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Current trends are creating an significant need for fully automated
scientific workflows that must run across multiple systems.

o GPUs are mainstream, DPUs and Al accelerators are coming
o Leading Al accelerators already fielded at HPC centers
o Diversity will only increase

Hardware
Heterogeneity

!

Fully
o Driven by economy and need for higher diversity Convergence automated
o Must leverage cloud for our long-term viability w/ Cloud :> cross-system

Tech. workflows

A

o More apps are combined Scientific
o Data-science facilitate workflow approaches Workfloyv
Complexity
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Our work identifies three key challenges and solutions needed
to compose, analyze and optimize a cross-system workflow.

Conceptualization Performance Analysis Perforrnaljce
Optimization

* Knowing the key performance * Gathering performance data * Easily re-configuring the

space of a cross-system workflow  from large numbers of workflow to tune the turn-
that is composed of many components without losing around time performance of an
application components. modularity and uniformity end-to-end workflow
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Our work targets a small molecule drug design and development
workflow with concrete cross-system computational requirements.

Need for screening billions of molecules
— Combine traditional HPC simulation with ML FGMD Structural Core T TTTTEmTTEETmmTEmTmTmT

Kubernetes /
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= Map to large supercomputers and Kubernetes | :
— Of 3 completely different computing hardware : .. —1= I SE’ £ . :
| 28 pocine1 || |2 RS ach - !
= Combine many application components I 2 i o Sx s 0 !
I 59 ' : (Flux Job 1) I
— General-purpose workflow management components I ::o I
. . fe . . I I
— Domain-specific application components 1 Dockinlg Fiux Instance Flux Instance !
: (CPU Cluster) U Cluster) !

Software engineering is a contribution but ... Docked Ligand Data

Vast Fusion Scoring Data
= Mostly talk about performance challenges encountered —ealaS.
— Measuring, analyzing and optimizing AHA Moles workflow architecture

— The performance of the complete workflow
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Challenge 1: Conceptualization of the performance tradeoff
space of large composite workflows is non-existent.

= Complex interplays of many different application

— Generate, schedule and execute tasks in concert

)

: — A task must be adapted between large numbers of components
Job size " D P . P
— Single component optimization often does not mean ...
FI
= An example found in our drug screening workflow

— F o D:Alarge job size is better for Flux but can expose scalability
issues within ConveyorLC Docking

F+D — F ° D: Flux optimization non-intuitively shifts optimality

\Minimum 2

— > = Optimality can be reasoned about
F+D | Makespan

I———J

— Only when we consider the composite performance functions

F: Default Flux scheduler — Across the interdependent application components
F’: Optimized Flux scheduler

D: Docking task scheduler within ConveyorLC simulation code
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Our proposed performance variables-based approach allows for
easy reasoning of the key performance trade-off space.

= |[ndependent performance variables
— Amounts of resources allocated to docking
— Size of ConveyorLC docking jobs

— Start time of resources allocated to Fusion

= Dependent performance variables

— Performance of Flux job scheduling

— Performance of ConveyorLC scheduling

= A point optimization must be reasoned

— With such performance dependencies

Independent Dependent
Variables Variables
Start time Amount of

for Fusion / for Fusion

Size of ConveyorLC
ConveyorLC scheduling
job overhead
Amount of Flux
resources .~  scheduling
for overhead
Docking

Performance variables and dependencies
of drug-screening composite workflow

Independent Dependent
Variables Variables
Start time Amount of

of resources <« resources
for Prod. for Cons.

IVar DVary
IVar, DVar,
IVar, DVary

Generalization
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Challenge 2: Analyzing the overall turn-around time performance of
a workflow in a manageable fashion.

Many HPC profilers, tracers and techniques exist, but ...

— Target a single application performance analysis Maestro
________ @ dominant
\h
= Proposed principles for composite workflow analysis ‘@\
) o ~.@\A ConveyorLC
— Each component scheduler exposes its performance characteristics dominant
— An overall workflow-level performance model guides the composition % region
— Full observability on the performance of the complete workflow B
. .\ . . . . |
Critical path analysis (CPA) is used as our modeling basis ‘/@*
— To embody the first two principles Kgs TTTT--- ﬂ
— Determine the cause of a workflow’s makespan dominant  GMD SC @\
— By finding the event path in the task execution history of the region adapter
kflow that has the longest duration dominant
wor g ' region Flux dominant region
" Developed PerfFIOWASpeCt for the 3rd prinCiple Critical path of Docking tasks for AHA MoleS
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We use Aspect Oriented Programming (AOP) to observe the
performance of the workflow with modularity and uniformity.

PerfFlowAspect implements this concept

— Decorator-based annotation for Python
« @critical_path (pointcut=<type>)

Unwieldy

AOP paradigm allows for I —
— Minimum modifications to the disparate application components
— Casting the cross-cutting performance-analysis concerns

* Black boxes are disparate workflow

— __ attribute__ based compiler instrumentation (LLVM-based) components
- __attribute__ ((annotate("@critical_path (pointcut=<type>)"))) * Red strips are measurement codes

— Provide one type of “advice”
» Advice emits tracing data on every annotated function invocation

* In Chrome Tracing Format (CTF) | | |

Component application owners are responsible for

— Annotating their components independently
— On those functions on the plausibly critical path

Manageable

Resulting composite workflow produces
— Performance traces and profiles —

v Process 17167

pEEE |

[3.500 s

— Without sacrificing the requisite modularity and uniformity = fiuion qmanager | S

check_watcher_cb alloc_cb...

fluxion resource | match_request_cb

sched.alloc(53754200065)
check_watcher_cb

match_request_cb
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Challenge 3: Easily re-configuring the workflow for iterative exploration of
the end-to-end workflow turn-around time performance.

Addressed directly at the workflow software architecture level

= Performance modeling and variables guide blending /@ AOP-Based Performance Analysis and Optimization \
— Via well-defined AP e Highly Re-configurable Composite Workflow \
. . Domain Specific Reusable Workflow Components
= Form a highly re-configurable base platform pecific | f g
ML Workflow Container Services
— W/ respect to critical performance variable according to the CPA v Apps + Specification on Kubernetes
— E.g., Size for ConveyorLC docking jobs : » Model
Plotieli=spreihiic Based User-space RJMS / Pilot Job system

Workflow Mgr. j

>/

Iterate over the key performance configuration space k\

— Captured in our performance variables _ _ _
Proposed target composite science workflow architecture

— Analyzing the AOP traces/profiles for each iteration

— Using the performance traces/profiles from PerfFlowAspect
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Cross-system workflow evaluation environment:

Build AHA Moles workflow software as a multidisciplinary team until ...
— We can perform controlled benchmark runs at large scale
— Simultaneously using two supercomputers and on-premises RedHat OpenShift Kubernetes cluster at LLNL

Ruby: a CPU supercomputer with a total of 1,512 compute nodes.
— Each node contains two Intel Xeon CLX-8276L CPUs with a total of 56 cores.

Lassen: a CPU-GPU heterogeneous supercomputer with a total of 795 nodes.
— Each of the nodes has two IBM Power9 CPUs with a total of 44 cores
— Four Nvidia Tesla V100 (Volta) GPUs.

The RedHat OpenShift Kubernetes cluster consisting of

— Three Kubernetes servers and five worker nodes
— Together with a NetApp AFF A400 storage system providing object and persistent container storage
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Performance of eight different configurations of AHA Moles.

Flux Docking Fusion Makespan Per Mol
Version  Nodes/job  Total nodes (s) (ms)
efaul 145 220 15208 7.67

Default 5 220 7841 3.95 > _

gap:e?i;faolllgl\lzjv);:rig Default 145 140 15257 7.69 2.46x speed-up
verformance! 5 140 9717 4.90 ;-
w 145 220 19049 9.60 -

5 220 8041 4.05

145 140 19236 9.70> _
5 140 9666 4.87

Flux Default (flux-core v0.26, fluxion v0.15)
Flux Optimized (flux-core v0.27, fluxion v0.16)

Fusion Over-provisioned (220 Lassen nodes)
Fusion Under-provisioned (140 Lassen nodes)

Large Docking Job (145 nodes)
Small Docking Job (5 nodes)
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Results synthesis and analysis

= Choice of independent performance variables is critical

= The fact that the default Flux version generally outperformed the optimized version is unexpected
— Signal the non-linear nature of the composite performance functions

= A suboptimal choice of another independent performance variable can explain a significant under-

utilization of Lassen resources
— Start time of resources for Fusion
— Lead to a poor speedup with Fusion resource scaling.

* In the best case, a 1.57x Lassen resource increase provides only a 1.24x speedup.
* In the worse case, the same 1.57x Lassen resource increase is unable to offer any speedup whatsoever.
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Effectiveness of performance analysis and optimization:

= Can our performance analysis techniques help researchers better understand the impacts of a key performance variable?
i Y ST e R |‘ | ' 7' "

" 143885 —

T v

Selected range: 14388011.333227 ms

(a) Large ConveyorLC Docking job, large Fusion and default Flux

Selected range: 3431619.757175 ms

(a) Small ConveyorLLC Docking job, large Fusion and default Flux

Can our analysis inform researchers of a previously unknown area for performance optimization?

,H

% biriizcdat 7 y iz s
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|
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T v (b) Fusion traces for the best configuration

Selected range: 3431619.757175 ms

(a) Small ConveyorLC Docking job, large Fusion and default Flux
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Our solutions can enhance the capacity of a multi-disciplinary team to
create, analyze and optimize a high-performance composite workflow.

A growing consensus that three major characteristics define the next-generation of HPC centers
— Extreme hardware heterogeneity at all levels

— Closer convergence of HPC with cloud computing software

— Complex scientific workflows that must automatically run on next-generation resources across the entire center

Our work provides a window into the challenges that these cross-system workflows will face
— Based on multi-disciplinary effort to run a drug screen workflow across 3 completely different types of center resources

Creating a cross-system workflow using portable software components is an important step, but

— Gaining a deep understanding of the performance space of the composite workflow is equally challenging

— Introduce the concept of performance variables to capture the interplay of different software components

— Instrumenting and analyzing workflows are an unmet challenge which we overcome with PerfFlowAspect

— Difficulties of composite science workflow performance tuning is solved by our direct iteration-based exploration support

Our experiments show that our solutions significantly address the corresponding challenges

— A better choice for an independent performance variable alone can provide AHA MoleS up to a 2.45x improvement
— Identification of dependent variables significantly helps narrow down the search space of end-to-end workflow tuning.
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