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Abstract—Distributed computing platforms provide a robust 
mechanism to perform large-scale computations by splitting the 
task and data among multiple locations, possibly located 
thousands of miles apart geographically. Although such 
distribution of resources can lead to benefits, it also comes with its 
associated problems such as rampant duplication of file transfers 
increasing congestion, long job completion times, unexpected site 
crashing, suboptimal data transfer rates, unpredictable reliability 
in a time range, and suboptimal usage of storage elements. In 
addition, each sub-system becomes a potential failure node that 
can trigger system wide disruptions. In this vision paper, we 
outline our approach to leveraging Deep Learning algorithms to 
discover solutions to unique problems that arise in a system with 
computational infrastructure that is spread over a wide area. The 
presented vision, motivated by a real scientific use case from Belle 
II experiments,  is to  develop multilayer neural networks to tackle 
forecasting, anomaly detection and optimization challenges in a 
complex and distributed data movement environment. Through 
this vision based on Deep Learning principles, we aim to achieve 
reduced congestion events, faster file transfer rates, and enhanced 
site reliability. 
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I. INTRODUCTION 
Distributed computing platforms provide a robust 

mechanism to perform large-scale computations by splitting the 
task and data among multiple locations, possibly located 
thousands of miles apart geographically. This distribution of 
resources can lead to benefits such as redundancy of data and 
engagement with scientific teams that involve a diverse group of 
domain experts distributed spatially around the globe. It allows 
scientists to share their expertise and data with everyone and 
achieve insights by deploying collective intelligence of entire 
team. However, this distributed computing comes with its 
associated problems such as rampant duplication of file transfers 
increasing congestion, long job completion times, unexpected 
site crashing, suboptimal data transfer rates, unpredictable 
reliability in a time range, overshooting congestion, suboptimal 
usage of storage elements. In addition, each sub-system 
becomes a potential failure node that can trigger system wide 
disruptions. 

In this vision paper, we outline our plans to leverage 
Artificial Intelligence methods to tackle operational bottlenecks. 
Supervised learning methods are considered suitable for tackling 
complex systems due to their flexibility and efficient 

training/testing framework. Unsupervised learning techniques 
lend themselves to interpretation and can tackle uncertainty 
smoothly and provide mechanisms to infuse domain expertise. 
Neural networks can be deployed to detect anomalies in 
dynamic environment with training. Deep Learning algorithms 
involve development of multilayer neural networks to solve 
forecasting, classification and clustering solutions. Our 
approach leverages such Deep Learning algorithms to discover 
solutions to problems associated with having computational 
infrastructure that is spread over a wide area.  

Our past work in modular learning [1] and large sensor 
networks [2] focuses on using Machine Learning methods to 
solve workflow performance issues and leverage large sensor 
networks to achieve robust cloud performance. In continuation 
of broader scheme of applying Artificial Intelligence 
Techniques for designing efficient systems, we present our 
vision to explore the operational data, extract insights and 
patterns from it and deploy intelligent systems on Belle II that 
can provide long-term efficiency gains without much 
intervention. Developments in Deep Neural Networks in wide 
areas naturally create scope for their deployment in distributed 
systems such as Belle II. We believe such efforts will not only 
shed a light into operational health of experimental facilities and 
computing infrastructure, but also provide a wealth of 
information that can be used for dynamic data-driven scheduling 
of scientific workflows.  

In recent years, there have been extensive developments in 
deployment of neural networks to solve challenging problems 
[3]–[7]. [8]–[11] and [12] provide a detailed and generic outline 
of Deep Learning architectures. However, in this paper, we only 
discuss Deep Learning techniques in the context of improving 
the Belle II experiment’s robustness and efficiency, and develop 
multilayer neural networks to tackle forecasting, anomaly 
detection and optimization challenges in a complex and 
distributed data movement environment. DL techniques can be 
broadly classified into two areas: discriminative models (such as 
Deep Neural Networks, Recurrent Neural Networks, 
Convolutional Neural Networks etc.) and generative models 
(such as Deep Boltzmann Machines, Regularized Autoencoders, 
Deep Belief Networks etc.) [13], [14]. We plan to use these 
techniques to forecast insights that can improve system-level 
robustness of Belle II and detect anomalies to improve 
performance. In conjunction with experimenting with networks 
such as Convolutional Neural Networks, Recurrent Neural 
Networks, and Long Short-Term Memory architectures, we will 



investigate optimal settings for tuning techniques such as 
regularization, early termination, dropout and dimensionality 
reduction techniques (e.g., Max Pooling) to achieve best 
performance.  

Deep Learning (DL) has proven surprisingly successful 
when large amounts of data is available to capture the underlying 
phenomenon. In the context of Belle II experiments, we capture 
large amounts of operational metrics characterizing the system 
performance and data movement across different storage 
elements. Using Deep Learning Principles, we aim to achieve 
reduced congestion events, faster file transfer rates, and 
enhanced site reliability, which in turn  will lead to reduced 
average job completion time. Domain independence of neural 
networks can allow us to deploy deep networks to forecast 
robustness of a site dynamically: how likely is a site crash. We 
will investigate their utility to decipher future behavior such as 
expected data transfer rates, forecasting congestion and delays, 
predict re-usability factor for each data transfer, and anticipate 
overload conditions before they occur in Belle II. 

In summary, this forecasting capability can greatly enhance 
schedulers’ performance and improve robustness of the Belle II 
experiment by providing actionable insights. Belle II 
experiment’s massive data generation provides us an 
opportunity to leverage Deep Learning algorithms for extracting 
meaningful patterns and insights from operations logs. As the 
main contribution of this paper, we have summarized specific 
algorithms that we plan to deploy in order to perform analytics 
on Belle II operational datasets, and made an attempt to map 
each to an expected outcome, that will improve the performance 
and robustness of the Belle II experiment. In particular, the 
specific goals of this vision paper are to share our design board 
with the workflow community and outline our plans to: 

• Investigate the effectiveness of Deep Learning 
Techniques to improve overall efficiency and reliability 
of experimental facilities managed by large-scale 
distributed scientific workflows (Section III); 

• Examine the performance of Recurrent Neural Networks 
and Hierarchical Temporal Memory Models for 
predicting future demand of a given dataset in Belle II 
experiment, and predict a remote site’s availability status 
dynamically (Section III-C, D); 

• Measure the effectiveness of Long Short-Term Memory 
Models and Autoencoders for carrying anomaly 
detection by measuring deviation from anticipated 
(predicted) execution metric or system status (Section III-
A, E); and 

• Document the outcomes of deploying the Reinforcement 
Learning approach in making execution of scientific 
workflows cost and time efficient, using Belle II as a 
representative use case (Section III-F). 

The rest of this paper is organized as follows: Section I starts 
with an overview of the broader field of research and builds the 
context and motivation for our current research problem, Section 
II overviews the representative use case and explains Belle II 
and ProvEn Framework, Section III presents a mapping of the 
DL techniques we plan to deploy and corresponding expected 

benefits we anticipate, and Section IV discusses the overall 
approach and provides concluding remarks. 

II. EXPERIMENTAL DATA COLLECTION  
Deep Learning algorithms mentioned in Section I will allow 

exploratory analysis of operational data collected from the 
Belle II experiment. The Belle II experiment itself is a massive 
collaborative effort involving geographically separated sites 
and generates large amounts of data, hence this effort to 
leverage Deep Learning algorithms has immense potential of 
tackling the problems of scalability and generalization to new 
scenarios generated due to the size of the experiments. We will 
use the ProvEn Framework for data collection for analysis. In 
this section, we summarize Belle II and ProvEn as a 
background for the rest of this paper. 

A. Belle II 
The Belle II experiments [15], [16], designed to probe the 

interactions of the most fundamental constituents of our 
universe, is expected to generate about 25 peta bytes (25 x 1015 
bytes) of raw data per year with an expected total storage to 
reach over 350 peta bytes at the end of the experiment. Data is 
generated from the physical experiment through the Belle II 
detector, from Monte Carlo simulations, and user analysis. Data 
is processed and re-processed through a complex set of 
operations, which is followed by analysis in a collaborative 
manner. Users, data, storage and compute resources are 
geographically distributed across the globe offering a complex 
data intensive workflow as a case study. 

Workflows in Belle II are managed with DIRAC workflow 
management system [17]. DIRAC is a collaborative tool that 
provides several key tools for distributed computing, such as 
data movement, job submissions, and monitoring of jobs. 
DIRAC uses a central task queue for workload management. 
The notion of Pilot Jobs is used to manage uncertainties 
emerging from an inherently unstable resource environment. 
The DIRAC framework provides a stable workflow 
management system that has been in used for several years, 
however, cost and energy efficient use of the grid resources have 
not been implemented. These features could become important 
in the context of Belle II operational cost in light of the emerging 
new hardware architecture and opportunistic resources. 

B. ProvEn Framework  
Provenance Environment (ProvEn) is a software platform 

[18] developed to collect and manage disclosed provenance and 
performance metrics through data hybridization. ProvEn uses 
hybridization to synchronize captured provenance such as 
software process history and data lineage in detailed semantic 
graph form with environmental factors (e.g., CPU’s, storage, 
networking, I/O, etc.) and timing information to study anomalies 
and trending patterns occurred at runtime. ProvEn consists of 
database services and client tools used to collect, store, and 
provide access provenance information and observed metrics. 
Figure 1 shows the main ProvEn services to collect provenance 
data streams, to persist provenance in a semantic store (used for 
traditional workflow provenance), and to collect streaming 
metrics (for instance CPU, I/O, and memory activities) in a time 
series store. ProvEn features a RESTful service layer that is 



capable of collecting provenance and metrics disclosed by 
applications using the ProvEn client API, or a harvester capable 
of extracting provenance from log files using a simple delimited 
format. As shown in Figure 2, ProvEn’s service layer enables 
any analytical environment, e.g., Jupyter notebooks. In [2], we 
explained how the framework was used for supervised learning 
to collect and serve observations used as training data.  

 
Figure 1. Provenance Environment (ProvEn) architecture has four key 
components: a semantic store, a metric store, an in-memory grid and a 
provenance API. 

III. ANALYSIS OF BELLE II OPERATIONAL DATA FOR INSIGHTS 
The abovementioned Belle II workflows currently lack 

energy efficient use of the distributed computing and data 
resources. Implementation of coordination mechanisms and 
workflow schedulers can help reduce the Belle II operational 
costs in the long term. However, such workflow coordination 
requires ongoing knowledge of resource status, availibility and 
load. In this section, we share some of the analytical techniques 
that can be used to analyze Belle II data with a goal to improve 
overall efficiency and reliability of Belle II large-scale 
distributed scientific workflows. Although we pick Belle II as 
the demonstrating example here, the analytical techniques we 
discuss in the rest of this section are transferrable to other 
facilities and experiments in different domains. 

A. Anomaly Detection in Belle II using Autoencoders 
Autoencoders are models which have same size of input and 

output layers, with a low dimensional middle layer. The target 
of the autoencoder [19]–[21] is to reconstruct the input by 
training the neural network, which has a low dimensional layer 
sandwiched between the input and the output. This forces the 
model to learn the essential and critical features of input, that are 
required to rebuild it from this low-dimensional representation. 
Once an autoencoder is trained on normal data from Belle II 
operational data and captures its low dimensional features 
during the training phase, a threshold deviation of reconstruction 
error can be used to mark anomalous readings. Since, the model 
performs well on normal data, any reconstruction error can be 
attributed to anomalous reading. Autoencoders provide a clever 
way to performing dimensionality reduction and anomaly 

detection, through the use of identity transformation using a 
specific constraint. It must be noted that amount of normal data 
used during training influences model’s ability to reconstruct 
input, hence large amounts of operational data will be required 
for this experiment. We anticipate that Belle II operations will 
provide sufficient amounts of training data for building 
autoencoder based anomaly detectors.  

B. Frequency Domain Analysis in Belle II 
Frequency domain representations of time series operational 

data can enable deep learning model’s to microscopically 
capture frequency domain patterns and make predictions. In 
another related problem of speech recognition, which involves a 
dynamic time series signal, frequency based invariance has been 
found to be more critical in comparison to temporal invariance 
[22]–[24]. We would like to investigate Belle II data by 
transforming time-series logs using Fourier Transforms and 
measure any changes in Deep Learning Models’ ability to make 
accurate forecasts about future expected output. Frequency 
domain analysis using Neural Networks can lead to improved 
understanding of how time-series signals can be tackled using 
modern deep learning techniques.  

C. Using Convolutional Neural Networks in Belle II 
Convolutional neural networks (CNN or covnets) leverage 

translational invariance using weights that are shared among 
different entities. This results from combination of 
convolutional layer which performs weight sharing and a 
pooling layer that enables down-sampling between layers. 
Traditional, CNNs have proved effective for tasks such as 
computer vision [25]–[27]. Strategic improvements in pooling 
layer design have proved effective for voice recognition [24], a 
problem similar to ours i.e. the task of understanding what a time 
varying signal is communicating. We would investigate the 
Hierarchical Temporal Memory (HTM) model [28], [29] which 
extends covnets to include time domain and involve two-way 
information flow as opposed to uni-directional flow in 
convolutional neural networks. 

D. Forecasting Intelligent Data Replication Decisions in 
Belle II using Recurrent Neural Networks 
Data obtained from sensors or logs in a scientific experiment 

such as Belle II are functions of time, in most scenarios. 
Recurrent Neural Network (RNN) architecture gives us a 
structure to handle and learn from a sequence of inputs, such as 
time-series data. RNNs faced difficulties such as vanishing or 
exploding gradients [30] in their early stages. Recent 
developments have tackled gradient issues elegantly and made 
RNNs reliably robust for training [9], [31]. These developments 
include use of Hessian free optimizations [32] and 
improvements of stochastic gradient descent methods [33], [34]. 
RNNs have ability to keep contextual knowledge of recent or far 
history while making a forecast as opposed to assuming 
independence between two different inputs. This ability to 
progressively learn from a series of inputs give RNNs ability to 
make contextual predictions for a signal. 

We would like to train RNN based models to learn from 
series of sensor inputs such as file transfer rates over time, job 
completion durations during months of the year, site-availability  

 



 

Figure 2. The Harvester Provenance Interface (HAPI) ingests and enriches information from distributed sources and loads provenance via REST 
Services. The provenance information is passed to Jupyter notebooks for streamlined analysis such as Pattern Recognition and Machine Learning. 

 
as a function of time etc., and measure their ability to make 
accurate forecasts of events that give us actionable insights. For 
example, if an RNN can predict site availability in advance, we 
can use this information to make better scheduling decisions, 
and avoid problems later. Their success in handling sequential 
data such as in language modeling [35] and speech recognition 
[36], [37] bring them under our radar for tackling sequence of 
sampled data from Belle II sensors. 

RNNs have been susceptible to problems such as vanishing 
or exploding gradients. Hence, we plan to deploy gating 
techniques such as Long Short-Term Memory and Gated 
Recurrent Unit to tackle these gradient issues during the training. 
RNNs have a proven track record of performing well in variable 
length inputs such as sentiment analysis that attempts to predict 
whether a movie review is positive or negative, or speech 
translation that consumes a variable length input and generates 
a variable length output in a different language. 

We anticipate that problems of prediction states of a 
computation site can be mapped to solving a problem of making 
a Boolean forecast of a time-series that is composed of 0s and 
1s. A 0 at time t would signify that the site is not available and 
1 would claim otherwise. This temporal output based on a 
perpetual stream of input from Belle II can generate specialized 
RNNs that are responsible for forecasting availability for a given 
site. We will research signals that can results in higher precision. 

Another problem to tackle using RNNs is curbing contention 
due to spike in data transfers at a given time stamp. Maintaining 
a copy of a dataset at a location, speeds up job completion time 
for future jobs and reduces chances of congestion. However, we 
cannot replicate every dataset at every location, due to storage, 
network and computational constraints. To this end, we need a 
smart strategy that replicates data at strategic locations in 
anticipation of future jobs that will need this data.  RNNs 
provide a viable architecture for forecasting future demand of a 
given dataset. RNNs trained to make prediction about expected 
usage of a given dataset, can enable intelligent scheduling of 
data transfers that avoid congestion and also provide data ‘on-
time’ exactly when a new computation may need it. The time-
series nature of predicting demand for datasets maps efficiently 

to RNNs ability to handle a sequence of inputs and generate a 
sequence of output. Dynamically changing inputs signals will 
enable RNN model to make new predictions for future time 
stamps, based on updated information received from sensors or 
log files. In addition, our research will explore similar deep 
learning techniques to make smart data replication decisions in 
anticipation of future demands for data sets. 

E. Long Short Term Memory Networks to Preemptively 
Detect Anomalies in Belle II 
LSTM [38] networks are specialized recurrent neural 

networks that manifest concept of short term and long term 
memory, and make a prediction by combining historical 
information with newly arrived data. LSTM models have 
enhanced RNNs in the context of sequence classification [39], 
[40]. LSTMs have proven to be useful in detecting anomalies in 
time series data in recent years. LSTMs take into account 
previous layers input and can simulate forgetful behavior by 
choosing to partially or completely drop that information. In this 
sense, we can train LSTMs to make predictions of expected 
values in future and measure deviations in time series data to 
capture anomalies.  

This is equivalent to training a model on known behavior and 
classifying any ‘other’ pattern as anomalous. The advantage of 
this approach comes from plethora of ‘normal’ readings 
available from monitoring Belle II operations. In any large scale 
system, the amount of ‘normal’ operational data is 
disproportionately larger than data about ‘malfunctions’, as is 
expected. Hence, we use this normal data set to train a model on 
what to expect. However, our model becomes susceptible to 
false positives (classifying normal behavior as abnormal), if our 
training data does not cover entire range of patterns in time 
series that pertain to normal behavior. Hence, when we analyze 
the performance of LSTMs on Belle II operational data in the 
context of sampled data, we will investigate model’s ability to 
capture anomalies, as a function of training data size, and 
measure changes in model performance with respect to training 
data set size and its characteristics. 



F. Reinforcement Learning on Belle II Operational Data 
In recent years, there has been significant improvements in 

the field of reinforcement learning for a variety of tasks. 
Reinforcement Learning has potential for drastically improving 
performance of operations in systems build from a network of 
computers. [41] provide an entry level explanation of 
reinforcement learning and its ecosystem. [42] gives a detailed 
survey of Reinforcement Learning. The central idea of 
reinforcement learning is to build an agent which observes its 
environment, decides which action to take, and is receives a 
reward for the action performed. The reward can be positive for 
a desired outcome and negative for an undesired outcome. 
Reinforcement Learning algorithms have shown extraordinary 
performance under this limited framework which permits only a 
partial view of the surrounding, and does not depend on prior 
knowledge of the inner workings of the world it participates in. 

In other words, the reinforcement learning agent, learns by 
trial and error. In computational systems, history of operations 
can provide much needed data about environment and how it 
responds to different stimuli. The reward can be characterized 
by time, space, or event based. 

Reinforcement Learning (RL) agents have proved successful 
in the context of robotics and control [43]–[46]. We aim to build 
reinforcement learning agents that can learn patterns of Belle II 
job completion and data transfer, and suggest ‘actions’ which 
will result in maximizing rewards. The rewards can be positively 
or negatively correlated with the goal: a positive reward for each 
job completed before deadline, a negative reward for performing 
redundant data transfers of files already move once, a negative 
reward for reducing rate of data transfer etc. 

It is noteworthy that RL algorithms do not need constant 
reward, but can operate in environments where the reward is 
delayed or comes at the end of a session. The agents can make 
decisions that seem to jeopardize outcomes in short duration if 
they result in large gains over a long period of time. This 
research will involve studying the Belle II operational data and 
deciding on input sensor streams to be used for feeding as 
observation to RL agent, construct a set of actions that the agent 
can take and design a reward policy that gives positive feedback 
when desired outcomes are achieved. The RL framework 
appears to map easily to the Belle II environment and provides 
possibility of building agents that can provide long term benefits 
by monitoring key performance signals of the experiment. 

IV. CONCLUSION 
In this vision paper, we summarized our vision for data 

collection and processing on an experimental facility to extract 
actionable insights from operational data for use in data-driven 
scheduling of distributed area workflows. To generate such 
insights, we focused on investigating the effectiveness of Deep 
Learning algorithms on real operational dataset generated from 
Belle II experiment. After careful analysis, we have cherry 
picked the key Deep Learning algorithms that will allow 
exploratory analysis of operational data collected using the 
ProvEn Framework from the Belle II experiment. We will 
primarily deploy Jupyter based Python Notebooks to conduct 
this analysis.  

The Belle II experiment itself is a massive collaborative 
effort involving geographically separated sites and generates 
large amounts of data, hence this effort to leverage Deep 
Learning algorithms has immense potential of tackling the 
problems of scalability and generalization to new scenarios 
generated due to the size of the experiments. 
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