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Abstract—During different steps in the process of discovering
drug candidates for diseases, it can be supportive to identify
groups of molecules that share similar properties, i.e. common
overall structural similarity. The existing methods for com-
puting (dis)similarities between chemical structures rely on a
priori domain knowledge. Here we investigate the clustering of
compounds that are applied on embeddings generated from a
recently published Mol2Vec technique which enables an entirely
unsupervised vector representation of compounds. A research
question we address in this work is: do existent well-known
clustering algorithms such as k-means or hierarchical clustering
methods yield meaningful clusters on the Mol2Vec embeddings?
Further, we investigate how far subspace clustering can be
utilized to compress the data by reducing the dimensionality
of the compounds vector representation. Our first conducted
experiments on a set of COVID-19 drug candidates reveal that
well-established methods yield meaningful clusters. Preliminary
results from subspace clusterings indicate that a compression of
the vector representations seems viable.

Index Terms—Clustering, Subspaces, Embedding, Compounds

I. INTRODUCTION

Within the drug discovery process, there are certain as-

pects that can benefit from data mining techniques. During

a virtual screening, it is desired to achieve high coverage of

the chemical space while keeping the number of compounds

to be screened to a minimum. Screening only the represen-

tative compounds from a cluster can reduce the number of

compounds, especially for computationally high-demanding

screening methods. During the compound optimization step

often similar compounds are tested. While designing very

similar compounds is not so difficult for medicinal chemists,

finding non-obvious but still similar compounds is more

challenging. Picking larger clusters of neighbouring clusters

could assist with finding these non-obvious, but yet similar

compounds. The existent approaches to obtain the next (k)

similar compounds rely on domain expert knowledge and

feature engineering. With the introduction of unsupervised

neural-based embedding techniques such as among their most

prominent representative Word2Vec [1] for word embeddings

from text data, promising alternatives to the ’hand-crafted’

embedding methods entered the stage. Recently, Mol2Vec [2]

has been proposed to embed the complex data of molecules so

that their vector representation can be utilized for computing

(dis)similarities. This in turn paves the path for computing

segmentations (clusterings) of compound sets and further for

identifying representative compounds per each cluster (proto-

types such as centroids, medoids etc.). One essential question

that emerges at this stage is: how meaningful are the resulting

clusterings from well-established algorithms such as k-means

[3] or hierarchical clustering [4] on the Mol2Vec-based em-

beddings? Another aspect investigated in this work is the data

compression by applying dimensionality reduction techniques.

The resulting embeddings from Mol2Vec encompass several

hundred dimensions (d = 300). If the dimensionality reduction

to e.g. d = 10 can maintain a meaningful (dis)similarity

computation it would make a (substantial) difference for the

computational costs. To provide a first approach to this we

apply the ORCLUS [5] algorithm, an arbitrarily oriented

subspace clustering method.

In summary, we provide in this work the following contri-

butions:

• A novel, publicly available dataset of potential com-

pounds against SARS, MERS and COVID-19 based on

recent publications, compiled by the authors of this paper

• A publicly available pipeline for automatically obtaining

SDF files, embedding them in vector representations

through Mol2Vec and clustering them

• An investigation on the applicability and meaningfulness

of k-means and hierarchical clustering algorithms on

Mol2Vec embeddings

• An investigation of compressibility w.r.t. the dimen-

sionality of the embeddings through subspace clustering

approaches

• A prototype compound for (subspace)clusters in form of

a medoid
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Fig. 1. Pipeline for the segmentation of compounds w.r.t subspaces.

A. Data Description

Due to its topicality, we collected over 100 compound

names of potentially effective compounds against SARS,

MERS and COVID-19 from the recent literature [6], [7],

[8]. From the compound names, CIDs (compound ids) and

CAS (chemical abstract service) we obtained automatically

all corresponding SDF (structural data file) [2D representation

of compounds]. Openbabel [9] was used for desalting the

compounds, which is the removal of counterions from the SDF

file. This is necessary to prevent biased effects in the clustering

process. Finally, these SDFs are vectorized by the embedding

method Mol2Vec [2].

B. Framework Overview

Figure 1 provides an overview over the (following) steps

in our framework: (i) Obtaining an array of compound ids

(CID) and names from the literature, (ii) automatically fetching

SDF via a PubChem API using PubChemPy1, (iii) desalting

the obtained SDFs using functionalities from Openbabel2,

(iv) vectorizing (via embedding) the desalted SDFs using

Mol2Vec, (v) a. investigating the meaningfulness of segmen-

tations from prominent clustering techniques (k-means, hierar-

chical clustering) (v) b. investigating the compressibility of the

data through dimensionality reduction via subspace clustering

(vi) obtaining for each cluster their respective medoid and their

corresponding kNN.

II. RELATED WORK

The vector representation of compounds unlocks the possi-

bility to use a wider range of clustering algorithms. To com-

bine these two techniques the literature was reviewed regard-

ing vector embedding and clustering methods for molecules.

1https://pubchempy.readthedocs.io/en/latest/
2http://openbabel.org/wiki/Main Page

Objects sharing a common context can be identified via their

vector representation as their vectors will be located closely

in vector space. In the case of the ∗-2V ec embeddings neural

networks are trained to learn different contexts, which allows

the vectorization of objects. Since the publication of Word2Vec

[1] in 2013 the popularity of the ∗-2V ec concept increasing in

different scientific domains as for example Node2Vec [10] for

graph embeddings or Gene2Vec [11] for learning embeddings

of genes (in the bioinformatics domain). With the introduction

of Mol2Vec molecular structures can be embedded as follows:

First, a compound is fragmented into substructures of a

fixed radius. This radius influences the magnitude at which

substructures of compounds are encoded. The encoding of

the substructures is performed by mapping substructures to

so-called Morgan fingerprints [12]. These encoded substruc-

tures serve as an input for Mol2Vec which returns a vector

representation of substructures in form of several dimensions.

Subsuming the substructure vectors (finally) results in a single

vector representation for a molecule. The clustering algorithms

for chemical compounds can be divided into two categories:

(1) hierarchical and (2) non-hierarchical. For the hierarchical

methods, one prominent technique relies on the maximum

common substructure (MCS) search [13], which is used com-

mercially as LibMCS. Internally it computes the maximum

common substructures between molecules and computes the

distances between the MCS. Based on the distances a Ward

hierarchical clustering [4] is applied. For the non-hierarchical

approaches, one algorithm is indeed k-means [3] which is

applied on fingerprints such as i.e. Morgan fingerprints [12].

Another clustering method is the Jarvis-Patrick algorithm [14],

which is a kNN based clustering approach. The similarity

computation for the kNN is based on the Tanimoto coeffi-

cient [15]. Lastly, the so-called Bemis-Murcko algorithm [16]

is effective in deriving scaffolds from compounds by side-

chain atom removal. Through this, a hierarchy is obtained of
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reduced graphs representing the scaffolds of the compounds.

In contrast to the named approaches, our framework first

performs an embedding into a high-dimensional vector space

which preserves the characteristics of the compounds and the

similarities. After this embedding step, we can potentially

apply any existent clustering method which is capable of

handling vector representations of objects. This is of interest,

since different clustering algorithms reveal different properties

within a given dataset.

III. THE SEMANTICS BEHIND CLUSTERING OF

MOLECULES

There exists a rich body of literature revealing a broad

spectre of clustering algorithms within the past decades. At

that point, there may be the temptation to just randomly select

one and apply it to the compound data. Yet there are certain

questions that emerge when using clustering algorithms:

(1) What are the semantics of the result and the underlying

models of the clustering, i.e. what is the information which

a mean of a cluster of compounds conveys? and (2) How

does one set the parameters, which is ultimately connected

to the semantics of the parameters themselves, i.e. what does

increasing or decreasing the number of partitions k mean for

the resulting clusters of compounds.

To approach these questions we dedicate this section to

elaborate on three archetypes of clustering algorithms with one

aspect in mind, namely to establish a connection between the

theory behind the algorithms and their meaning in the context

of compound segmentation.

A. k-means

We begin our elaborations with one of the oldest, yet among

the most used clustering algorithms so far: k-means [3]. This

popularity is inter alia owed to the simplicity of the method.

From an operational level the algorithm works as follows: First

randomly k centroids M = {μ1, ..., μk} are distributed to a

given dataset X (random seeds), then for each object xi ∈ X
the distance to each of the centroids d(xi, μj)∀μj ∈ M is

computed. An object xi is then assigned to its closest centroid

μj . Afterwards, from all objects xi that are assigned to their

respective centroid μj and thus their cluster Cj the mean is

re-computed μjnew =
∑|Cj |

i=1

|Cj | xi. These two steps of assigning

objects to their closest centroid and re-computing the centroids

are repeated until convergence is reached, which means in

other terms that the centroids barely change their positions

after the next iteration. While the previous elaborations were

on an operational level (aka ’how does it work’), k-means can

be expressed in terms of an optimization problem:

Definition 1 (k-means objective). Given a dataset X and a
number k of wanted partitions C = {C1, ..., Ck}, the objective
of the k-means clustering algorithm is:

argmin
C

k∑
i=1

|Ci|∑
j=1

||xj−μi||2 = argmin
C

k∑
i=1

|Ci|σ(Ci), ∀xj ∈ Ci

where σ denotes the variance.

This objective formulation translates to minimizing the

within-cluster sum of squares distance between the objects xj

to their respective centroid μi (left side of the equation) which

is synonymous with minimizing the variance within each of

the cluster (right side).

Following the formal aspects of k-means, we approach now

the question which we previously announced: What are the

semantics of a k-means result and the centroids in the context

of partitioning a set of compounds? The k-means clustering of

a dataset of compounds has as one property, namely that the k
partitions are maximized with respect to their compactness, or

in other terms: the clusters exhibit a minimized variance. This

implies that the clusters exhibit a convex shape. This convex

character of the resulting clusters comes with the implication

that potentially densely connected, arbitrarily-shaped clusters

would be separated. This effect however can be mitigated up

to a certain scale, by decreasing in such cases the number

of expected partitions k, which can enforce a merging of

previously separate adjacent and density connected clusters.

The centroid of a cluster represents a non-existent mean

prototype/representative for an entire cluster. If the single

attributes or features of a vector can be assigned to a specific

property (i.e. length, volume, etc.) then the mean vector would

embody the mean for each of the single features. However, we

shall elaborate more in detail in the upcoming subsections that

the Mol2Vec embeddings do not provide explicit semantics for

each of the features. Moving away from the semantics of the

results, we shift our attention to the semantics of the parameter

k. In the context of compound segmentation, k is an immediate

control for the number of distinctive partitions of molecules

that a domain expert would expect. In cases where the domain

experts are uncertain about the chosen number of clusters,

one heuristic is to increase or decrease k and to observe the

resulting clusters with respect to their meaningfulness. One

issue of k-means and its variants is the lacking handling of

outliers. An outlier is in this term a compound which is n×σ
the variance distant. However to make these outliers visible,

one can plot the distances of compounds to their centroid with

the vertical axis denoting the distances to the centroid and

the horizontal axis being the compounds sorted in ascending

order of distances. As a teaser, such visualization can be

seen in Figure 8 where the last compound has a distance to

its prototype which is several times higher compared to the

other compounds. Lastly, there is however a word of caution

regarding the outliers in k-means. Since they are explicitly

not detected by the algorithm, they may cause a phenomenon

that we coin with the term ”centroid poisoning”. Imagine a

sequence of numbers S = [2, 2, 8, 8, 100]. The mean of S is

60, while without the last element (100), the mean would be

10. An outlier therefore can distort the centroid, since centroids

are a mean computation and the mean is susceptible to outliers.

A remedy for future work may be the use of medoid based

methods that rely on the concept of the median, which is

known to be more robust towards outliers.
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B. Hierarchical Clustering

In contrast to k-means, hierarchical clustering approaches

are not limited to yield clusters of convex structures. Fur-

ther one of their properties is that they provide a hierarchy

of distances between compounds which comes with certain

potential benefits as we shall see below. On an operational

level, we have here two common approaches in our taxonomy,

namely divisive hierarchical clustering, which is a top-down

approach and agglomerative which is a bottom-up approach.

In this work we decided to investigate the agglomerative

variant, yet we encourage in future work to also study the

divisive technique on compound data. For the agglomerative

approach, the steps are as follows: First, each compound

represents its own cluster, then all pairwise distances between

initial compounds are computed. Afterwards, those pairs of

compounds A and B are merged which are most close to each

other, forming a new cluster C = A∪B. A and B are removed

from the set of current clusters, while C is included in the

current set. These steps are repeated until the set of current

clusters contains only a single cluster in the end. Following

the operational description of the agglomerative hierarchical

clustering, we now elaborate below on the semantics with

respect to compound segmentation. The dendrogram that a

hierarchical clustering yields can be interpreted as follows: The

root represents the entire compound dataset. In contrast, each

leaf represents a single compound in the data. Intermediate

nodes have the semantics of the union of all compounds in

their sub-trees. The vertical axis or height of a dendrogram

represents the distances between two child nodes. In general,

the intuition behind the distances within a dendrogram are

as follows: the more upwards we go, the fewer cluster we

obtain where at the same time within the clusters the distances

increase. In contrast, the more downwards we move in the

dendrogram towards the single compounds (leaf nodes), the

more, smaller clusters (or sub-groups, to be more precise) we

obtain. Furthermore, the hierarchical character of the dendro-

gram provides information regarding a potential question that

may arise, namely: ”Are within a given group of compounds,

subgroups in which the compounds are more similar to each

other?”

Another property that is inherent to hierarchical clustering

is the choice of the linkage criterion. In this criterion, it is

manifested when to merge clusters. There are four prominent

linkage criteria, namely:

(1) Single-link (Nearest Point algorithm)

d(Ci, Cj) = min(dist(xi, xj)), ∀xi ∈ Ci, xj ∈ Cj

(2) Complete-link (Farthest Point or Voor Hees algorithm)

d(Ci, Cj) = max(dist(xi, xj)), ∀xi ∈ Ci, xj ∈ Cj

(3) Average-link (Unweighted Pair Group Method with

Arithmeic mean [UPGMA])

d(Ci, Cj) =
∑
i,j

dist(xi, xj)

|Ci| · |Cj | , ∀xi ∈ Ci, xj ∈ Cj

(4) Ward (Incremental algorithm)

d(CCi∪Cj
, Cu) =√

|Cu|+ |Ci|
T

d(Cu, Ci)2 +
|Cu|+ |Cj |

T
d(Cu, Cj)2 − |Cu|

T
d(Ci, Cj)2

where T = |Cu| + |Ci| + |Cj | Here Cu denotes an unused

cluster in the forest.

Those four different linkage types preserve different seman-

tics. With single-link, the distance between two compound

clusters is computed based on the two closest compounds from

both clusters. In contrast with complete-link, the distance is

computed based on the two most far/dissimilar compounds

from both clusters. In average-link, the average distance be-

tween all pairs of compounds from both clusters is computed.

Lastly in the Ward linkage, the distance between two com-

pound clusters is computed by minimizing the variance of the

clusters that are supposed to be merged. Besides the semantics

of the distance functions, some of the methods come with their

own properties. As an example using the single-link distance,

yields long chain-like clusters with large variance, known in

the literature as the single-link effect. This also implies, that

unlike with k-means, here arbitrarily oriented clusters can

be found. It remains to investigations in future work which

semantics long arbitrarily-shaped chains of compounds bare

in context of Mol2Vec embeddings. In contrast, complete-link

yields smaller, more separated, equi-sized convex clusters. As

such, complete-link fosters a better separability of clusters,

however, by relying on the maximum distances of objects

between two clusters, it is also highly susceptible to outliers.

Average-link aims to provide a compromise between single-

link and complete-link. Ward-based clusterings are more in

the direction of a k-means clustering since it is tailored at

minimizing the intra-cluster variance. In this work, we chose

the ward method for our experiments, since it may facilitate the

comparisons to k-means clusterings. Lastly, it is noteworthy to

mention that hierarchical approaches are parameter-free, since

they do not actually provide a clustering in the first place,

but a dendrogram. The clustering can emerge based on two

approaches: (1) the domain-experts know how many clusters

they expect, in such a case, a horizontal cut can be made in the

dendrogram where the one tree splits into k sub-trees yielding

the compound clusters, or (2) domain-experts perform a cut

in the dendrogram at a specific distance where they deem the

clusterings to be meaningful.

C. Subspace Clustering

With increasing dimensionality, the computation of dis-

tances becomes less expressive and therefore meaningful to

provide statements like ”compound X is similar to compound

Y” which can be traced back to the so-called ”curse of

dimensionality” as elaborated on in [17]. Further, from all the

number of dimensions (d = 300, in our case of the Mol2Vec

embeddings) one is tempted to question if all dimensions are

needed. To approach both aspects (the curse and the wish to

get rid of unnecessary dimensions) dimensionality reduction
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seems to be the method of choice. For this purpose, one may

argue that applying a simple Principal Component Analysis

(PCA) would be sufficient. PCA is a linear dimensionality

reduction technique that yields a single arbitrarily oriented

subspace. It may however occur that clusters do not reside in

single but multiple linear subspaces, or that they are located in

arbitrarily shaped, inherently non-linear subspaces. Projecting

in such cases the compounds down to a single linear subspace

from PCA would mean that non-linearities of the underlying

distributions are neglected. One approach that performs a

piece-wise linear approximation of the data (PLA) is local

PCA [18] by combining vector quantization like in k-means

with PCA. As such, local PCA can be considered as the

ancestor of the field of arbitrarily oriented subspace clustering

(AOSC) algorithms, which are in the literature also coined

with the term of subspace clustering. One formal definition of

(arbitrarily oriented) subspace clustering is as follows:

Definition 2 (Subspace Clustering). Given a dataset X of
dimensionality d. The task of subspace clustering is to de-
tect k clusters C = {C1, C2, ..., Ck} which reside in their
respective individual l-dimensional (l < d) subspaces S =
{S1, S2, ..., Sk}. The variable l denotes the l-dimensions of
the arbitrarily oriented subspace which exhibit the l-highest
variance σ (eigenvalues, in terms of PCA). This l-dimensional
subspace is denoted as correlation subspace. The comple-
mentary c = d − l-dimensional subspace exhibits the lowest
variance, meaning the compounds projected to that subspace
are dense and therefore highly similar. This complementary
subspace is denoted as cluster subspace. The task of subspace
clustering is to find for a given number of clusters k and the
correlation subspace dimensionality l or cluster subspace c,
the subspaces in a way s.t. it holds for each cluster Ci:

minσ(P(Ci, Sic)) ≡ maxσ(P(Ci, Sil)), ∀Ci ∈ C, Si ∈ S

where P(Ci, Si) denotes the projection of all objects xj ∈
Ci to their respective subspace Si.

To briefly recap, with subspace clustering we achieve a

partitioning of compounds in such a way that the compounds

within each cluster are maximized w.r.t. their similarity in

their respective cluster subspace and equivalently maximized

w.r.t. their variance in their respective correlation subspace. On

this equivalence between minimizing the variance in cluster

subspace and maximizing the variance in correlation subspace,

elaborations have been made in a recently published work

[19]. The application of such algorithms approaches the two

expected benefits: (1) mitigating the curse of dimensionality

by (2) getting rid of unnecessary/irrelevant features. Having

both, fewer features and a partitioning of the dataset, based

on similarity of objects in their lower-dimensional subspaces

is (a) a compression of the data, in a sense that most of

the information is expressed with less and (b) that faster

queries can be performed. The latter is connected to the

following observation: having already partitions where objects

are most similar within them accelerates queries by no longer

having the need to compare or compute distances between all

Fig. 2. Architecture of Subspace Clustering as an Autoencoding Task.

objects but only to their prototypes (centroids, medoids etc.),

further instead of using d = 300 dimensions for similarity

computations, a smaller subset i.e. d = 10 are needed.

The aspect of compression reveals a trade-off between

two criteria, namely: (i) reconstruction error and (ii) model

complexity. On the one hand, we wish to find a subspace

clustering result in such a way that when the compounds

are projected to their subspaces, the ’loss’ of information

(aka reconstruction error) is kept to a minimum, while on

the other hand, we do not wish to have more clusters and

dimensionality of subspaces than needed. To approach this

delicate balance, we apply an autoencoding perspective on

the subspace clustering problem. This perspective has been

elaborated on in detail in a recent work [20]. At this point

we want, to avoid any confusions or misunderstandings, by

explicitly stating that we apply the autoencoding perspective,

not any neural autoencoders. For subspace clustering, we use

the already existent ORCLUS [5] algorithm. It is a method that

relies on vector quantization (i.e. k-means [3]). The parameters

of this method are the dimensionality of the cluster subspace

l and the number of clusters k. With both parameters the

so called model complexity can be controlled. If we would

choose a high dimensionality of the subspaces l and a high

number of clusters k, ORCLUS would not learn within the

autoencoding architecture (c.f. Fig. 2). However, to enforce

the framework to learn a lower-dimensional representation we

impose a so-called bottleneck by setting k and l to low values.

As a consequence, fewer subspaces with lower dimensionality

represent the original data in the latent layer as seen in Figure

2 in the center of the architecture.

At that point, one may be tempted to down-regulate the

number of clusters and the dimensionality of the subspaces to

reduce the model complexity. This is however only one side of

the coin and comes with the cost of the reconstruction error.

Maintaining a good ”quality” of the compressed representation

in terms of obtaining a representation with low reconstruction

error is the other side. This balance between model accuracy

and model complexity is the cardinal challenge of this com-

pression task that is approached in the experiment section.
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D. The Back-Mapping Problem and Medoids

We wish to introduce a last formal aspect of this work by

sketching the following case: Suppose we are given a set of

Mol2Vec embedded compounds and compute the centroid of

this set by summing up the scalars of all compounds among

all 300 features individually and dividing it by the number of

compounds in this set. What we obtain is a mean vector from

all the compounds. While for each compound vector, we have

its corresponding original compound (2D) structure, we do not

have a 2D structure for the computed mean vector (centroid)

and have, as the current state of the Mol2Vec framework, no

”mean compound”. This lacking of a ”pre-image” we coin

here with the term back-mapping problem.

Definition 3 (Back-Mapping Problem). Given a dataset of
compounds M and their Mol2Vec embedding ε(M). For each
compound mi ∈M it holds:

∃ : mi �→ ε(mi) ∧ ε(mi) �→ mi

For a computed centroid ε(μ) =
∑|N|

i=1 mi

|N | from a subset of
compounds N ⊆M in embedded space it holds:

¬∃ε(μ) �→ μ

meaning that there does not exist a back-mapping of the
calculated mean compound in embedded space to a compound.

A question that arises at this point is now: how can we

obtain a prototype or a representative compound from a de-

tected cluster which actually also exists in the original data and

therefore does not succumb to the back-mapping problem? To

approach this issue, we refer to the computation of the median,

where the values are first sorted in ascending order and then

the ”middle” of this series is chosen. This ”middle” element is

existent and unlike the mean not computed. Adhering to this

idea, we determine from a cluster of compounds its medoid,

which can be considered as the ”median” compound in a given

cluster. In more formal terms, a medoid η is a representative

compound of a cluster of molecules for which holds that the

average dissimilarity to all other compounds within the cluster

is minimal, which can be expressed as:

Definition 4 (Medoid of a Cluster). Given a cluster of
compounds Ci ∈ C = {C1, ..., Ck} with xj being compounds
of Ci = {x1, ..., xn}. Further given a distance function d. The
medoid of a compound of clusters is defined as:

η := argmin
y∈Ci

n∑
i=1

d(y, xi)

IV. EXPERIMENTAL RESULTS

In this section, we elaborate on the conducted experi-

ments and discuss the results and insights. All experiments

were conducted on the COVID-19 dataset as described in

Section I A. The full dataset, the entire code, and all in-

termediate, as well as final results, are publicly available

on https://github.com/hamilton-function/MolClust. All exper-

iments were conducted on a machine with Intel Core i7-6700

with 3.4GHz, 32 GB available RAM. In order to avoid any

misunderstandings, we’d like to finally elaborate on the term

outlier. In the context of clustering, we consider an object as

an outlier if it is ”too distant” to a cluster or a cluster model

(i.e. centroid or hyperplane). In a chemical context, an outlier

refers to a single molecule, which is significantly different to

others, yet not in the sense of ”not-belonging” to the dataset

i.e. being noise, or not being relevant for chemical questions.

A. Model Comparison

In this subsection, we compare in a qualitative approach

the results of k-means, hierarchical clustering and subspace

clustering against a manual segmentation performed by our

domain expert which we will refer to in the remainder of the

experiment section as ”ground truth”. For k-means and hier-

archical clustering we utilized the implementation provided

by the sklearn framework3. The k-means implementation by

default applies a k-means++ [21] strategy for obtaining more

stable initial centroids and for faster convergence. However,

the sklearn implementation performs 10 runs and selects the

best result from all 10 clusterings based on the inertia criterion

(Sum of squared distances of samples to their closest cluster

center). The hierarchical clustering from sklearn applies by de-

fault the ward agglomerative strategy. For subspace clustering,

we used the ORCLUS algorithm, which is implemented in the

ELKI framework [22]. What may appear striking is the choice

of a large k = 16 for comparing the results from different

clustering models. The decision is justified by the clustering

of the ”ground truth”. In its entirety (all methods and all tested

k) we could also observe that the results performed better for

larger k, with the exception of ORCLUS on which we will

elaborate more in detail in the upcoming subsections.

The hierarchical clustering on the Mol2Vec embedding

yields for k = 16, as seen in Figure 3, mostly meaningful

partitions. As one example the pink-colored cluster contains

mostly steroid analogues as shown by the medoid representa-

tive compound (dashed line). Another example is the green-

colored cluster (second from left) which contains nucleoside

analogues. On the contrary, there are clusters such as the

red one (third from left) where it is not obvious what is

actually the common theme between the members of that

subset. It may be that this cluster needs further refinement

by splitting into more clusters. It is the subject of future

work to further investigate if there exists a semantically

common theme of the compounds residing in this cluster.

Furthermore, we have four singleton clusters, characterized

by consisting of only one compound. These ”clusters” can

actually be considered as outliers, which nevertheless does

not mean that they are less important or of lower interest.

To see the full clustering for different k = 2, 4, 6, 10, 16
we refer to our repository [https://github.com/hamilton-

function/MolClust/tree/master/expres/slink] where for each

clustering each cluster contains png images of the compounds

with their compound id (CID) as their filenames.

3https://scikit-learn.org/stable/modules/clustering.html
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Fig. 3. Resulting hierarchy from an agglomerative hierarchical clustering on Mol2Vec embedded compounds. For each cluster (except four outliers/’singleton
clusters’) the respective medoids are shown. Outlier compounds are colored in blue like the rest of the dendrogram.

For the k-means clustering, we can see in Figure 5 many

similarities like e.g. the nucleoside analogues (top left

corner). We also observe a larger cluster where no clear

semantics can be derived from it, namely the purple segment

(bottom center). There are however also cases like the afore

mentioned steroid cluster which is split here into two clusters

(top center), one bigger group and a smaller cluster consisting

of two steroidal compounds. The split into two clusters

seems to be made based on differences in the substructures.

Since k-means has no explicit noise handling we obtain

here also four singleton clusters. The single clusterings

and clusters can be inspected, like for the hierarchical

clustering, in our repository [https://github.com/hamilton-

function/MolClust/tree/master/expres/kmeans] for

k = 2, 4, 6, 10, 16, 24.

In Figure 4 one can observe at the example of one cluster

that all the different methods are capable to detect meaningful

groupings. In this particular case, all approaches are capable to

form a cluster of steroidal compounds with certain deviations.

On the contrary, ORCLUS fails to detect meaningful cluster

(except this steroid group) while k-means and the hierarchical

approach are capable of detecting results similar to the ”ground

truth”. At this point, it is also vital to note that despite

yielding better clusterings compared to ORCLUS, k-means

and hierarchical clustering are still struggling with assigning

certain compounds to appropriate clusters.

Fig. 4. Cluster of steroidal compounds detected at k = 16 (l = 4 for
ORCLUS), with k-means, hierarchical clustering and ORCLUS. All seven
compounds were identified in the ”ground truth” as one cluster.

B. In-depth Analysis of Subspace Clustering Results

From the rather disappointing results of ORCLUS we

wanted to further investigate why this approach failed, by

discovering possible reasons why the ORCLUS results are

not as meaningful as those from k-means and hierarchical

clustering. To approach this task, we identified potential targets

for facilitating the understanding of this performance. One
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Fig. 5. k-means clustering on Mol2Vec embeddings. 2D visualization enabled through a t-SNE embedding of the k-means results. The illustrated molecules
are the medoid prototypes of each cluster. The clustering was performed prior the t-SNE embedding on the Mol2Vec representations.

initial thought was that for k = 16, l = 4 we picked

up a bad combination of cluster and dimension cardinality.

Therefore, one of the more obvious targets was to adhere to

the parameters that our model takes for the computation of the

clusterings. Does this bad performance also occur at different

(k, l) pairs? For this we looked closely at the clustering results

of ORCLUS for l = 4 and k = {2, 4, 8, 10, 16}. Further we

kept in another trial k = 4 constant and analyzed the results for

different l = {4, 5, 10, 15, 20, 25}. We deliberately chose here

smaller k since we already observed at k = 16 that ORCLUS

fails to form meaningful clusters. While the choice of the fixed

k and l seems arbitrary, we chose on purpose k = 4 and l = 4
since based on the autoencoder principle in III C, we observed

there a striking minimum of the reconstruction loss as it can

be seen in Figure 6 (circled region).

The main purpose is to obtain with few dimensions and few

clusters a clustering which comes at the same time with a low

reconstruction error. Exploiting the boundaries to compress the

compound data, in this case from 300 dimensions down to 4

is ultimately opposed to the question of how meaningful the

resulting clusters are. Another potential reason besides ’bad’

parameter settings is the fact that it is not possible or at best

very challenging to identify the common (sub)structures by

manual inspection for investigating the meaningfulness of the

clustering. In order to facilitate the detection and thus increas-

ing the chance of observing potential common (sub)structures

within the compounds, we added further methods with the

hope of being capable to recognize commonalities within a

Fig. 6. Landscape of the reconstruction loss, w.r.t. different number of
clusters k and different number of subspace dimensionalities l. An exceptional
minimum is visible at k = 4, l = 4 (red circle), which means that the
clustering with these parameters enables a good reconstruction of the data
with comparably low number of dimensions and low number of clusters.
k = 4, l = 4 is an exceptional minimum in the sense that it leads to a lower
reconstruction error despite having lower number of clusters k and at the same
lower dimensionality l.

cluster. First, we constructed distance plots where for each

entry in the plot the distance of a compound to the medoid

of its cluster is computed. The entries in the plot are sorted

in ascending order by their distance to the medoid. These

plots reveal potential outliers within a cluster. Here we have

the hypothesis that single highly diverse compounds end up

in the clusters, since ORCLUS does not provide a native
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Fig. 7. Clustermap of the result from ORCLUS fir k = 2, l = 4 in c1.
The clustermap was created with ward hierarchical clustering on the l = 4
dimensional projected compounds.

outlier handling. These outliers make the detection of common

(sub)structures within a cluster significantly difficult since it

is not obvious which compounds should be less considered

for the common (sub)structure detection. Further we had the

hypothesis that smaller groups within each cluster may exhibit

high similarities within their small local groups but not w.r.t.

the entire cluster. In order to identify these smaller subgroups,

we computed cluster maps which reveal smaller subgroups

within a cluster, with the hope of facilitating the common

(sub)structure detection.

C. Insights of the in-depth Analysis

From the in-depth analysis, we obtained results which we

discuss in detail in this subsection. By analyzing different k
we made an interesting observation in c1 in the clustering

of k = 2, l = 4. There are good efforts visible if we look

closer at the subgroups (which are actually clusters within
the subspace of c1). The results of ORCLUS are comparable

to clusters of k-means and hierarchical clustering and the

”ground truth” observed for higher k. As an explicit example,

one can observe the steroid subgroup in the cluster map of

Figure 7 (blue rectangle) which is also detected by k-means

and hierarchical clustering. These are the first indications

that ORCLUS is potentially capable of detecting meaningful

clusters with lower-dimensional representations of the vector

embeddings.

While the results are improving with increasing k for k-

means and hierarchical clustering, the results are getting worse

for ORCLUS. For increasing k we observe that highly similar

molecules end up in different clusters. As an example we

have identified two compounds, namely Toremifene (3005572)

and Tamoxifen (2733525). Both compounds differ by just

Fig. 8. Projected distance of each compound from cluster c9 of k = 16, l = 4
within the 4-dimensional subspace to the medoid of the cluster (5282362).
The outlier (11513676) is by a factor of six further distant to the medoid
compared to the second most far compound.

one atom. From their global structure, both compounds are

highly similar to each other. In the ORCLUS clustering of

k = 10, l = 8 we observe them in different clusters (c1 and

c9). As a small experiment, we first computed the l = 8
dimensional subspace of c1 and projected Toremifene and

Tamoxifen to this respective subspace. The distance of these

two compounds to each other is 6.16. Computing the subspace

of c9, projecting both compounds to the subspace of c9 and

computing in this subspace their distances to each other yields

4.37. From this observation, we can draw the conclusion that

ORCLUS tears subsets of compounds apart that are even
within both projected subspaces highly similar to each other.

Possible reasons for this behaviour can be the following: (1)

different initialization of ORCLUS may lead to cases where

similar objects are assigned to different subspaces and (2)

outliers can, depending on their distance to the hyperplane

on which most of the other compounds are located around,

heavily skew the orientation and translation of the subspace,

which leads to an effect that can be described as ”subspace

poisoning”. In [23] the authors already made the observation

that the covariance for a PCA is potentially susceptible to

outliers. As an example we can observe in Figure 8 for

k = 16, l = 4 a cluster where one compound has an obviously

high distance to the clusters medoid in contrast to the rest

of the compounds within the cluster. Here a second factor

plays also an important role: it is not only the distance of

the outlier to the subspace but also the number of objects

a cluster contains. A distance of 300 to the medoid is less

severe for the orientation of the subspace for a cluster that

contains 100 compounds, compared to a cluster with only 5

compounds. To summarize, for smaller k we can observe that

ORCLUS enables the detection of subgroups, however, it fails

to maintain the subgroups for higher k, which is traceable to

the compromising effects of outliers.
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Regarding the analysis of the results for different subspace

dimensionalities l it leaves room for the hypothesis that with

l = 4 this may be a sufficient number of dimensions to cluster

the compounds somewhat meaningful at k = 2. This in turn

implies that 4
300 ≈ 1% of the feature information capture a

certain amount of the molecular structure which would speak

for efforts to compress the data to lower dimensions using

subspace clustering. However the dataset contains many dif-

ferent unique molecules or at best small groups of molecules

which are different to each other, and as such should form their

own small clusters. Due to this observation, one is tempted to

choose a high k, which is not an option since it is too sensitive

towards outliers. At the same time, one can not simply increase

l since for testing larger l it has to be ensured that there

are sufficiently (≥ l) similar objects within a dataset for the

majority of clusters. Conclusively the dataset limits the choice

of k and l significantly and for the conducted k, l-settings

the results are not further usable in this current state for an

application on this dataset.

V. CONCLUSION AND FUTURE WORK

In this work, we constructed an entire pipeline and curated a

new dataset on potentially effective SARS, MERS, COVID-19

compounds. This allowed us to investigate the meaningfulness

of clusterings on Mol2Vec embeddings and the applicability

of subspace clustering for learning lower-dimensional repre-

sentations of the embeddings. The full-dimensional clustering

methods, k-means and hierarchical clustering yielded more

meaningful results than subspace clustering. Our analysis

identified several reasons why utilizing subspace clustering to

compress the vectors to fewer dimensions could lead to this

insufficient performance. The small size of the dataset and

the resulting small clusters limit the investigation of the full

k, l-parameter landscape for the subspace clustering approach

and it increases the cluster’s susceptibility towards outliers.

Using a larger dataset can result in larger clusters that allow

exploration of higher subspace dimensionalities l and a higher

number of clusters k. Other methods addressing the outlier

problem are more robust subspace clustering methods or a de-

noising step up-stream to ORCLUS, which can also be applied

in case a large dataset is not at disposal. Adding the here

discussed algorithms to the plethora of clustering methods for

chemical compounds has the potential to expand the field of

molecule clustering. Furthermore, the future exploration on

the possibility of embedding compression and the usage of

cluster representatives have the capability for a (substantial)

acceleration of similarity searches on databases with vast

amounts of compounds. Altogether, this can give the chance

to make contributions to research fields associated to chemical

structures, for example the field of drug discovery.
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