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Proteins are essential 
for all living organisms 
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Transportation: Moving materials 
within a cell and the organism

Catalysis: Increasing the rate of a 
chemical reaction within cells

Signaling: Receiving, processing, and 
transmitting signals within the cell 

and with the environment 

Proteins are responsible 
for many vital cellular 

functions

Antibodies: Helping to protect the 
body from foreign particles, such as 

viruses and bacteria

Structure: Providing structure and 
support for cells
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• Structural biology explains 3D structures of 
biomolecules

• Biomolecules are proteins/RNA/DNA

Gleevec®
Anticancer drug 
(Leukemia)

Knowing the 3D structure is critical for 
drug development

New 
medicine

Protein 3D 
structure • Information on atomic 

positions
• Hundreds of thousands 

of atoms and more

Cell

Drug 
development



X-ray Free Electron Laser (XFEL) beams 
create 2D diffraction patterns that reveal 
properties of the 3D protein structure

5

There are experimental methods (X-ray, cryo-EM, 
SAXS, XFEL) to obtain partial information about the 3D 
protein structure



Structural properties: Orientation 
Orientation refers to the 
placement of the incident 
beam with respect to a 
protein structure 

• Φ (Azimuth) = [-180,180]
• Θ (Altitude) = [0,180]
• Ψ (Psi or rotation angle) = [0, 360]
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Orientation 1
Φ, θ, Ψ = 24o, 151o, 346o

Orientation 2
Φ, θ, Ψ = 145o, 128o, 291o

*Images  from “Common conventions for interchange and archiving of 
three-dimensional electron microscopy information in structural biology” 
by Bernard Heymann, Monica Chagoyen, and David M. Belnap. 

Φ θ Ψ



Structural properties: Conformation 

Conformation is the shape 
adopted by a protein and 
is caused by the rotation of 
the protein atoms around 
one or more single bonds
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Conformation B
Φ, θ, Ψ = 34o, 139o, 106o

Conformation A
Φ, θ, Ψ = 24o, 151o, 346o



Structural properties: Protein type 

Protein type refers to the type and number of amino 
acids composing a protein

• 20 different type of amino acids 

• Amino acids can combined in different ways to 
make a protein

— sequence

— number (up to thousands)
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Protein type A
Conformation A

Φ, θ, Ψ = 24o, 151o, 346o

Protein type B
Conformation C

Φ, θ, Ψ = 84o, 32o, 82o



Structural properties
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Orientation 1
Φ, θ, Ψ = 24o, 151o, 346o

Orientation 2
Φ, θ, Ψ = 145o, 128o, 291o

Conformation B
Φ, θ, Ψ = 34o, 139o, 106o

Conformation A
Φ, θ, Ψ = 24o, 151o, 346o

Protein type A
Conformation A

Φ, θ, Ψ = 24o, 151o, 346o

Protein type B
Conformation C

Φ, θ, Ψ = 84o, 32o, 82o
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XFEL 

3D Structure 
(Real Space)

3D Structure 
(Fourier Space)

Experimental 2D 
diffraction 
patterns

Identifying the 
structural properties 
embedded in the 2D 
diffraction pattern is 
key for the 3D 
reconstruction and 
understanding the 
protein’s structure
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We need to integrate the experimental methods with computational 
frameworks to gain information on structure and dynamics and 
accelerate scientific discovery

a1= -10.1
a2= 151.3
a3= 305.8
conf = 1n0u
pt = EF2
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Our goal is to design and implement a 
ML-based framework that predicts 

simultaneously the three 
structural properties from 

protein diffraction patterns



Framework design consideration 1

1. Simultaneous multi-output and multi-type predictions 
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Categorical values
Protein A or Protein B or … or Protein N

Categorical values
Conf. A1 or Conf. A2 or … or Conformation NN

Continuous values
Angle 1 = [-180,180]
Angle 2 = [0,180]
Angle 3 = [0,360]

Protein type

Conformation

Orientation



Framework design consideration 1

1. Simultaneous multi-output and multi-type predictions 
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Multiple ML models

We define three different ML models for the three predictions 
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Multiple kNN models
We select kNN (k-Nearest Neighbors) because of it high accuracy in both 
classification and regression problems and low execution costs
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k-Nearest Neighbors (kNN)

This algorithm looks at the K nearest neighbors of a new data point (in feature 

space) to determine the predicted value
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k-Nearest Neighbors (kNN)

This algorithm looks at the K nearest neighbors of a new data point (in feature 

space) to determine the predicted value
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Selecting the K number of neighbors
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The K number of 
neighbors is critical for 

the prediction

Number of neighbors (K)
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An analysis of the root 
mean square error 

(RMSE) of the degree 
allows our framework 
to identify the most 
suitable K number of 

neighbors



Framework design consideration 2

2. Transformation from diffraction patterns to feature vectors
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From diffraction patterns to feature vectors

We use an autoencoder to represent diffraction patterns in feature vectors of 
dimension n 
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Feature vectors dimension (n)

The dimension of the feature vector has to be sufficient to faithfully 
reconstruct the original diffraction patterns 
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Feature vectors dimension (n=5)

The dimension of the feature vector has to be sufficient to faithfully 
reconstruct the original diffraction patterns 
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Reconstructed 
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Feature vectors dimension (n=10)

The dimension of the feature vector has to be sufficient to faithfully 
reconstruct the original diffraction patterns 
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Reconstructed 
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Feature vectors dimension (n=15)

The dimension of the feature vector has to be sufficient to faithfully 
reconstruct the original diffraction patterns 
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Feature vectors dimension (n=20)

The dimension of the feature vector has to be sufficient to faithfully 
reconstruct the original diffraction patterns 
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Feature vectors dimension (n=50)

The dimension of the feature vector has to be sufficient to faithfully 
reconstruct the original diffraction patterns 
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Identify the suitable feature vector dimension

Using the elbow method, our framework identifies when variance of the error 
and the associated gain in accuracy are not significant
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Identifying structural properties with XPSI

We demonstrate our framework's 
capability to identify structural 
properties by merging diverse 
datasets of diffraction patterns 
with multiple orientations, 
conformations, and protein types

• 39,692 diffraction patterns per 
each conformation

 

31

1n0u 1n0vc 4kj-9a 4kj-bc

P
ro

te
in

 
ty

p
e

EF2 Ribosome

C
o

n
fo

rm
at

io
n

O
ri

en
ta

ti
o

n

Angle 1 = [-180,180]
Angle 2 = [0,180]
Angle 3 = [0,360]

Angle 1 = [-180,180]
Angle 2 = [0,180]
Angle 3 = [0,360]



Identifying structural properties with XPSI

We demonstrate our framework's 
capability to identify structural 
properties by merging diverse 
datasets of diffraction patterns 
with multiple orientations, 
conformations, and protein types
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But there is one extra 
challenge … Noise 



Noise in the XFEL diffraction patterns

The XFEL beam intensity is proxy for noise in the diffractions patterns (images)
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Lower beam 
intensity  
→ Higher noise 
→ Lower image 
resolution

low medium high

lowmediumhigh
Beam intensity

Noise level



Identifying structural properties with XPSI
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Identifying structural properties with XPSI

We quantify and validate XPSI’s 
ability to provide accurate 
structural properties predictions  
for diverse datasets of diffraction 
patterns (multiple orientations, 
conformations and protein types) 
with different beam intensities

➔ 10% testing data (~4000 
diffraction patterns from each 
conformation)
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Computer infrastructure

1 x 32-core Power9 node (128 GB 
RAM) with 1 x GPU Nvidia V100s
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Orientation error

1. Error degree
The distance between two points 
on a sphere given Φ (Azimuth) 
and Θ (Altitude)

2.   Psi difference
The difference between real and 
predicted Psi (Ψ) angle

We measure the 
error to predict 
the three angles 
using two metrics
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Orientation error
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The psi difference for 
90% of the testing data 
is below 7o

The error degree for 
90% of the testing data 
is below 6o



Accuracy: Represents the ratio of 
correct predictions over the total 
number of cases examined
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Conformation accuracy



Accuracy: Represents the ratio of 
correct predictions over the total 
number of cases examined
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Conformation accuracy



• XPSI predicts between 4 
different conformations with 
an accuracy of 90% on 
average

• XPSI always predicts the 
conformations within the 
proteins (no inter-error class)
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Conformation accuracy



Protein type accuracy

• XPSI predicts between 2 
different protein types with an 
accuracy of 100% 
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XPSI remarks

We demonstrate the scientific robustness of XPSI in different challenges:
• Identifying multiple proteins (100% of accuracy), conformations (90% of 

accuracy), and orientations (error degree < 6o and psi difference < 7o)
• Differentiating between conformations (97% of accuracy) with similar, but not 

identical, structures of the same protein 
• Identifying rotation in the diffraction patterns, even in the presence of 

symmetry (error degree < 10o and psi difference < 10o)

All of these capabilities are proven with different beam intensities. The lower the 
beam intensity the noisier the diffraction patterns, which affects the accuracy of 
the predictions

44



XPSI Jupyter notebook 

We provide a Jupyter Notebook for shareability and portability of our 
framework
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https://github.com/TauferLab/XPSI

https://github.com/TauferLab/XPSI
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Apply our XPSI 

framework to 

XFEL slice 

matching for 3D 

reconstruction

XFEL slice matching for 3D reconstruction



XPSI Jupyter notebook 

We provide a Jupyter Notebook for shareability and portability of our 
framework
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https://github.com/TauferLab/XPSI

https://github.com/TauferLab/XPSI
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