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Abstract—The Vera C. Rubin Observatory Legacy Survey of
Space and Time (LSST) will soon carry out an unprecedented
wide, fast, and deep survey of the sky in multiple optical bands.
The data from LSST will open up a new discovery space in
astronomy and cosmology, simultaneously providing clues toward
addressing burning issues of the day, such as the origin of dark
energy and and the nature of dark matter, while at the same
time yielding data that will, in turn, pose fresh new questions.
To prepare for the imminent arrival of this remarkable data set,
it is crucial that the associated scientific communities be able to
develop the software needed to analyze it. Computational power
now available allows us to generate synthetic data sets that can
be used as a realistic training ground for such an effort. This
effort raises its own challenges—the need to generate very large
simulations of the night sky, scaling up simulation campaigns
to large numbers of compute nodes across multiple computing
centers with different architectures, and optimizing the complex
workload around memory requirements and widely varying wall
clock times. We describe here a large-scale workflow that melds
together Python code to steer the workflow, Parsl to manage the
large-scale distributed execution of workflow components, and
containers to carry out the image simulation campaign across
multiple sites. Taking advantage of these tools, we developed an
extreme-scale computational framework and used it to simulate
five years of observations for 300 square degrees of sky area.
We describe our experiences and lessons learned in developing
this workflow capability, and highlight how the scalability and
portability of our approach enabled us to efficiently execute it
on up to 4000 compute nodes on two supercomputers.

Index Terms—astronomy, pipeline, simulation, workflow man-
agement

I. INTRODUCTION

Developing any scientific instrument combining hardware
and software can be challenging, as there is often the need
to design, build, and test the software while the hardware is
incomplete. One method to partially address this challenge is
to create synthetic data that mimics what will be captured
by the instrument and can then be used to develop and test
analysis software. This is the situation facing the Vera C.
Rubin Observatory Legacy Survey of Space and Time (LSST),
an astronomical survey that will enable cutting-edge science
through analysis of its data releases. The LSST Dark Energy
Science Collaboration (DESC) is preparing for these data re-
leases to transform them into groundbreaking scientific results,
with a particular focus on understanding of the evolution of the

universe and its accelerating expansion rate (the “dark energy”
problem).

In order to make best use of the data, extensive development,
testing, and validation of the scientific analysis software is re-
quired. To this end, DESC has developed data challenges: data
releases of simulated data in increasing steps of complexity for
the purposes of developing scientific pipelines ahead of LSST
data releases [1], [2]. We describe here the computational
process, using Python workflows across two high performance
computing (HPC) facilities, to create the image simulations for
the recent Data Challenge 2 (DC2).

While the task of generating simulated data is not uncom-
mon in scientific experiments, DC2 posed unique computa-
tional challenges. The most significant hurdles were the need
to develop an easy-to-understand description of the workflow,
to orchestrate a simulation campaign using research software
with a range of dependencies, to manage the extreme-scale
computational requirements, to port the workflow between
two supercomputers, and to optimize performance such that
allocations at the facilities were efficiently used.

The DESC aims to understand the evolution of the uni-
verse by exploring the LSST data via multiple cosmological
probes, as discussed in detail in the LSST DESC Science
Requirements Document (SRD) [3]. These probes will allow
us to measure the behavior of phenomena such as cosmic
acceleration to new levels of precision—provided that any
potential sources of systematic error are well characterized,
understood, and mitigated. In order to test the robustness of the
scientific pipelines, DESC can benefit from a large simulated
data volume that represents a partial realization of the full ten-
year survey. For details on the entirety of this effort, the LSST
DESC present a description of the complex process of creating
this data volume from numerical simulations of the large-scale
structure in the universe to processed simulated images [2]. We
focus our discussion here on a specific workflow portion within
that greater effort—that of the Python-based ImSim Workflow
used to simulate images comparable to that of the real Rubin
Observatory LSST Camera.

The ImSim Workflow uses the image simulation code,
imSim, to simulate each of the camera’s 189 CCD sensors.
imSim takes as input an “instance catalog,” which consists
of millions of individual entries of commands for the code
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to simulate specific objects as seen by the camera. For each
sensor, imSim must determine which objects cast light on that
specific sensor. For each command, the underlying libraries
must go through a complicated process of determining which
computational method is most suitable for the specific object
to be drawn, which varies both the memory utilized and the
compute time on a per object basis. Each simulated sensor
represents a task that is independent of any other simulated
sensor, though it may share common information within a
given telescope observation.

We develop the ImSim Workflow using the Parsl parallel
scripting library to encode the workflow in Python and manage
the large-scale simulation campaign. Briefly, the workflow is
given a set of instance catalogs and a target area for simulation
over time. The workflow must then identify the observations
to be simulated, estimate the amount of work that can fit on
a single compute node, determine all commands that need
to be run with imSim, and distribute these tasks across
many compute nodes. To address the challenges deploying
the evolving imSim code on two supercomputers we adopt
containers as a way of encapsulating a point-in-time software
environment for the ecosystem and for porting it between
systems. We have used the ImSim Workflow to simulate
five years of observations for a 300 square degree area of
the night sky. This campaign consumed approximately 100
million core hours across the NERSC Cori and ALCF Theta
supercomputers.

We describe the ambitious simulation program in the rest of
this paper as follows. In Section II, we outline the scientific
motivation of the image simulation campaign, its computa-
tional requirements, and the tools that we used. In Section III,
we describe the ImSim Workflow. In Section IV we provide a
brief discussion about the choices we made when developing
the workflow before we present our results in Section V.
In Section VI, we show various diagnostics regarding our
computational approach and discuss the problems encountered
during the computational campaign in order to determine what
improvements may be made on future Data Challenges. In
Section VII we comment on related work and, finally, we
summarize our work in Section VIII.

II. IMAGE SIMULATION CAMPAIGN

We first describe the goals of our work and present relevant
background information about the underlying imSim package.

A. Data Challenge 2

The goal of DC2 was to generate simulated images that
can be processed with Rubin’s LSST Science Pipelines as
though they were true survey images. The ImSim Workflow
that we describe here is one part of a long chain of steps,
which is described in further detail in the DC2 paper [2]. In
brief, large-scale cosmological simulations are run to create
one realization of a possible universe. Next, we identify where
galaxies would exist inside the simulation and create catalogs
with their properties [4]. We then generate “instance catalogs”
— for a given observation of the night sky, we create a list of

objects that would be observed by the LSST Camera (these
include Milky Way stars as well as extragalactic sources). The
instance catalogs are then used as input to imSim, which in
turn will generate an image for each object in the instance
catalog. The resulting images can then can be processed with
the LSST Science Pipelines.

The survey volume simulated for DC2 is a five-year span
over 300 square degrees of sky, for a “wide-fast-deep” (WFD)
scan, with a 1 square degree insert region that serves as the
“deep drilling field” (DDF). Each observation, referred to as
a visit, represents a single telescope pointing (with a total
duration of 30 seconds). Each visit further consists of 189
sensors, distributed across the camera as seen in Figure 1.
After simulating five years of observations, these images can
then be stacked on top of each other and processed to create
images such as those seen in the figure. Specific details
regarding the distribution of visits in the survey volume are
provided in the DC2 paper [2].

Fig. 1. Final processed images are overlaid over the LSST camera focal plane
of 189 individual sensors (light gray squares). The yellow and green squares
are wavefront and guide sensors.

Note that the above volume sets an upper limit on the scale
of the data—with over 30,000 visits each containing up to 189
sensors, we would need to simulate on the order of five million
images. In practice, some of these images have no objects
in them and may be skipped, but the total volume of image
data generated is approximately 100 TB. The sheer number
of independent images and the computational requirements,
particularly with respect to memory usage, represent the major
difficulty in this simulation effort, as detailed below.

B. imSim

The image simulations are carried out using the imSim
software package. This package uses the Galsim software
library to carry out rendering of stars and extragalactic objects



as they would be observed with the 3.25 Gigapixel LSST
Camera [5]. The image simulations include the impact of
atmosphere, optics, and sensor effects on the observed images.
The underlying software utilizes C++ for the bulk of its
calculations, while Python provides a flexible user interface
that can be modified to many specific tasks. In addition,
imSim takes advantage of some functionality provided via
the LSST Science Pipelines.

To better understand the exact requirements on the computa-
tional workflow, we briefly discuss the nature of the inputs and
outputs connected to imSim. As stated above, from numerical
simulations we arrive at the information regarding a single
pointing of a telescope for a single visit—what we refer to
as an instance catalog. This instance catalog contains a list
of entries—one for each star, galaxy, or dynamic object. Each
entry contains information regarding the location of the object
on the focal plane, the shape of the object in advance of
atmospheric and sensor effects, the position of the telescope
to enable the inclusion of the effects from the relative airmass,
and more. For each of the 189 sensors, we can then request
an output image that will correspond to the output generated
by the real telescope—albeit for our artificial universe.

The imSim software can be passed a list of sensors to be
simulated concurrently. It can distribute this work across the
cores on a single node using the Python multiprocessing
library. The master imSim process then shares information
regarding the atmospheric screens to each of these tasks,
minimizing a substantial memory overhead. As each individual
visit requires distinct atmospheric screens, this becomes a
computational limitation, as packing many distinct visits onto
a single compute node involves calculating many atmospheric
screens—each screen taking more memory than several addi-
tional sensors. The remaining computational barrier is then the
number of sensors that one wishes to simulate simultaneously
on a given compute node. While atmospheric screens are
shared, drawing objects simultaneously can result in overlap
of objects with large memory use. Planning around this is
exceedingly complicated—Galsim has a complex decision
tree for determining the best algorithm for drawing an object
on the sensor and this is not inherently easy to determine at the
instance catalog level. As such, there is a potential for many
large memory footprint objects to overlap during simulation
that can lead to excessive memory use on a node. The version
of imSim used by the ImSim Workflow during our DC2
campaign did not convey any information regarding expected
memory footprint back to the master process constituting
another design constraint to our workflow.

III. THE IMSIM WORKFLOW

As described above, the simulation size (upwards of five
million independent images to be generated) and the associated
resource needs (on a per image level) are the ultimate chal-
lenges that need to be addressed by the use of a sophisticated,
large-scale workflow. The computational barriers to overcome
are as follows:

• An individual visit contains up to 189 independent com-
putational processes.

• The memory footprint of each compute thread requires
splitting visits across multiple compute nodes.

• The memory requirements of each thread vary consider-
ably depending on the simulated objects.

• Each individual visit may have varying compute times,
with a scatter that can be different from sensor to sensor
on that visit.

• The compute time of all visits greatly exceeds the avail-
able wall-clock times for a single job on most submission
systems.

• Given the above, and the fact that some tasks may fail,
each individual task needs to be tracked for completion
and restarts from checkpoint files need to be enabled.

• Additionally, given the large compute time needed, it is
important that the workflow can be moved dynamically
between computing centers based on available capacity.

To meet these requirements, we developed the ImSim Work-
flow using a combination of the Parsl parallel scripting library
and containers. We rely on Parsl as a way of encoding the
workflow in Python and for efficiently managing the execution
of our workload on HPC resources. We use containers to cap-
ture the complex software environment and provide portability
across systems and architectures. We begin by describing Parsl
and containers before outlining the ImSim Workflow.

A. Parsl

Parsl [6] is a flexible and scalable parallel programming
library for Python. Parsl offers simple constructs for encoding
parallelism in standard Python programs. Specifically, devel-
opers can annotate Python functions to specify opportunities
for concurrent execution. These annotated functions, called
apps, may represent pure Python functions or calls to external
applications. Parsl further allows invocations of these apps,
called tasks, to be connected together into a dependency graph
by shared input/output data flow (e.g., Python objects or files).
Parsl uses the dependency graph to safely manage concurrent
execution of tasks.

Parsl leverages an extensible and scalable runtime system
that allows it to efficiently execute tasks on many cores and
processors. Parsl supports various target resources including
clouds (e.g., Amazon Web Services and Google Cloud),
clusters (e.g., using Slurm, Torque/PBS, HTCondor, Cobalt),
and container orchestration systems (e.g., Kubernetes). It also
supports various executors that manage how tasks are executed
on computing resources (e.g., using a distributed MPI fabric or
managing task execution via a pilot job model). In most cases,
Parsl executors deploy a worker agent to each provisioned
node and these agents are then responsible for executing tasks
passed from the Parsl runtime via the executor. Parsl programs
can scale from several cores on a single computer through
to hundreds of thousands of cores across many thousands of
nodes on a supercomputer.

Parsl provides the backbone for the ImSim Workflow as it
provides several crucial capabilities. Most notably, Parsl allows



us to write the entire ImSim Workflow in Python—a language
well-understood by the DESC community. It also allows
us to scale the workload to address the performance needs
outlined above, can efficiently utilize thousands of nodes on
leadership-class supercomputers, supports the deployment and
invocation of code in containers, provides checkpointing and
fault tolerance, and offers logging and monitoring capabilities
to diagnose errors.

B. Containers

As discussed in Section II-B, there is a significant amount
of underlying software required to run imSim and this is
further complicated by the fact that imSim was under active
development while we developed the ImSim Workflow. In
practice, keeping the imSim software updated and functional
on all compute nodes is a nontrivial exercise, especially
ensuring that it functions identically across multiple compute
resources. In order to accomplish this task, we rely upon the
use of containerization software.

Our target computing resources at ALCF and NERSC
support different container technology (Singularity and Shifter,
respectively). To address the need to deploy software on many
computing resources we first created a Docker container as a
base representation of the environment and we used it to create
Shifter and Singularity images as needed.

The Docker image we use consists of a base layer that
contains the LSST Science Pipelines, followed by additional
commands which copy specifically tagged versions of all
underlying software needed for image simulation.

C. ImSim Workflow Implementation

We implemented the ImSim Workflow using a single Python
driver with Parsl apps for each of the imSim commands. The
workflow is invoked with pointers to input instance catalogs, a
target area of the sky, and a range of configuration parameters
to run the simulation. A high level view of the workflow is
shown in Figure 2. The workflow is available on GitHub: https:
//github.com/LSSTDESC/DESC DC2 imSim Workflow.

The workflow combines various stages, each implemented
as its own Parsl app, such as to transfer instance catalog data,
process instance catalogs and define simulation tasks, bundle
collections of tasks for efficient resource usage, run the imSim
code on the allocated bundle of tasks, determine which tasks
produced output files, and collect output files for storage. The
control logic for the workflow is implemented in approxi-
mately 100 lines of Python code (parsl-driver.py). Each
of the Parsl apps are implemented in separate Python scripts
that perform the defined operation.

Each of the Parsl apps is executed within a container. The
workflow allows us to seamlessly switch between container
technology using a simple configuration flag. This flag informs
Parsl which container set-up is supported by the computing
facility, pulls containers from online storage in the format
necessary for the software, and then sets a predefined wrap-
per. This wrapper consists of either a Shifter or Singularlity
command that will load a container onto a compute node and

execute a set of Python tasks in order to start simulating the
visits that have been packaged in that specific work bundle.
Since the underlying Python command does not interact with
the container directly, changing this chosen wrapper is all that
is necessary to port between different computing centers.

Each of the Parsl apps is run with checkpointing enabled.
This allows the ImSim Workflow to recover from failures and
in particular to save the state of app execution in the cases
where nodes fail or allocation wall time is exceeded.

Fig. 2. A visual diagram of the workflow from the instance catalog level to
outpupt images.

IV. EXPERIENCES DEVELOPING THE IMSIM WORKFLOW

We briefly describe choices made when developing the
workflow and deploying it on large-scale compute resources.

A. Deploying the workflow

The Parsl model allows us to acquire compute resources
in different ways. We explored two main methods: deploying
Parsl on the login node and submitting Parsl as a job for
execution on the launch node.

Each option brings its own advantages and disadvantages.
We first explored the most common deployment model

to initialize the main Parsl driver on the login or workflow
nodes on the HPC resource, which we refer to as “remotely
driven”. In this case, the driver submits the actual scheduler job
request, asking for a certain amount of compute resources to
accommodate Parsl workers, and then (when the job launches)
transfers tasks from the driver onto the compute resources
for calculations to be run. Here the main advantage is that
the driver is able to coordinate multiple submission blocks
simultaneously; this can be a significant advantage on some
scheduling systems which favor smaller jobs to fill utilization
gaps. Potentially, if the remote driver has sufficient access,

https://github.com/LSSTDESC/DESC_DC2_imSim_Workflow
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it may even be able to leverage resources from multiple
HPC sites simultaneously. However, this relies strongly on the
stability of the resource on which the driver runs—if the driver
is brought offline for any reason during the time at which a
requested job launches, the workers will be unable to get the
information about their tasks, wasting valuable computation
time.

We also explored submitting the Parsl driver for execution
on the compute or launch node for the HPC system, which we
refer to as “locally driven”. Configured in this way, scheduler
submission scripts include the steps to initialize Parsl on a
single compute or launch node, which then initializes a large
number of workers across the remaining compute nodes and
begins to assign tasks accordingly to these workers. This
has the advantage of being entirely local to the compute
resources, which reduces communication needs; further, it
removes the need to have a potentially long-running driver
consume resources on an external node. The main disadvan-
tage of this approach is that it is more difficult to run multiple
job submission blocks simultaneously, as there will be no
block to block communication.

B. Extreme-scale task execution

Once resources have been acquired, Parsl workers can
be initialized across resources via the use of one of
Parsl’s executors. ImSim Workflow exhibits the unique
requirement of needing to run both local calculations
(e.g., to bundle tasks) as well as remote computa-
tions (e.g., to invoke imSim). To address this re-
quirement we use Parsl’s ThreadPoolExecutor and
HighThroughputExecutor concurrently. We use the for-
mer to manage local calculations regarding the bundling of
individual image simulation commands into groupings for a
single Parsl worker to operate on. Here Parsl creates a pool
of threads that are run alongside the driver program and can
share memory between one another and the driver script.
The latter is an executor packaged with Parsl designed for
managing the execution of Parsl apps on thousands of nodes—
allowing us to fully exploit supercomputers such as Theta. The
HighThroughputExecutor configuration begins a multi-
processing driven pool of workers across compute resources,
runs an interchange that allows Parsl to divide the work among
workers, and manages tracking the completion of Parsl apps
and the introduction of additional Parsl apps as resources
become available again. This last point in particular allows us
to work around a key computational barrier listed above: the
fact that individual visits have widely varying compute times,
with some visits taking hours longer than others. Figure 3
demonstrates how even for the shorter computational task of
the DDF, image output times can vary considerably compared
to total wallclock time. With this configuration, short tasks are
completed and new work can be placed into the newly freed
workers, allowing us to greatly increase the efficiency of our
computational resource use. We discuss how this plays out
below.

Fig. 3. The distribution of image simulation times for year three of the DDF.
The variation on the order of 10% of the total walltime is present across all
simulated images.

C. Task Bundling

After testing with early versions of ImSim Workflow, we
observed periods of inefficient resource utilization. This inef-
ficiency was primarily caused by the varied resource usage
of individual tasks. To improve efficiency we developed a
bundling process that would identify chunks of work that could
be run concurrently on a single node. The first step in the
bundling process is a pre-processing step to identify all sensors
lying in the target region on a visit-by-visit basis. This is
necessary to avoid tasks that take place outside our underlying
simulated volume; the large focal plane of the camera can
sometimes extend over this artificial boundary. From the list
of visits and sensors that will need to be simulated, we
then take rough estimates of the memory footprint of the
individual components—the memory of the Docker container,
the memory of shared resources for a visit, and the expected
peak memory use of an individual sensor—and compare that
against the available resources of the computing resource. The
bundling algorithm then attempts to group simulation tasks
together in a logical way, following several rules:

• For each compute node, prioritize sensors from a single
visit to optimize the use of shared resources.

• For each compute node, limit thread use such that peak
memory use will not result in exceeding the available
memory on the node.

• Further limit thread use to the number of threads on
a given compute node—initial testing suggested hyper-
threading would be ineffective for our use cases.

Each of these particular rules represents a necessary compro-
mise between optimal use of the compute resources available
and the physical limitations of those same resources. One
example is shown in Figure 4, which demonstrates how
the total number of visits on a node changes the memory
usage—even with the number of compute threads kept stable.
This is the result of inefficient use of shared resources,
specifically atmospheric screens that are identical for a given
observation—providing a strong incentive to minimize the
number of independent visits on a given compute node. As



Fig. 4. The memory footprint on a given compute node for a set number
of sensors but an increasing number of independent visit tasks. The solid
black line shows the expected memory use, while the dashed (dot-dashed)
line shows the hardware limitations at Cori (Theta).

a result, the inefficient use of some cores near the end of a
compute task was a necessary downside to allow for more
efficient packing of those compute nodes at the start of each
task. Similarly, while there is the potential to pack more
threads per compute node where the memory use does not
achieve the peak on multiple threads simultaneously, there was
no easy way to predict this—necessitating us to risk being
slightly less efficient in the number of sensors handled at
once in favor of avoiding losing entire nodes to exceeding
the available memory. Finally, we note that in some cases
it may have been possible to exceed the number of threads
in order to use hyperthreading; this possibility is interesting
in practice, but we ultimately found that any perceived gains
were minimal—though this is hard to disentangle from the
possibility that it is related to load balancing on the CPU.

Our workflow optimizes around these constraints with a
priority that most compute tasks will be limited to a single
node with the maximum number of available sensors given
memory constraints, but maintains the ability to pack together
different visits as necessary. Each task schematically is just a
list of Python commands that need to be run combined with all
the relevant input and output paths. In order to avoid repetition
of tasks, we added a simple check that can be run between
or even during major compute runs which simply validates
the location of expected output files in order to determine if a
sensor still needs to be simulated. A Parsl app was written to
execute each list of commands inside of a container. Figure 2
provides a schematic look at the overall flow from start to
finish.

V. RESULTS

We divide our discussion of the results into three areas. To
begin, we describe production runs of the ImSim Workflow
focusing on how much data was produced and how much
compute time was consumed. We then investigate the over-
heads and system utilization of our approach. We conclude by
exploring the scalability of the workflow.

A. Production runs

The total resources used by the simulation can be broken
up into two categories. The first is the WFD survey that
was carried out exclusively using Cori at NERSC. This effort
scaled up to 2000 total compute nodes at any given time and
ultimately consumed ≈ 90M core-hours to fully process the
≈ 2.6 million images in the survey volume.

The simulation of the DDF survey was carried out utilizing
Theta at ALCF. While previous pathfinding jobs were carried
out on upwards of 4000 nodes on Theta, the final production
run was limited to a maximum of 2863 nodes—this number
was ultimately a factor of the available work in natural breaks
of the data combined with perceived better scheduling. Note
that the DDF survey simulation possesses a natural compu-
tational edge in that it is capable of building off checkpoint
files done at other facilities; it functionally only needs to draw
additional objects onto the images that were not necessary for
the WFD survey. As a result, this additional area only required
≈ 10M compute hours at Theta in order to complete.

B. Overhead

While introducing additional overhead via containerization
may be a concern, we note that task bundling, worker dis-
tribution, loading of the containers, and loading of necessary
Python libraries takes no longer than 15 minutes on average
on Theta—a fairly low cost in comparison to the code run time
of around ten hours. In contrast, it has been noted that loading
large Python libraries across many nodes simultaneously can
result in file system slowdown in a number of other use cases;
it is quite possible that even without a container, we would
see comparable load times.

While there is a potential for some performance loss due
to the use of containers, the convenience of being able to run
on multiple computing resources outweighs these concerns.
Indeed, anecdotally, similar workflows on these resources have
demonstrated that the performance loss is minimal.

C. System utilization

We conducted a small-scale experiment to observe fine grain
system utilization. Here, we submitted a subset of the full sim-
ulation and provisioned three nodes on the Cori supercomputer
KNL nodes. We see in Figure 5 that the submitted task bundles
run for approximately 10 hours each, and consume most of the
available resources. We also see that tasks remain queued until
there is available capacity, and that some tasks are only created
when other tasks have completed. Some underutilization of
compute nodes can be noted when the number of remaining
tasks goes to zero—this is driven by the significant differences
in compute time from image to image and no longer being able
to fill the nodes with new work. While this experiment was
carried out on a small number of nodes, we observe similar
behavior at several thousand compute nodes.

D. Scalability

With regards to scaling of imSim, the division of tasks
at the level of sensors proves to be bounded primarily by
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Fig. 5. ImSim Workflow machine utilization for a small-scale experiment.
The upper figure shows the total active tasks vs available nodes over time.
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the amount of available memory on a compute node. With
98 GB of RAM available per node on Cori, this ends up
being a safe upper limit of 33 sensors per compute node.
The 196 GB of RAM available per node on Theta results in
this number being raised to 64, primarily due to evidence that
hyperthreading does not seem effective at reducing compute
time. It should be noted that this scaling is not perfect —
while direct comparisons are difficult, the compute needs of
the image simulation are large enough that increasing the
number of active threads on a processor can result in reduced
clock speed due to overall power consumption. On Theta,
we achieved peak use of the machine at running with 4000
compute nodes simultaneously. This results in a peak usage
of 256,000 images being simulated, handled by 4000 Parsl
workers running across 4000 compute nodes. While traditional
scaling measurements are difficult due to the combination of
the computational cost and the high image to image variance,
the Parsl executor scaling has been demonstrated in other
works [6].

VI. DISCUSSION

The ImSim Workflow served to enable a major simulation
effort, scaling up to thousands of nodes and allowing us to
finish production in our target time frame. The success of this
workflow demonstrates the viability of Python-based parallel
workflows and use of containers in support of a complex
simulation; since this work several new workflows have been
developed following similar methods, but with significantly
different codes and goals. With that in mind, we describe ways
to improve our approach for future simulation efforts.

One particularly exciting area to consider is the use of
remotely driven workflows. Workflow drivers could even op-
erate on resources entirely external to the HPC facility, such
as a user’s laptop or in the cloud. In our simulation effort,
we favored an approach in which the Parsl workflow driver
ran on compute or launch nodes in order to avoid workflow
disconnects at critical junctions; this disconnect could be the
result of scheduled maintenance, a login node failure, or a

network connection failure as some common examples. At the
time of our production, this required a manual reconnect of
the drivers to worker tasks, which may not be always feasible
depending on when jobs are started.

In the case that the workflow driver can be safely hosted
on a stable environment, there are a number of improvements
to computational and practical efficiency that can be made.
One advantage is that some compute facilities potentially favor
running jobs in smaller blocks; having the driver running on
the compute node can allow simulation tasks to be easily
divided even among separate jobs on the compute nodes. This
also potentially reduces the amount of wasted compute as the
simulation tasks are exhausted—rather than one large job in
which many nodes have little work, one will likely be left
with only a single small job. As many facilities are starting to
explore workflow nodes that are designed for hosting drivers in
such a way, this becomes an increasingly promising direction.

A more ambitious possibility is to consider running the
workflow driver external to the computing facility itself, either
on cloud services or local clusters. This external site can
manage a list of all computational tasks, request resources
at multiple compute facilities, and coordinate the distribution
of this work based on an assessment of remaining com-
pute allocations, expected wait and wall times, and required
resources. As our process uses containers extensively that
function across sites, such an approach could be valuable as
the compute requirements for tasks continue to grow. However,
it may ultimately be limited by specific site restrictions; as
one example, Theta compute resources do not have inbound
network connectivity and thus would require an agent to be
pre-deployed to the system (e.g., using funcX [7]).

Another possible point to consider is the containerization
process itself. We briefly alluded above to the fact that the
Docker image used in the workflow contains all the underlying
code necessary for the simulation. While this has distinct
benefits from a portability perspective (as the code can now be
run on any facility that supports containers), we note that many
compute facilities have undergone significant work to compile
optimized Python libraries for their specific architecture. While
we did not measure the impact of this on the image simulation
code, it might be important to consider this situation in future
efforts. At some level, there is a natural back-and-forth on the
matter of portability—at what point does a potentially small
compute speed-up outweigh the ease of portability and the
requirement of reproducibility across multiple platforms.

Finally, there is also the possibility of improvements at the
level of the underlying simulation code. The version of imSim
utilized during the DC2 simulation effort was limited to each
sensor simulating the image on an object by object basis, with
parallelism limited to the level of processing multiple sensors
for a given visit. Current development for imSim is exploring
an alternative approach where rather than parallelizing on a
per sensor basis, the code instead parallelizes on a per object
basis—an entire compute node would be occupied drawing
objects on a single sensor simultaneously. While the method
is still in early stages of exploration, estimates of the per object



time to compute suggest that it might help reduce the disparity
in compute task run times. This may represent a significant
utilization improvement, although one that may have to be in
concert with other memory use improvements.

VII. RELATED WORK

The imSim package builds on the underlying GalSim
library. While this effort represents the first time that a survey
was simulated at this scale (with prototype efforts being a
factor of 50 smaller), it is likely that other future efforts
in astronomy will benefit from the improvement of these
simulation methods. Both ESA’s Euclid mission and NASA’s
Nancy Grace Roman Space Telescope have been discussed
as benefiting from testing analysis based on GalSim products
[5]. While LSST remains the focus of massive surveys at
the moment, it is unlikely to be the last for the astronomy
community.

There have been various other efforts to implement large-
scale cosmology workflows. For example, the LSST project
is developing a scalable workflow infrastructure in Python.
Our approaches are compatible, and we are working towards a
Parsl-based implementation of the LSST processing pipelines.
Prior work has also focused on developing tightly-coupled
frameworks for analysis of cosmological surveys. One ex-
ample, the Hardware/Hybrid Accelerated Cosmology Code
(HACC) [8], supports extreme-scale analysis on supercomput-
ers and can efficiently make use of accelerators.

There are a large number of workflow systems that could
be used to implement the ImSim Workflow, including Pe-
gasus [9], Galaxy [10], Swift [11], NextFlow [12], Fire-
Works [13], Apache Airflow [14], and Luigi [15]. Pegasus and
Galaxy implement a static DAG model in which users define
a DAG, using an XML document or GUI, and subsequently
execute that DAG. Similarly, systems like Swift and NextFlow
implement a custom domain specific language (DSL). We
choose here to instead represent our workflow in Python
to support ease of development. Like Parsl, Python-based
workflow systems such as FireWorks, Airflow, and Luigi
enable specification in Python. However, these systems do not
provide the flexibility required by our workflow to support
both local threaded computations and remote computations.
Nor do they provide hooks for the fine-grained scheduling
implemented in the ImSim Workflow.

VIII. CONCLUSIONS

We have described the development and execution of a
high performance simulation workflow to create a large-scale
data release of synthetic sky images. Specifically, we have
described how we scaled the workflow from managing many
individual single-node compute jobs to one that can be easily
ported around multiple HPC facilities. While the particular
computational limitations of our image simulation workflow
may not be applicable to every large simulation effort, we
believe that this type of computational effort will become
increasingly common going forward in scientific computing.
We note that we were able to scale up this code to 256,000

simultaneously running processes on Theta, keeping workers
active with compute tasks continuously. The combination of
Parsl and containers allowed us to develop a straightforward
workflow in Python that scales to high node counts while
simultaneously being highly portable.

There are several improvements that could be made at the
workflow level through integration with new facility tools. Of
particular interest is the usage of “workflow nodes,” dedicated
and highly-available nodes where we could run the control
part of our workflow, which would allow us to utilize mul-
tiple submission blocks simultaneously with Parsl naturally
farming out the necessary compute tasks without worrying
about unnecessarily loading log-in nodes or struggling with
various maintenance periods that are necessary for keeping
HPC resources running. Additionally, while Parsl provides
extensive task monitoring, we found points where additional
information is necessary to ease debugging of fringe failure
cases. These requirements have motivated the development of
improved monitoring capabilities in recent Parsl releases.

As scientific efforts continue to focus on extremely high
precision analysis, the desire to test software driven pipelines
in advance of hardware acquired data will persist. Workflows
like those we have developed will become an increasingly
powerful tool for scientific research. The ImSim Workflow
demonstrates a way to easily scale up a simulation code to
extremely large node counts while remaining highly flexible
to leveraging multiple computing facilities. With further im-
provements, it is entirely possible that future simulation efforts
could achieve even higher throughput, improving the ability
for scientific pipelines to be robustly tested.
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