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Abstract—FLASH is a highly-configurable multiphysics soft-
ware designed for solving a large class of problems that involve
fluid flows and need adaptive mesh refinement (AMR). FLASH
has been in existence for two decades and has undergone four
major revisions. It is now undergoing its fifth major revision to
deal with increasingly heterogeneous platforms. The architecture
of previous versions of the code and the AMR package at its
core, Paramesh, are inadequate to meet the challenges posed
by heterogeneity. In this paper we describe our experience with
refactoring the mesh interface of the code to work with a more
modern AMR library, AMReX. The focus of the paper is the
refactoring methodology and the attendant software process that
we have found useful to ensure that code quality is maintained
during the transition.

Index Terms—scientific computing, software engineering,
refactoring

I. INTRODUCTION

The multiphysics simulation software FLASH is a highly-
configurable code that is designed for solving a large class
of problems ranging from compressible and incompressible
flows to N-body problems. The flows are often reactive, where
the reactive terms can be nuclear or chemical. The primary
discretization of the physical model is by Eulerian finite
volume, but the code also supports finite difference methods
and some Lagrangian modes of operation. The mesh, which
is the discretization of the problem’s spatial domain, can be
uniform, where the distance between two consecutive discrete
points is the same throughout the mesh. It can also be adaptive,
where higher or lower mesh resolution is applied to regions of
the domain as needed. In this latter mode, known as adaptive
mesh refinement (AMR) [3], [4], these regions change as the
simulation advances in time.

FLASH has undergone four major revisions in the past. It
started as an amalgamation of three pre-existing code bases
meant to provide orthogonal functionalities: Paramesh [14]
for AMR, Prometheus [10] for reactive hydrodynamics, and
a collection of functions to compute equations of state (EOS)
and nuclear burning [22]. The first three revisions clarified the
architecture including data ownership and scoping [7], [6]. The
fourth revision primarily added a collection of capabilities to
make the code ready for a new domain, high-energy-density
physics (HEDP) [12].

We have now embarked upon another major revision,
FLASH5, to prepare the code for running efficiently on forth-
coming heterogeneous platforms. The architecture of previous
versions of the code and the AMR package at its core,
Paramesh, are inadequate to make good use of computational
resources offered by these platforms. In this paper we describe
our experience and methodology in refactoring FLASH’s
internal mesh interface, at which the code that creates and
manages the mesh is coupled to the code that uses the mesh.
The objectives of this effort are: (1) to transition the base AMR
capability from Paramesh to the more modern AMR library
AMReX [1]; (2) continue to maintain separation between mesh
and physics units through appropriate abstractions; and (3)
prune old and redundant portions of the interface.

The remainder of the paper is organized as follows. In
section II we summarize available literature on refactoring in
scientific software to the best of our knowledge. We emphasize
the caveat because literature on this topic is sparse and difficult
to find since there aren’t many publications or conference
venues available for publishing such work. In section III
we describe the motivation behind the choices made for the
transition. Section IV describes details of FLASH relevant to
the discussion in this paper. Sections V and VI describe our
approach in detail. In section VII we discuss the outcomes of
this effort and present our conclusions.

II. BACKGROUND

As understood by the software engineering community, the
term refactoring usually applies to a careful process where
the internals of the implementations are “cleaned up” without
changing the behavior. There is plenty of literature about
refactoring methods and tools. Among them, [17] provides
a good survey and [15] considers motivations for refactoring.
Literature for commercial software refactoring is large and not
very germane to this work. Therefore, we focus our attention
on publications related to software restructuring and refactor-
ing in the scientific world. Several of these papers are case
studies from specific software projects, e.g. [13], [5]. Some
of the literature discusses the lack of software engineering
practices in scientific software development, where refactoring
is one of the considered features, i.e. [21], [20], [11], [9].



Among these [9] is notable in that it makes an attempt to
provide a systematic study of scientific software development.
Literature is sparse on general studies of refactoring in sci-
entific software with a few exceptions such as [18], [19],
which are about Fortran code refactoring, and [16], which is
about defining a methodology for code development taking
into account ongoing changes in specifications that are an
inevitable part of scientific software development.

III. MOTIVATION

As mentioned in section I, the primary motivator for re-
structuring FLASH is the heterogeneity in future platforms
that simultaneously increases the degree of parallelism with
the diversity in methods and approaches needed for exploiting
it effectively. This requires introduction of hierarchy in data
structures and parallelism granularity, and moving away from
the bulk-synchronous parallel model that has been the main-
stay of complex applications such as FLASH. FLASH had
an additional incentive to consider deeper restructuring of its
base infrastructure because of a confluence of circumstances.
In the current version of FLASH, AMR is enabled through the
incorporation of the AMR library Paramesh [14]. However,
this library is no longer in active development. Therefore,
in the interest of moving this dependency to a maintained
and supported library, we needed an alternative. AMReX was
an obvious choice once it became the centerpiece for the
exascale co-design for AMR under the US DOE Exascale
Computing Project (ECP)[2]. AMReX’s development path is
favorable to the architecture design approach that FLASH
desires for becoming an exascale-capable application. It in-
cludes an architecture that allows for separation of parallelism
concerns from numerical and algorithmic concerns, while also
hiding the details of the target platform’s macro-architecture
from the physics kernels in the code. For more details about
AMReX and FLASH next generation architecture see [1] and
[8] respectively.

IV. FLASH

FLASH is a component-based code where different permu-
tations and combinations of components constitute different
applications. Multiple alternative implementations exist for
some of the components, which adds to the degree of compos-
ability in the code. While FLASH, which is primarily written
in Fortran, is implemented with procedural programming, the
organization of files, its architecture, and its build system were
designed and implemented to take advantage of the benefits
of object-oriented programming (OOP) without incurring the
runtime overhead, such as virtual tables, associated with OOP.

Specifically, a set of related functionality and data that could
be grouped as a single class is organized into a code unit in
FLASH. Each unit is isolated in the FLASH source directory
as a folder hierarchy containing all related routines. This set
of code offers one subset of routines whose names begin with
the name of the unit, and another whose names begin with a
common two letter abbreviation of the unit. For example, the
“Grid” unit provides routines whose names have the respective
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Fig. 1. Transition of the FLASH unit architecture with an emphasis on the
Grid unit structure. Each Grid element is a subfolder in the FLASH folder
hierarchy. A rectangular shape indicates an abstract layer in the inheritance
hierarchy; an oval shape, a concrete implementation of the Grid unit. The
refactoring begins by adding an AMReX-based implementation that co-exists
with the Paramesh-based implementation.

prefixes Grid_ and gr_. The former are routines that define
and implement the public interface of the unit. The latter are
routines implementing functionality for use only within the
unit and are therefore analogous to protected class methods.
At the top level of the folder there are null implementations
for the entire interface of the unit. The subfolder and file
structure of a given unit is designed and constrained so that
different implementations of the unit may be written and
used. In particular, the design allows for inheritance so that
common code may be written and either used or overwritten
by any particular implementation. See Figure 1 for a cartoon
visualization of an example folder hierarchy and refer to [7]
for a more detailed description of this structure.

Inheritance is managed and runtime overhead is avoided
by adding into the use of FLASH an additional setup stage.
At this level, FLASH users express to the setup system the
different implementation and runtime parameters they desire
for a particular instance of their simulation. The setup system
determines which versions of each routine are needed and
aggregates these into a single folder. The build system is then
used to build that particular version of the simulation.

One example of a unit is the Driver unit, which is respon-
sible for orchestration of sequencing and interaction among
units during runtime, and also executes timestepping. All units
that contain algorithms responsible for implementing different
aspects of the physical model are sensibly grouped under
the category of physics units. For instance, hydrodynamics
codes are located in the Hydro physics unit, and during this
refactoring effort we have worked with two implementations of
this unit named “simpleUnsplit” and “Unsplit”. The former is
a simplified implementation meant for easy testing of FLASH
via simulation. The latter is a full-featured implementation that
is meant to be used for production.

At runtime, FLASH’s Grid unit is configured with the
desired domain discretization. If the simulation is configured
to run AMR, then the Grid unit is also configured to know how



and when to refine the resolution across the spatial domain in
accordance with the evolution of the solution. The Grid unit
decomposes the spatial domain into non-overlapping blocks,
each of which is a logically-rectangular collection of cells
defined by the mesh. Parallel computation is achieved by
distributing the blocks across processes. While each block
contains identically-shaped rectangular cells, the adaptivity in
FLASH’s AMR meshes is obtained by composing regions of
different resolution with blocks of appropriately-sized cells.

Besides managing the mesh definition and evolution of mesh
resolutions in time, the Grid unit also stores data defined on the
mesh, provides access to the data, provides all mesh related in-
formation for the simulation, and collaborates with other units
through blocks and their associated metadata. In the current
production version of FLASH, for instance, physics operators
typically loop over blocks by first obtaining a list of blocks on
which to operate via the Grid_getListOfBlocks public
interface routine. Each element in the returned list is an index
for a block that can be given to the Grid unit to obtain
metadata for that block. Thanks to this parametrization of
block metadata, the operators remain oblivious to the physical
location of the blocks in the spatial domain. A common use
of the Grid unit by another unit is shown in Listing 1.

Listing 1
THE FIRST DO LOOP ILLUSTRATES LOOPING OVER BLOCKS IN

PRE-REFACTORING FLASH. THE SECOND ILLUSTRATES THE USE OF THE
NEW BLOCK ITERATOR AND ITS ASSOCIATED BLOCK METADATA

STRUCTURE

! FLASH4.4 looping over blocks
call Grid_getListofBlock(blocklist, blockcount)
Do i = 1, blockcount

blockid = blocklist(i)
call Grid_getBlkLimits(blockid, limits)
call Grid_getBlkPtr(blockid, solnData)
call Physics(blockid, solnData)

End Do

! FLASH5 looping over tiles
call Grid_getIterator(itor, tiling=.TRUE.)
Do while (itor%is_valid())

call itor%blkMetaData(blk)
limits = blk%limits
call Grid_getBlkPtr(blk, solnData)
call Physics(blk, solnData)
call itor%next()

End Do
call Grid_releaseIterator(itor)

V. METHODOLOGY

The first step in developing methodology for restructur-
ing complex software like FLASH is the phase where one
considers and plans the degree and scope of change. This
is followed by exploratory prototyping to either confirm the
design choices or evolve them as needed. Once the design
choices are validated, implementation can proceed with more
rigor followed by verification of every code module affected
directly or indirectly by this effort.

A. Scope of refactoring

Before embarking on the refactoring, it was decided that
the Paramesh-based Grid unit implementation should not be
removed from FLASH immediately. Rather, an AMReX-based
implementation would be added to FLASH as an alternate
AMR implementation and would therefore coexist with the
Paramesh version (Figure 1). This decision implied that as
the Grid unit interface evolved to accommodate AMReX, the
Paramesh implementation would be co-evolved to satisfy the
updated interface. Therefore, on shorter timescales this effort
progresses as an extension of FLASH through the addition of
a new feature.

This plan was adopted because fundamental changes like
mesh are best done in small steps, with each step thor-
oughly verified for regression. Having a functional Paramesh-
dependent Grid unit implementation permits cross-verification
of any new AMReX-based functionality introduced. As the
Paramesh implementation will be removed from FLASH once
the AMReX-based implementation is fully-implemented and
verified, the long term goal is refactoring and the option of
AMReX and Paramesh coexisting is motivated by making the
refactoring easier and with clear verification of success.

To date this refactoring effort has been largely restricted
to the level of redefining public interfaces and adapting the
code on either side of these interfaces. Fortunately, the original
architectural and interface design of FLASH had resulted in a
good amount of encapsulation and modularity, so that it was
not necessary to alter the kernels of the scientific portions of
FLASH.

A graphical overview of the advancement of the refactoring
effort is presented in Figure 2.
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Fig. 2. Temporal evolution of implementation of AMReX-based Grid unit
and changes made to this unit and pre-existing FLASH code to accommodate
growth. Time runs left to right.

B. Design phase

An important question confronting us at the beginning of
the project was the organization of the Driver unit, which
typically invokes the highest-level interface of each physics



unit it is driving. These, in turn, carry out looping over the
mesh blocks. This method works because there is operator
splitting in the time-step. However, in the future we do not
expect to be able to maintain strict operator splitting for all
physics. One consideration, therefore, was to put looping over
blocks in Driver and let the physics units strictly only see
a block at a time. We did an exploratory implementation of
this functionality and soon discovered that this not only makes
the driver too cumbersome, but also conflicts with the needs
of units such as Hydro, which intersperse global operations
with per-block operations. Our solution, therefore, is to hoist
the highest-level interface in each physics unit into a separate
function that doesn’t apply any operators but rather loops over
blocks and applies functionality on each block through lower-
level calls.

To accommodate the hierarchical parallelism through tiling
and asynchronization being implemented in AMReX, this
looping over blocks could no longer be facilitated by the
Grid unit routine Grid_getListOfBlocks mentioned in
section IV. Rather, the inclusion of AMReX required changes
to fundamental data structures exposed through the Grid unit
interface and therefore to the interface as well. In particular,
arrays of block indices have been replaced with iterators over
blocks. For the current block, the iterator provides a data
structure that encapsulates a minimal set of metadata, such
as the block’s mesh refinement level and spatial extent. This
data structure can also be used to access the data stored on
the associated block. This differs from version 4 of FLASH,
which operates in pull mode such that physics units query the
Grid unit for any metadata it needs through explicit interfaces.

C. Prototyping phase

The second phase of implementation was to begin refac-
toring the Paramesh-based FLASH implementation to use the
iterator and metadata data structures as well as to subsequently
begin integrating AMReX into FLASH through unittests. This
process was exploratory and iterative in the sense that the
interface of these data structures was evolved to satisfy the
needs and constraints of both the Paramesh- and AMReX-
based implementations of the Grid unit. Note that this portion
of the refactoring as well as the following sections did not
evolve other mesh implementations, such as the uniform grid
mode.

To understand the effect that changes to the Grid unit had
on interactions with other units, the minimalistic simpleHydro
implementation mentioned in Section IV was used. It was
hoped that the pressures that the physics units impose on the
Grid unit interface is well-represented by this implementation.
In practice, standard use patterns of the iterator, the metadata
data structure, and the associated Grid interface were revealed
with the take away that the iterator appears to be a welcome
change to FLASH. In particular, the fact that the block data
structure not only functions as a unique index but also contains
metadata allows for passing fewer parameters to routines
operating on blocks.

By the end of this phase, a single 2D simulation could be
run with the AMReX implementation of the Grid unit and with
simpleHydro. Rigorous verification of the quality of the result
was not yet possible so that verification was only qualitative
proof of concept. In fact, the implementation was missing
several corrections needed to achieve essential physics such
as energy conservation.

While this method of exploring and prototyping was reason-
able as the portion of FLASH touched was limited, this phase
was understandably marked by an accumulation of technical
debt. For instance, normal work overhead such as maintaining
inline documentation and using testing with substantial code
coverage were avoided with the obvious consequences. This
difficulty was anticipated and the development team was given
a period of approximately one month to study what had been
done, derive lessons learned, and apply these through an effort
of cleaning and maturing the changes.

D. Implementation phase

Once a fair portion of Paramesh had been updated to use the
iterator, refactoring entered its third phase. Here, each author
was responsible for one of the following development tasks:

1) update the fully-featured Unsplit hydrodynamics imple-
mentation for inclusion in FLASH5,

2) demonstrate the successful execution of a fully-
functional 2D simulation with AMReX by continuing
to integrate AMReX into FLASH with simpleUnsplit,
and

3) achieve a fully-functional hybrid version of FLASH
that used AMReX data structures for storing data but
Paramesh to drive the refinement of the mesh.

This partitioning of the work into non-overlapping tasks had
the benefit of minimizing merge conflicts in the version control
system and was likened to one team building a set of tracks
from one direction, another team a set of tracks in the opposite
direction, and the third team building the station where the two
tracks should meet.

This divided AMR-based FLASH into distinct operational
modes for which AMR refinement is done with either

1) iterator-based Paramesh,
2) hybrid Paramesh/AMReX implementation, or
3) iterator-based AMReX.
As detailed in Section VI, this phase coincided with a

more rigorous approach to verification and specifically moved
toward continuous integration by designing and implementing
policies along with an automated testing system. In addition,
work progressed such that documentation is now actively
maintained as code is refactored and such that prototype code
is cleaned, out-of-date documentation is updated, and code that
is not needed for FLASH5 is pruned.

VI. VERIFICATION

Regular verification of FLASH5 was integrated into the
refactoring work early in the prototyping stage. The amount
of code coverage and the level of testing automation matched
the scope and character of the different development phases.



Throughout the process, baselines for regression testing
of the Paramesh implementation were first established with
FLASH4.4, which pre-dates the refactoring effort. For the
subset of FLASH5 covered by our present test suite, the par-
allelization of the code is such that bit-by-bit reproducibility
of results generated by different runs and by tests run with a
different number of MPI processes is expected. Fortunately,
this allows for regression testing without requiring a threshold
to gauge success, which can be hard to determine.

However, certain refactoring steps did lead to different
round-off errors, which necessitated the manual establishment
of new baselines. The process of verifying these new baselines
produced as a byproduct a history of expected variations
in simulation results due to round-off noise. Estimating this
level is useful as verification of AMReX-based results can
be done by direct comparison against associated Paramesh-
based results. As these two implementations do use their own
versions of floating point computations (e.g. interpolation),
this verification does require a threshold for gauging sufficient
similarity.

A. Prototyping phase

Verification of refactoring efforts related to introducing the
iterator and metadata data structures into the Paramesh imple-
mentation of the Grid unit was based on manual regression
testing with a single 2D simulation. At the same time, no
specific git workflow policies were in place to help maintain
code correctness. While this allowed for quick exploration,
it is clear that refactoring might have created bugs in the
implementation that exist only with configurations not tested.
In addition, the lack of code coverage might have resulted in
undetected bugs in other units.

Introducing AMReX into FLASH5 required adding a sig-
nificant amount of complex code. Therefore, the likelihood of
successfully advancing the work without errors to the point
where a full simulation could be run was low. To address this
difficulty, several AMReX-specific unittests were created to
verify correctness of the complex code.

B. Implementation phase

To help overcome technical debt and to reduce the accumu-
lation of more debt, verification of FLASH5 during this phase
centered on adopting a git workflow that allows for continuous
integration and therefore protects the master branch through
code reviews and different levels of automated testing with a
Jenkins-based test server.

While creating AMReX-based simulation results was a main
goal of the previous phase, writing these results to FLASH-
format HDF5 files was not. In fact, code at the prototype stage
was not able to save computation results to disk storage and,
as a result, regression testing of simulation results was limited
to qualitative, visual verification, which was both insufficient
in terms of quality and efficiency. Therefore, an initial task
was to write AMReX-based results to file with the standard
format so that pre-existing file comparison tools in FLASH
could be used for improved regression testing.

The addition of new capabilities into the AMReX imple-
mentation drove the growth of the test suite. This process to
add a new capability

1) identifies a new end-to-end simulation that covers the
new capability,

2) establishes a Paramesh baseline for the simulation using
FLASH4.4,

3) determines whether changes to the Paramesh-based Grid
implementation in FLASH5 are required and, if neces-
sary, refactors this implementation in conjunction with
regression testing, and

4) adds the new capability in the AMReX-based Grid
implementation in FLASH5, in conjunction with verifi-
cation testing by comparing results against the Paramesh
baseline.

As mentioned above, this final step requires the identification
of a threshold for determining if the AMReX-derived result is
sufficiently similar to the Paramesh-derived result.

For each end-to-end regression test included in the test
suite, results are generated in pseudo-uniform grid (pseudo-
UG) mode and in normal AMR mode. The former mode
uses the same AMR implementation of Grid but limits the
AMR functionality to a single mesh refinement at the finest
resolution. The pseudo-UG results are cleaner in the sense that
the Grid unit does not carry out floating point computations
such as interpolation and averaging of data across different
mesh resolutions. Therefore, comparisons of AMReX-based
pseudo-UG results are expected to be bit-by-bit exact with the
Paramesh-based results.

The Pseudo-UG results are therefore the true numerical
baseline for the simulation, and the AMR results are manually
verified against this baseline by calculating the error between
the AMR approximation and the baseline on those regions of
the domain that were resolved to the finest resolution.

VII. SUMMARY AND CONCLUSIONS

The AMR interface refactoring in FLASH has gone rel-
atively smoothly because we started with a software where
the abstraction of mesh infrastructure from physics solvers
was effective. The methodology adopted during the previous
transition from version 2 to version 3, where development of
the framework was done in isolation from the physics [6], has
proved to be an excellent design choice in retrospect. This
separation allowed the first phase of exploration/prototyping to
remain lightweight and rapidly produce executable code that
could be exercised for validating design choices. As expected,
during this phase some technical debt was acquired in the form
of degradation of documentation and rigor of testing. Although
we allocated a period for cleaning the code once the design
choices were validated and implementation began in earnest,
the technical debt is not paid entirely yet. Code cleaning and
catching up on documentation is an ongoing process at this
writing.

Team discussions revealed that the aforementioned technical
debt is still manageable for experienced FLASH developers.
However, the transition from a prototyping phase to a more



rigorous development phase was necessary for new developers
as the debt was becoming unsustainable. In particular, manual
regression testing and qualitative visual verification became a
significant portion of the cognitive load during development,
especially as more tests were added to the test suite. Also,
documentation of requirements, which was often built into
FLASH in the form of inline documentation, can be missing or
wrong. This necessitates reverse engineering of requirements
from the code, which itself could be in a prototyped state.

The most important cost-benefit trade-off during this process
was the amount of development to be done with Paramesh
given that the ultimate goal was to eliminate the use of
Paramesh. The coexistence of the two implementations has
allowed for designing and implementing an effective test suite
and testing process. Even the investment in creating a hybrid
mode where Paramesh and AMReX operate in parallel has
been helpful in both debugging and gaining confidence in
the refactored code. We conclude that it has been worthwhile
investing in the refactoring of the Paramesh implementation
to use iterators and to satisfy changes in the Grid interface
driven by integrating AMReX.

Additionally, refactoring the mesh interface to meet AM-
ReX requirements has led to a general improvement of the use
of the Grid unit by other units. In particular, the iterator and
its associated block metadata data structure provide an easy-
to-use interface that pairs well with the Grid unit’s interface
such that similar simple use patterns emerge. In conclusion,
the initial effort in designing the architecture of FLASH is
proving its worth now where modularity and encapsulation
have made refactoring clean.
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