dn are present in D.

2) Unmerging DAGs. When a dataflow Dr ∈ D that was

earlier submitted is now requested to be removed, update

the set of running DAGs D such that Constraints 1 and 2

hold for the new set of submitted DAGs D \Dr.

IV. MERGING AND UNMERGING DATAFLOWS

A. Merging Algorithm

When a dataflow is submitted by the user, we need to

check if the dataflow is overlapping with any of the running

dataflows. If not, then there is no possibility of reuse and

the submitted dataflow has to be run independently. If there

are overlaps with one or more running dataflows, then we

need to identify the overlapping tasks and streams that will

be reused. We should also locate the non-overlapping parts

of the submitted dataflow that will have to be run afresh, but

connected to the upstream tasks being reused.

Each running dataflow is disjoint with the other running

dataflows. This means that they do not share any source tasks

between them. Multiple running dataflows can be reused by

the same submitted dataflow if it has multiple source tasks

(and optionally their successors) that are present in different

running dataflows. In this case, these running dataflows will be

connected and merged with the new (non-overlapping) tasks

and streams that are instantiated for the submitted dataflow.

Hence, multiple running DAGs will merge into a single

running DAG, along with the newly created tasks and streams.

We also need to identify the tasks in the running dataflow

that correspond to the sink tasks in the submitted dataflow

so that the user knows where the output of their dataflow

is incident. This should also be maintained for dataflows

submitted earlier, when a merge of running dataflows happens.

We next discuss specifics of these various operations required

for merging a submitted DAG with running ones.

Identifying Overlaps. Say Dn〈Tn, Sn〉 is the newly submitted
DAG and D is the set of currently running DAGs. We need

to identify Di〈Ti, Si〉 ∈ D that are not disjoint with dataflow

Dn. While one can test the ancestor equivalence for every

pair of tasks in the submitted DAG and the running ones,

this will be costly. Instead, we prune this search-space based

on the intuition that running DAGs that share a source task

with the submitted DAG have at least a minimal overlap,

and hence will overlap and be merged together. In contrast,

running DAGs that do not have a source task overlap with the

submitted one will be disjoint with the submitted DAG. The

set of overlapping DAGs is thus,

Y = {Di : Ti ∩ Tn ∩R �= ∅}

Merging and Reusing Overlaps. If |Y| ≥ 1, we construct a

new merged DAG Dm〈Tm, Sm〉 from these overlapping DAGs

by first performing a union of tasks and streams,

Tm =
⋃

Di〈Ti,Si〉∈Y
Ti Sm =

⋃
Di〈Ti,Si〉∈Y

Si

Now, we identify the parts of the submitted DAG Dn that

overlap and are present in this partially merged dataflow Dm

by examining their maximal ancestor graph set,

Â = Λ̂(Dm, Dn) = Ω(Λ(Dm, Dn))

This set of disjoint and maximal ancestor graphs contain the

set of tasks To and edges So of the new DAG that are already

present in the running DAGs and can be reused,

To =
⋃

Ak〈←−T k,
←−
S k〉∈̂A

←−
T k So =

⋃
Ak〈←−T k,

←−
S k〉∈̂A

←−
S k

Including Non-overlapping Tasks. Then we find the parts

of the new dataflow that cannot be reused from the running

DAGs, and have to be newly instantiated. Say, Tx = Tn \ To

are the set of new non-overlapping tasks to be created. The

new streams Sx = S
∗
x ∪ S

+
x will include those streams that

connect tasks fully within Tx, and the boundary streams that

link the reused tasks with non-overlapping ones that will be

down-stream. These are given by.

S
∗
x ={sn | up(sn), down(sn) �∈ To}

S
+
x ={sn | up(sn) ∈ To, down(sn) �∈ To}, ∀sn ∈ Sn

Tx and Sx are the new tasks and streams that have to started

and connected. We then merge these new entities with the

merged DAG Dm that we are constructing to get, Tm = Tm∪
Tx and Sm = Sm ∪ Sx. We can then replace the overlapping

DAGs in Y with this newly merged DAG to get the updated

set of running DAGs, D = D \ Y ∪ {Dm}. We also add the

user’s DAG to the set of submitted DAGs for book-keeping,

D = D ∪Dn.
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B. Unmerging Algorithm

Users can request an earlier submitted dataflow for removal

from the system, and these request can come in any arbitrary

order, irrespective of the order of submitting the dataflows.

When a dataflow is requested for removal, we need to first

identify the running (merged) DAG that contains this dataflow

– the dataflow being removed will be present in only one

running DAG due to the merge operations. We then determine

the tasks and streams in this running DAG that can be removed

such that the correctness of other submitted dataflows that

continue to remain in the system is not affected. As part

of this operation, a single running DAG may be unmerged

into multiple DAGs as the components may get disconnected.

These will have to be identified. The upper bound on the

number of DAGs that will be unmerged is the number of

source tasks that are present in the dataflow being removed.

Let Δ : D → P(D) be a decomposition function that

maps from a running (merged) DAG to a set of submitted

DAGs it supports, and similarly Φ : D → D be an inverse
mapping function that given a submitted DAG, return the

running (merged) DAG that it is contained in. These can be

maintained as the merge algorithm is being performed.

When a DAG, Dr〈Tr, Sr〉 ∈ D is being removed, the

running DAG that contains this dataflow and will be affected

is, Di〈Ti, Si〉 = Φ(Dr). Let the set of dataflows that will be

continue to be supported by tasks and streams in this running

DAG be Ds = Δ(Di) \ Dr. We need to identify the tasks

and streams in the running DAG that must be terminated.

These tasks will not appear in the ancestor graph of any of

the remaining dataflows Ds that are supported by the merged

DAG. In particular, let the ancestor graphs for the output tasks

in the DAGs that remaining be,

A = {As |As = αDk
(tp), ∀tp ∈ Tk ∩N , Dk〈Tk, Sk〉 ∈ Ds}

So tasks in this running DAG that can be terminated are those

that do not appear in this ancestor graph set,

Tt = {tq | tq ∈ Ti, tq �∈
←−
Tp, Ap〈

←−
Tp,
←−
Sp〉 ∈ A}

and the streams that can be disconnected will overlap with

these tasks being terminated,

St = {s | s ∈ Si, up(s) = t ∨ down(s) = t, t ∈ Tt}

The running DAG Di will now reduce to Dj〈Tj , Sj〉, where

Tj = Ti \ Tt and Sj = Si \ St. Next, we need to identify

the distinct DAGs that may be formed from unmerging of

Dj if the DAG separates into multiple connected components

due to stream edges being removed. These can be found by

performing an incremental forward traversal from each of the

input tasks that are retained in the DAG, Tj ∩R, and forming

a new DAG for each distinct connected component Dm
j . This

will the give us the updated set of running DAGs as D =
D\Di∪{Dm

j | ∀m}. Finally, we also remove the dataflow Dr

from the list of submitted DAGs, D = D \Dr.

C. Implementation
We develop a Reusable Dataflow Manager that offers a

generic implementation of the merge and unmerge algorithms

proposed above, with bindings to an external DSPS to en-

act the dataflows and coordinate their reuse. We implement

bindings for Apache Storm DSPS due to its popularity for

streaming applications, and to leverage existing IoT dataflow

applications developed on it. Storm tasks are implemented in

Java by extending a Bolt class, and a dataflow is called a

Topology that wires the bolts together.
Users submit a dataflow to the manager as a JSON file

which captures the tasks and their connectivity, including the

task ID, type, and config. The manger keeps track of the state

of the submitted and running DAGs. On running the merge

algorithm, the manager identifies running DAGs that need to

be merged, and new tasks and streams to be instantiated.
DSPS like Storm do not allow the structure of a dataflow to

be modified after launch, instead requiring it be stopped and

a new dataflow with the updated DAG launched. This will be

disruptive to all submitted dataflows that are supported by a

running DAG. IoT domains are typically latency sensitive and

may also have persistent mission-critical applications. As a

result, we develop a mechanism to run the merged dataflows

as partial DAGs that can be incrementally launched, and use a

publish-subscribe broker for externally connecting them. This

is similar to an Enterprise Service Bus (ESB) model.
When the manager identifies multiple running dataflows to

be merged (Y) and new non-overlapping tasks and streams

to be created (Tx, Sx), it takes the following steps. It first

launches a new dataflow corresponding to the non-overlapping

tasks and their local streams, 〈Tx, S
∗
x〉. We use Storm’s Flux

interface based on JSON to create and launch dataflows. It

then connects the boundary streams S
∗
x from tasks in prior

dataflows to tasks in the new dataflow through the broker.
To this end, we have each task (Bolt) in the Storm dataflow

extend our wrapper class, which subscribes to a unique control
topic on the broker to receive signals. The manager uses this

topic to notify a task in a prior dataflow to forward a copy of

its output stream to a unique data topic, which is subscribed

to by the task in the new dataflow. Thus, the topic is a derived

stream to connect tasks in different dataflows being merged.
Similarly, when a submitted dataflow is to be demerged,

the algorithm first identifies tasks and streams to terminate,

〈Tt, St〉. This would be in a single merged DAG per our algo-

rithm. However, in our Storm implementation, a single merged

dataflow may be deployed as multiple DAGs connected by the

broker, with the manager doing the book-keeping. The tasks

to be stopped may require termination of a subset of a running

DAG, which Storm disallows. Instead, the manager notifies the

tasks to be terminated to rather pause their execution, using

the control topic. These tasks will subsequently not process

incoming messages. This, in effect, frees up resources of those

tasks without disrupting the DAGs they belong to.
This approach can introduce latency overheads due to the

indirection in forwarding events between tasks through the

broker. But it does not limit scaling since modern brokers like
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Kafka are designed for distributed scaling. Merging and de-

merging can also cause fragmentation with many small Storm

DAGs, though there may be fewer logical merged DAGs,

and several paused tasks. In future, we can perform periodic

defragmentation, where running Storm DAGs are stopped, and

a single DAG relaunched for each merged dataflow.

V. EXPERIMENTS

A. Workloads

We use two workloads in our evaluation. One is from

the Open Provenance Models for Workflows (OPMW) reposi-

tory [12] which hosts ontology-based scientific workflow mod-

els and their traces. These workflows span different domains,

and are designed to be shared by the science community.

As there are few publicly available streaming IoT dataflows,

these OPMW workflows are a proxy for future IoT dataflow

collections in the public domain.

Of the 74 usable OPMW workflows available in the portal,

we choose 35 arbitrary ones such that they can cumulatively

fit in our cluster. These have 471 total tasks, of which 219
are unique, with 2 − 38 tasks present in each DAG. We

only use the OPMW DAG structure, with the task ID, type,

and their connectivity. In the Storm implementation of the

DAGs, we replace the internal task logic with an iterative

computation of π that outputs a floating point number. This

reduces dependencies while ensuring that each input event

triggers a CPU-intensive operation.

The second workload is based on real IoT applications that

are available as part of our Real-time IoT Benchmark (RIoT-
Bench) [9]. The benchmark has over 30 stream processing

tasks for IoT domains, classified as parsing and filtering, I/O,

statistical and visual analytics, etc., These are composed into

4 streaming IoT dataflows for Extract Transform Load (ETL),

Statistical Summarization, and Predictive Analytics. We extend

these dataflows with additional permutations of their DAGs

from the available tasks and use 3 IoT source tasks – Smart

Power Grid, Urban Sensing, and NY City Taxi Cab streams

– to construct 21 different IoT applications with real logic.

These DAGs have 138 total tasks with 19 distinct ones.

We generate 3 DAG traces each for the OPMW and RIoT

dataflows to simulate submission and removal. For one trace,

we use a Sequential Submit/Drain (SEQ) model to first incre-

mentally submit a random dataflow from the workload with

uniform probability, without replacement, in each time step.

Once all DAGs in the workload are added, we switch to a drain
phase where a random DAG that was submitted and present

is removed in each step. This takes 35×2 = 70 time steps for

OPMW and 21 × 2 = 42 for RIoT. This trace simulates the

behavior when only add or only remove operations occur, and

the maximum reuse happens when all DAGs are submitted.

For the two other traces, we generate Random Walks (RW)
where we perform an add or a remove with equal probability

at each time step, and repeat this 100 times. The DAGs to

add/remove are chosen at random from the available/submitted

pool – a submitted DAG is not resubmitted (unless removed)

to avoid the whole DAG being reused by our algorithm to

unfairly inflate its benefits. We initially populate the system

with 20 DAGs for OPMW and 15 DAGs for RIoTBench

at random, which are ≈ 2
3

rds
of the workload before the

random walk starts, and similarly drain the system after the

100 random walks. These traces help evaluate the impact on

the system after repeated merge and demerge operations, and

also test for any inconsistencies under sustained operations.

B. Setup

We run our experiments on Apache Storm v1.0.2 DSPS that

is setup on a commodity cluster, with each node having an

AMD Opteron 3380 8-core CPU@2.6 GHz, 32 GB RAM,

a 256 GB SSD, and GigaBit Ethernet, running CentOS v7.

Storm runs on JRE v1.8 with the Flux JSON interface used

for dataflow submission. Apache Apollo v1.7.1 is our publish-

subscribe broker using the MQTT protocol. Our Manager is

implemented in Java and talks to Storm from a local node.

DAGs submitted to Storm use the default parallelism of

1 thread per task. Storm uses a round-robin scheduler to assign

tasks to Workers in its cluster. Each node runs the default one

Worker JVM per core, and we see that up to 8 tasks can run

on a Worker without interference. This means up to 64 tasks

can be placed on a single node. However, each Worker can

have tasks from only one DAG. The Storm cluster is assigned

as many nodes as required at the peak of a given trace, and

this ranges from 3− 9 machines depending on the trace.

Each action in a trace – submission or removal of a DAG

– is sent directly to the Storm service for the Default scenario

without reuse, or sent to our Manager when using the Reuse
algorithms. The actions are generated at a fixed time step of

1 min to allow the system and resource usage to stabilize.

So each run of a trace takes between 42− 140 mins for the

Default and Reuse approaches. At each time step, we report the

total running task count (Figs. 2) and use top to measure the

cumulative CPU utilization across all nodes; this is reported as

the number of cores used in Figs. 3, where 100% cumulative

CPU in the cluster ⇒ 1 core used. We used a constant input

rate of 10 events/sec for each source task as this matches

the peak rate supported for the given resource allocation. Each

event is 4− 380 bytes in size, depending on the source.

C. Results for OPMW Workload

In the sequential workload, we do not initially see a big

gap in the task counts between Default and Reuse, until step

16 (Fig. 2a). At this point, the Default strategy has 233 tasks

while our Reuse strategy has 201 tasks running. The random

selection of DAGs for addition happens to select dataflows

with few equivalent tasks for reuse.

However, as more of the dataflows are added till the whole

workload is deployed at step 35, we see this gap widen, with

Default running 471 tasks while Reuse has only 274 active

ones. This stark contrast at the peak highlights the maximum

possible reuse being exploited when all available dataflows

are submitted. In the drain phase, since the DAGs are also

removed in random order, the gap stays wide since sampling

happened to remove DAGs with less reuse first.
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(a) OPMW, Sequential (b) OPMW, Rnd Walk 1 (c) OPMW, Rnd Walk 2 (d) RIoT, Sequential (e) RIoT, Rnd Walk 1 (f) RIoT, Rnd Walk 2

Fig. 2: Number of running tasks at different time points for the 6 workloads, using Storm Default and with Reuse.

(a) OPMW, Sequential (b) OPMW, Rnd Walk 1 (c) OPMW, Rnd Walk 2 (d) RIoT, Sequential (e) RIoT, Rnd Walk 1 (f) RIoT, Rnd Walk 2

Fig. 3: Cumulative Core usage at different time points for the 6 workloads, using Storm Default and with Reuse.

(a) OPMW, Sequential (b) OPMW, Rnd Walk 1 (c) OPMW, Rnd Walk 2 (d) RIoT, Sequential (e) RIoT, Rnd Walk 1 (f) RIoT, Rnd Walk 2

Fig. 4: Frequency of reuse histogram showing the fraction of time that tasks were (re)used by more than one dataflow.

Fig. 3a shows the cumulative sum of the CPU core usage

across all active hosts on the Y axis as DAGs are added and

removed; a value of 1 implies 100% use of 1 core. We see

a strong correlation between the number of running tasks and

the cores used. Until step 12, they both consume about the

same number of cores, reaching ≈ 31. Beyond that, the usage

plateaus out for Reuse at ≈ 38 cores as tasks get reused and

task-count flattens, while it continues to grow for Default to

reach a peak of 74 cores with 35 DAGs. At the peak, Reuse

takes 42% fewer CPU resources, which directly translates into

monetary savings on public Cloud VMs. We do notice that

when the dataflows are drained, the core usage reduces for

both approaches, though at different slopes. Interestingly, there

is a cross-over at step 67 when usage for Reuse is higher

at 8 while Default takes 6, even though Reuse runs fewer

tasks. This is due to the overhead of pause. Even when a

task is paused in the Reuse approach, it continues to consume

minimal resources as it is still deployed within Storm. This

accumulates with increased DAG fragmentation, and toward

the end, all 274 tasks that were once running but now in a

paused state end up consuming 7.5 cores. This motivates the

need for periodic defragmentation, when all DAGs are stopped

and a single Storm dataflow started for each merged DAG.

Lastly, Fig. 4a shows the histogram of the time-weighted

fraction of all running tasks over all steps (Y axis) that were

reused by [1, 2) DAGs, [2, 3) DAGs, etc. (X axis). We omit

the frequency of tasks used just once, that is the residual of

all these frequencies. We see that 11% of all tasks are reused

by > 1 and ≤ 2 dataflows, while another 4% are reused by

> 2 dataflows. But even this small fraction of reuse is helping

achieve significant reduction in resource needs.

The Random Walk workload traces (RW1 and RW2) have

≈ 20 median number of dataflows that are active. RW1 has

a wider oscillation of the task counts than RW2 (Figs. 2b

and 2c) due to more contiguous adds/removes of dataflows.

For RW1, the Default’s task count ranges from 187 − 364
during the 100 walks while Reuse has 103− 242 tasks in this

period. For RW2, these ranges are respectively 185− 309 and

90−216. While the task count for Reuse parallels the Default,

it always maintains an advantage for all 100 steps, and on an

average has 38% fewer running tasks. The reuse histograms

(Fig. 4b, Fig. 4c) indicate that 14% of the tasks were used by

more than one DAG.

This has a corresponding impact on the cores used by these

traces, where Default takes a median of 50 and 41 cores for

RW1 and RW2, while Reuse takes only 30 and 26 – a cost

savings of 37 − 40%. While the impact of fragmentation in

seen here as well, with ≈ 8 cores remaining in use at the

end, defragmentation can even help improve utilization under

normal conditions if adequate tasks are paused.

D. Results for RIoT Workload

We see that in the sequential trace of the RIoT workload,

the gap between Default and Reuse strategies starts right from
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step 2, with the running task counts growing smoothly in both

cases but at different rates (Fig. 2d). The RIoT DAGs are more

homogeneous, with each DAG having 4−8 tasks, compared to

OPMW where the had 2−38 tasks. At the peak submission in

time step 21, the running tasks count reaches 138 with Default

while it is only 75 using the Reuse approach.

The correlation between the number of running tasks and

the core usage is seen for this workload too. We observe an

average reduction in cores used by 37.5% (Fig. 3d), which

is more than for OPMW. Their reuse histogram also shows

24% of tasks used by more than one dataflow (Fig. 4d). RIoT

applications come from the same domain, and their potential

for reuse is therefore higher. However, since they incorporate

real IoT task logic rather than just a generic π logic, the core

usage for RIoT shows more variability since the DAG tasks

have diverse computing needs. This is despite RIoT DAGs

having a similar number of tasks. So while task counts and task

reuse counts offer a quick approximation of resource benefits,

the core usage gives a more accurate sense of cost savings.

The benefits are even more evident for the random walk
traces of RIoT. Here again the task count is less variable across

time, with a mean of 125± 25% and 67± 22% running tasks

for Default and Reuse on RW1. However, the core usage varies

more due to the IoT task logic, with a mean of 12± 37% for

Default and 6 ± 34% for Reuse. Similar values are seen for

RW2 as well. The reuse histograms also shows that 8% of

tasks were used by 2 or more dataflows. These all translate to

an enhanced cost benefit for Reuse, with core usage 47−51%
lower than Default, for both the random walks.

In summary, we see that the Reuse strategy offers significant

reduction in the running task count along with real cost

savings of up to 51% lower core usage, relative to the Default

approach. These apply both to public dataflows from the

OPMW multi-domain repository with synthetic task logic, and

to permutations of real IoT dataflows with diverse task logic

of RIoTBench. Further improvements also seem achievable for

the Reuse approach if defragmentation is done as well.

VI. RELATED WORK

There are two broad categories of “reuse” research that are

relevant to our problem: distributed stream processing appli-
cations [3], and scientific workflows using provenance [14].

A. Stream Processing

Prior works [16], [17] explore the problem of composing

streaming applications in a wide area P2P network, along

with reuse of streams and tasks. Their DAG of tasks has

an ontologically unique name for streams, newly submitted

DAGs have their stream names matched against the existing

streams, and identical streams are reused. Rather than just a

lookup by stream names, we offer a more rigorous graph-

based approach to distinctively identify equivalent tasks and

their output streams. We also limit our work to a local cluster

rather than wide area networks, and hence do not require the

distributed probing mechanism they use to propagate state and

connectivity. We can also use a centrally coordinate the reuse

within the data center. Lastly, they do not adequately examine

the removal of a submitted DAG – as we saw, demerging can

cause cascading impact on the deployed DAGs.

Reuse and sharing of queries has been explored for Dis-

tributed Stream Management Systems (DSMS), where tasks

are query operators with well defined semantics that the system

can take advantage. [18] considers overlap between results

of continuous queries and merges them into an equivalent

query based on overlaps of attributes, predicates and streams.

While we have similar approach for merging applications

that share equivalent streams, we instead use a DAG model

for comparing equivalence of typed tasks rather than require

task semantics such as query behavior. This makes our work

generalizable to any DAG-based streaming application.

Others have also examined query admission, operator al-

location and reuse as a set of inter-related problems that

are solved as a constrained optimization problem [19]. Their

reuse of base (raw) stream and computed (derived) streams

is similar to ours but they leverage knowledge of query

operator semantics. They also impose resource constraints to

restrict number of queries admitted into the system. We instead

focus on opportunistic sharing of dataflow subsets to reduce

their cost of execution rather than be constrained by a lack

of resources. That said, DSPS execution on diverse edge-

computing resources is an emerging research area for IoT and

our techniques could be extended to the same [20].

B. Scientific Workflows

Workflows have long been used to compose and publish

e-Science applications through portals for loosely-coupled

collaboration [11], [12], [21], [22]. This approach can be

replicated for sharing of streaming dataflows in the IoT domain

as they grow popular. E.g., myExperiment [11] provides a

repository of workflows along with annotations and descrip-

tions help locate, modify and reuse workflows. Reuse of

the workflow composition is done manually, and modified

workflows are usually published back for others to use. We

instead consider reuse of running dataflows.

Goderis, et al. [23] identifying similar worklows from

existing DAGs based on their structure similarity. This is

modeled as a subgraph isomorphism problem that is solved

using existing techniques [24]. They also explore the problem

of ranking the matched workflows. Similarly, our applications

are also DAGs and we too offer techniques for graph structure

matching but require exact matches of ancestor graphs to

guarantee task equivalence. Others have performed statistical

analysis on workflows from myExperiment to examine the

reuse among workflows and the recurring set of services

(tasks) [25]. Network analytics is then used for recommending

services for new workflows being composed. We too leverage

dataflow subset equivalence for reuse, but for running applica-

tions rather than for composing future ones. Provenance [14]

is metadata that captures the workflow execution trace to help

users to decide if its generated outputs can be used, in part

or in full, for their own workflow without performing a full
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execution [13]. There are also mechanisms to efficiently search

such traces to determine the appropriate dataset to reuse [26].

Unlike continuous stream processing, workflows execute

in batch and generate files that are persisted. Hence, its the

workflow composition that is reused for future executions

rather the running workflow. The data products generated by

prior workflow runs are also reused, with provenance as an

enabler. Our focus instead is on reusing an actively running

dataflow, with tasks added and removed during de/merge.

There has also been limited research on using provenance

for streaming dataflows [27], [28], [29], and it could offer

an alternative approach to locate streams and equivalent tasks.

VII. CONCLUSION

In this article, we have motivated the need and opportunity

for reusing partial subset of tasks from streaming dataflows,

in an emerging domain like IoT where data stream and

dataflow sharing is expected to grow. We have formalized the

problem definition rigorously with tight specifications on when

tasks are equivalent between two dataflows, allowing them

to be reused. We also offer invariants that will ensure that

output consistency and resource minimization are achieved.

We use these specifications to design merge and demerge

algorithms for dataflows that are submitted and removed from

the streaming system. We also map these algorithms to an

implementation for the Apache Storm DSPS.

The algorithms are validated using a collection of real DAG

structures from diverse science disciplines, hosted publicly at

OPMW, and a smaller collection of real IoT streaming appli-

cations and their variants from RIoTBench. We empirically

evaluate our merge and demerge algorithms by running the

dataflows on a Storm commodity cluster, for sequential and

random walk traces. For all the workloads, we see the expected

drop in running task count using our Reuse strategy with a

corresponding decrease in CPU resource usage, with up to

51% reduction in cost. This makes our algorithms viable for

deployment in collaboratory IoT environments.

As future work, we propose to examine the impact on DAG

latency due to the indirection through the broker. We will also

examine when to perform defragmentation and measure its

impact on the application disruption, and the improvements

in resource usage and latency. Lastly, it is also worth esti-

mating the real-cost reduction on on-demand Cloud VMs, and

techniques for fair billing of resources to the dataflows from

different users that are being reused.
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