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Abstract—There has been a dramatic growth in the number
and range of Internet of Things (IoT) sensors that generate
healthcare data. These sensors stream high-dimensional time
series data that must be analysed in order to provide the insights
into medical conditions that can improve patient healthcare. This
raises both statistical and computational challenges, including
where to deploy the streaming data analytics, given that a
typical healthcare IoT system will combine a highly diverse set
of components with very varied computational characteristics,
e.g. sensors, mobile phones and clouds. Different partitionings of
the analytics across these components can dramatically affect
key factors such as the battery life of the sensors, and the
overall performance. In this work we describe a method for
automatically partitioning stream processing across a set of
components in order to optimise for a range of factors including
sensor battery life and communications bandwidth. We illustrate
this using our implementation of a statistical model predicting
the glucose levels of type II diabetes patients in order to reduce
the risk of hyperglycaemia.

I. INTRODUCTION

Due to recent advances in the Internet of Things, a growing
number of sensors are generating large volumes of time series
data that can assist in real time decision-making. In healthcare
analytics, these data can be analysed to give actionable insights
into patients health and well-being. Our work focuses on real-
time Bayesian monitoring and forecasting of a bivariate time-
series of blood glucose levels and physical activity in patients
with type II diabetes.

Continuous Glucose Monitors (CGMs) are small, minimally
invasive sensors that give accurate glucose readings. Wear-
able activity monitors provide high frequency accelerometer
readings from which the overall activity of the user can be
derived. Time series models can be fitted to the data from both
these sensors, and forecasts made based on past patient activity
levels, past glucose levels and the relationship between them.
Forecasting some time points ahead gives warning of pending
hyperglycaemic episodes, and allows users to be issued with
behavioural prompts, for example a message on their watch
encouraging them to increase their activity level to reduce the
glucose levels. Achieving this has required us to address both
computational and statistical challenges.
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II. TIME SERIES MODELLING AND STREAM ANALYTICS

The accelerometer data is pre-processed using the Euclidean
Norm minus 1 algorithm [1], [2] to give an overall activity
level per epoch. The epoch length is chosen to match the
frequency of the glucose data (5 minutes) to overcome the
challenge of having a mismatch in frequency of the two data
sets. Measurements are then classed as low, medium or high
activity through a hidden Markov model (HMM) using a skew
Normal distribution to describe the density of each activity
state. Using this distribution accounts for the long tails in the
activity data. Conditional on the activity level, patient blood
glucose levels are then modelled using a dynamic linear model
(DLM) [3] with Fourier components to capture the seasonality
and a time-invariant regression on previous activity levels.

Inference is carried out in a Bayesian framework, perform-
ing approximate computation using Markov chain Monte Carlo
methods to find the posterior distribution of the HMM and
DLM parameters. These computationally intensive operations
are executed in the cloud and generate personalised models
for individual patients that are used for online forecasting.
The placement of the forecasting algorithm raises computa-
tional challenges. In particular the activity watch and CGM
communicate with a mobile phone that is connected to the
cloud. If all the data are sent to the cloud for forecasting then
the watch battery is drained by the energy needed to transmit
so many messages. On the other hand, the activity watch can
only run basic analytics algorithms, and these can also drain
the watch battery more quickly than is desirable.

To address these challenges we automatically determine the
optimal way to holistically partition the computation over the
available components. To do this, the data processing tasks are
expressed as queries in a high-level, declarative, event process-
ing language. These queries are parsed and decomposed into a
Directed Acyclic Graph that is subject to logical and physical
optimisation [4], [5] to find the deployment option that best
satisfies key non-functional requirements, including Energy,
Bandwidth and Cost. To determine the best plan, cost models,
such as those for the energy consumption of IoT devices,
are integrated within the system so that alternatives can be
quantitatively compared [6]. Following this, the software is
then automatically deployed.
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