Federated Function as a Service for eScience

Yadu Babuji*, Josh Bryan*, Ryan Chard*, Kyle Chard*,
Ian Foster*, Ben Galewsky™, Daniel S. Katz™, Zhuozhao Li*
*University of Chicago, T University of Illinois at Urbana-Champaign

Abstract—The function as a service paradigm aims to abstract
the complexities of managing computing infrastructure for users.
While adoption in industry has been swift, we have yet to see
widespread adoption in academia. This is in part due to barriers
such as the need to access large research data, diverse hard-
ware requirements, monolithic code bases, and existing systems
available to researchers. We describe funcX, a federated function-
as-a-service platform that addresses important requirements for
use of FaaS in research computing. We outline how funcX has
been used in early science deployments.

Index Terms—Serverless computing, FaaS, funcX

I. INTRODUCTION

Function as a service (FaaS) allows for applications to
be decomposed into functions that are executed remotely
and elastically without considering the resources on which
functions are deployed. Cloud FaaS platforms abstract the
underlying computing infrastructure almost entirely and offer
duration-based pricing models in which customers are charged
for every millisecond of execution. While FaaS has been
widely adopted in industry it is yet to be broadly adopted
in research computing. There are several key reasons: the
mismatch with current research computing workloads, cost
of transferring and storing large research data in the cloud,
lack of support for specialized computing hardware, and
the availability of research computing systems that are pre-
configured with common libraries.

To address the specialized needs of research computing
we are developing funcX [1], a federated FaaS platform.
funcX transforms the FaaS paradigm by allowing function
invocations to be routed to endpoints hosted on arbitrary
remote computer systems, from the edge to supercomputing
facilities. In this poster we describe funcX and highlight how
it is being used in various research scenarios.

II. FUNCX

funcX is implemented as two components: (1) a cloud-
hosted service and (2) user-deployable agent software.

The cloud service provides a single available point of
contact for users to register and manage endpoints, register and
share functions, and invoke functions on accessible endpoints.
Interactions with the service are via a Python SDK.

The funcX agent can be installed on any computer, trans-
forming it into a function-serving endpoint. The agent is a
Python application that is responsible for managing computing

This work is supported by NSF 2004894/2004932 and an Argonne Lab
Directed Research and Development award.

resources and executing functions on behalf of users. The
agent uses Parsl [2] to interact with diverse computing sys-
tems, from clouds to high performance clusters with various
batch scheduler interfaces (e.g., SLURM, PBS). The agent
dynamically provisions resources and executes functions in
defined execution environments (optionally using containers).

To users, funcX looks like any other FaaS platform. Users
register Python functions with the funcX service and op-
tionally specify dependencies or a container, set access per-
missions to share functions with other users, and provide
descriptive metadata. After registration, authorized users may
invoke the function via the funcX service by specifying the
necessary input arguments. Unlike traditional FaaS systems,
funcX also allows users to specify the endpoint on which they
wish to execute the function.

Users are thus able to route function invocations based on
requirements. For example, they may execute functions where
data may be located, where specialized hardware or software
may be deployed, where resources are available at a particular
time, or where costs may be lowest.

III. DEPLOYMENTS

funcX is currently being used in three main ways: to
execute arbitrary analysis and simulation workloads, to provide
interfaces to research cyberinfrastructure, and as a platform for
building other services and applications. We briefly describe
representative case studies for each type.

A. funcX for analysis

High-energy physicists face the challenge of applying
statistical models to large amounts of data to derive physics
information. In the past, statistical fitting was traditionally
implemented in C++ and installation represented a significant
hurdle for potential users. Feickert et al. recently imple-
mented a funcX-based approach using the pyhf pure-python
fitting/limit-setting/interval estimation package and exposing
it as a funcX function [3]. This function has been used to
process large datasets on various remote systems, including
SDSC Expanse, BlueWaters, and an OSG cluster.

Biologists using Argonne National Laboratory’s Advanced
Photon Source (APS) face the challenge of rapidly computing
results as experiments are running, for example to check qual-
ity, view reconstructions, and see preliminary results all while
the sample is in the beamline. Rapid analysis allows them
to steer the experiment, reorient samples, restart experiments,
and move to new samples when necessary. The computing



(2) Execution
(function, endpoint, arguments)

"

(1) Registration
(function + container)

<o func\i

Endpoints

Functions

Fig. 1. funcX architecture showing funcX agents deployed on the Aurora
supercomputer and a beamline at SLAC. The funcX service (middle) manages
a catalog of endpoints and functions, and is responsible for routing function
invocations to accessible endpoints for execution. Users interact with funcX
by (1) registering functions, and (2) invoking functions with necessary input
arguments and target endpoint.

tasks here are varied: some can be run on modest compute
resources, while others require HPC systems, for example
to refine structures. APS researchers have deployed funcX
on local compute resources and supercomputers at Argonne’s
Leadership Computing Facility, and they use it as part of
their real-time experiment pipelines. funcX has been adopted
at multiple beamlines to process hundreds of thousands of
datasets, including as part of an effort to solve structures of
the SARS-CoV-2 at the Structural Biology Center [4].

Molecular scientists are building machine learning models
for predicting the 3D geometries of small organic molecules.
Their approach relies on training data generated by running
molecular dynamics (MD) simulations for tens of thousands of
molecules. The researchers use funcX to port MD simulations
across various computing resources, including a local GPU
cluster as well as a Kubernetes cluster. funcX allows them to
easily route simulations to resources when they are available,
to scale analyses based on needs, and to leverage containers
to abstract system differences.

COVID researchers have developed a simulation to explore
contagion via agent-based modeling, as well as potential ef-
fectiveness of various measures. They developed a model that
predicts spread based on various input parameters. Using the
model requires executing an ensemble of scenarios and explor-
ing the effects of various features. To do this, the researchers
registered the model as a funcX function. They use funcX

to run large ensembles on campus and national resources by
invoking the function with various input parameters.

B. funcX as an interface

The National Center for Supercomputing Applications’
Hardware-Accelerated Learning (HAL) cluster uses funcX
to provide straightforward access to various groups of re-
searchers. In one example, HAL’s administrators configured
a funcX endpoint and registered a set of astrophysics codes
for detecting gravitational waves as a funcX function. They
then shared access to the endpoint and function with a select
group of users, enabling them to easily execute the code using
HAL’s FPGAs.

C. funcX as a platform

Xtract [5] is a metadata extraction system that can process
scientific data repositories and derive metadata from files
stored in those repositories. Xtract applies metadata extraction
pipelines that are able to learn about individual files and apply
suitable metadata extractors to those files. For example, a PDF
file may be processed with a text, table, and image extractor;
and the image, if identified as a map, may then be processed by
a map extractor. Xtract uses funcX for all computation. Each
extractor is registered as a funcX function with a container
that wraps necessary dependencies. When processing a target
repository, Xtract uses funcX to invoke the extractor function
“near” the data by sending it to a co-located endpoint.

The Data and Learning Hub for science for science
(DLHub) [6] is a multi-tenant system that provides both a
model repository and model serving capabilities with a focus
on science applications. DLHub uses funcX to provide scalable
and low-latency serving engine that can leverage remote and
heterogeneous computing resources to democratize access to
published models through a simple web interface.

IV. SUMMARY

funcX is a federated function as a service platform that
is designed to address the unique requirements of research
use cases. It offers a single cloud-hosted interface via which
users may manage not only functions but also the endpoints
on which those functions are executed. funcX is being used
in various domains from biology to high energy physics, as
an interface to heterogeneous computing systems, and as a
platform for developing new applications and services.

REFERENCES

[1] R. Chard et al., “Funcx: A federated function serving fabric for science,”
in 29th Intl. Symp. on High-Perf. Par. & Dist. Comp. (HPDC), 2020, p.
65-76.

[2] Y. Babuji et al., “Parsl: Pervasive parallel programming in Python,” in
28th Intl. Symp. on High-Perf. Par. & Dist. Comp. (HPDC), 2019.

[3] M. Feickert et al., “Distributed statistical inference with pyhf enabled
through funcX,” arXiv, vol. 2103.02182, 2021.

[4] M. Wilamowski et al., “2’-0 methylation of RNA cap in SARS-CoV-2
captured by serial crystallography,” PNAS, vol. 118, no. 21, 2021.

[51 T. J. Skluzacek et al., “A serverless framework for distributed bulk
metadata extraction,” in 30th Intl. Symp. on High-Perf. Par. & Dist. Comp.
(HPDC), 2020, p. 7-18.

[6] R. Chard et al., “DLHub: Model and data serving for science,” in IEEE
Intl. Par. & Dist. Proc. Symp. (IPDPS), 2019.



