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Current trends are creating an significant need for fully automated 
scientific workflows that must run across multiple systems.

Fully 
automated 

cross-system 
workflows

Hardware 
Heterogeneity

o GPUs are mainstream, DPUs and AI accelerators are coming
o Leading AI accelerators already fielded at HPC centers
o Diversity will only increase

o More apps are combined 
o Data-science facilitate workflow approaches

o Driven by economy and need for higher diversity
o Must leverage cloud for our long-term viability

Convergence 
w/ Cloud

Tech.

Scientific
Workflow

Complexity
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Our work identifies three key challenges and solutions needed 
to compose, analyze and optimize a cross-system workflow.

Conceptualization Performance Analysis Performance 
Optimization

• Knowing the key performance 
space of a cross-system workflow 
that is composed of many 
application components.

• Gathering performance data 
from large numbers of 
components without losing 
modularity and uniformity

• Easily re-configuring the 
workflow to tune the turn-
around time performance of an 
end-to-end workflow
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Our work targets a small molecule drug design and development 
workflow with concrete cross-system computational requirements.

§ Need for screening billions of molecules
— Combine traditional HPC simulation with ML

§ Map to large supercomputers and Kubernetes
— Of 3 completely different computing hardware

§ Combine many application components
— General-purpose workflow management components
— Domain-specific application components

§ Software engineering is a contribution but …

§ Mostly talk about performance challenges encountered
— Measuring, analyzing and optimizing 
— The performance of the complete workflow

Fig. 1: AHA MoleS workflow architecture

These capabilities also allow users to tune additional schedul-
ing policies such as queuing and resource matching.

C. Domain-Specific Software Components

ConveyorLC is a high-throughput virtual screening pipeline
to automate the docking and rescoring of compounds against
protein targets [38, 36]. This pipeline mainly includes four
Message Passing Interface (MPI)-based parallel applications
for protein preparation, ligand preparation, molecular docking,
and Molecular Mechanics/Generalized Born-Solvent Accessi-
ble Surface Area (MM/GBSA) rescoring. The docking method
in the ConveyorLC pipeline is based on Autodock Vina.
A mixed MPI and multithreading hybrid parallel scheme is
employed in the ConveyorLC docking application [37]. The
virtual compounds were converted for the docking simulations
by the ConveyorLC ligand preparation application.

Fusion is a structure-based ML model for protein-ligand
binding affinity prediction based on the combination of a
three-dimensional convolutional neural network (3D-CNN)
and spatial graph neural network (SG-CNN) [19]. The 3D-
CNN component is designed to capture 3D atomic interactions
and implicit geometric configurations using a 3D voxel grid.
The SG-CNN component is modified from the PotentialNet [9]
architecture based on Gated Graph Sequence Neural Net-
works [23] and captures explicit pairwise atomic interactions.
The fusion of the 3D-CNN and SG-CNN components models
two complementary representations of protein-ligand interac-
tions to give more robust prediction accuracy when evaluating
new protein targets. The coherent Fusion model has been
implemented in the PyTorch ML framework, which provides
the ability to accelerate the calculations on GPUs [29].

Finally, GMD is an active learning drug discovery frame-
work. It incorporates the AMPL pipeline [24], GMD SC,
and a deep generative network model to iteratively search
for small molecule drug candidates. GMD is designed to
efficiently search through an exceptionally large chemical
space and converge on chemical compounds predicted to
have desirable drug-like properties including consideration of
efficacy, safety, pharmacokinetics (PK), and synthesizability of

the newly proposed compounds. GMD starts with a working
compound library and uses AMPL to predict key pharma-
relevant parameters of molecules. The GMD SC, including
ConveyorLC and Fusion, predicts the binding affinity of com-
pounds. The generative model uses design criteria to guide
the generation of new compounds based on the predicted
values calculated by AMPL, ConveyorLC, and Fusion. The
newly proposed compounds are incorporated into the working
compound library and used to inform the next iteration of
the GMD loop. Once the design loop converges on novel
compounds meeting the design criteria the most promising
compounds are selected for experimental validation and to
update the ML models. The AHA MoleS workflow adapts
the GMD SC infrastructure to enable screening large working
compound libraries against an expanded list of protein targets.

D. Challenges Encountered

We create the AHA MoleS workflow based on a purpose-
built architectural blueprint. The software engineering of
workflow composition is an important development. However,
we find that it is difficult to measure the performance of the
complete workflow. Gathering data on the workflow execution
is a necessary step to measuring and improving performance,
but reliance on trial-and-error necessitates a reconfigurable
workflow. An iterative approach permits performance analysis
and optimization on the entire workflow. In the following,
we provide details on the computing environment where
we evaluate our engineering developments, and then discuss
the solutions to these challenges in the remaining sections.
Although we develop the steps and techniques in the context
of AHA MoleS, it is important to note that our study allows
the techniques to be applied to the broader class of composite
scientific workflows.

E. Cross-System Workflow Evaluation Environment

The blueprint of our target workflow is to couple molecular
docking and an ML algorithm to score small molecule binding
in the protein. Each component has completely different com-
putational requirements, and thus this workflow requires to run

AHA Moles workflow architecture
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Challenge 1: Conceptualization of the performance tradeoff
space of large composite workflows is non-existent.

across multiple systems to be effective. This section details the
systems we use to explore cross-system workflow challenges.
We aim to build our workflow software until we can perform
controlled benchmark runs using two supercomputers as well
as an on-premises Kubernetes cluster simultaneously: Ruby,
Lassen, and the Persistent Data Services (PDS) Red Hat
OpenShift cluster at LLNL. Ruby is a CPU machine with a
total of 1,512 nodes. Each node contains two Intel® Xeon®

CLX-8276L CPUs with a total of 56 cores. Lassen is a
machine using CPU-GPU heterogeneous architecture with a
total of 795 nodes. Each of the nodes has two IBM® Power9TM

CPUs with a total of 44 cores and four Nvidia® TeslaTM V100
(Volta) GPUs. The PDS cluster consists of three Kubernetes
servers and five worker nodes, together with a NetApp®

AFF A400 storage system providing object and persistent
container storage. We targeted the molecule batch creation,
ConveyorLC Docking jobs, and batch completion to run on
Ruby while targeting Fusion jobs to run on Lassen. We map
our applications this way because each of these applications
perform best on respective type of computer hardware. We
expect that this will be a typical configuration in the future as
different applications in a workflow may perform well on a one
type of computing hardware but not on others. And how long
different applications need to run and in what order are also
wildly different from one another. One significant system-level
limitation is that our experiment used a Dedicated Application
Time (DAT) request to guarantee the allocation of the compute
resources on both supercomputers at the same time. This is
because there is no center-level scheduler that can schedule
across these machines in a coordinated fashion (e.g., allocating
both at the same time or allocate Ruby resources first and then
Lassen’s). The settings and resource allocation for different
calculations (e.g., Docking and Fusion) in the workflow are
configurable.

III. PERFORMACE SPACE OF COMPOSITE WORKFLOWS

A science workflow is a sequence of tasks that are executed
in a specific order with or without dependencies. What distin-
guishes a composite workflow such as that constructed from
the components described in Section II from the traditional
approach is that the tasks can be generated, scheduled, and ulti-
mately executed by a set of many domain-specific and general-
purpose components in concert and across multiple clusters. In
a composite workflow, the domain-specific workflow managers
are often interacting closely with a set of general-purpose
workflow and resource/job manager components to push the
increasingly finer-grained units of work or tasks through their
work queues and resource allocators at multiple levels. Moving
tasks via a pipeline of two different components often involves
well-known operations (e.g., generate, submit, schedule, etc)
as well as adaptation procedures between these components.

A. Performance Space

One of the most important goals of any science workflow is
to complete its tasks as quickly as possible while being subject
to constraints such as amounts of compute resources that can

Job size

Makespan

DF

F + D
Minimum 1

F’

F’ + D

Minimum 2

Fig. 2: Optimality relies on composite performance functions;
F is Flux scheduling, F 0 is optimized Flux scheduling, and
D is the task scheduler within ConveyorLC.

be simultaneously used, fair use of resources that are shared by
multiple users, etc. Thus, it is essential to minimize the critical
path that workflow tasks must go through in order to achieve
this goal. If no performance overhead is incurred in performing
scheduling-related operations, identifying those tasks that take
longest at each level through the DAG and shortening the time
to complete these tasks on the critical path should suffice.
In practice however, key workflow scheduling and execution
operations can incur significant performance overheads, which
are affected by multiple performance variables (e.g., sizes of
the task and architectures of the scheduler).

1) Relative performance: A task in a composite workflow
must be adapted between large numbers of components before
it can be allocated to a compute resource and executed at
increasingly finer granularity. Thus, the relative performance
and scalability characteristics of the components are critical
for any composition.

Let us consider the performance and scalability of Con-
veyorLC and GMD SC components described in Section II.
ConveyorLC implements its own ad hoc task-level scheduling
on top of MPI. As it uses the leader-worker pattern in which
each of the worker MPI rank processes fetches new docking
tasks from the single leader MPI rank (rank 0) and thus the
0th rank can experience a significant performance bottleneck
at scale. To run it at scale, therefore, ConveyerLC demands
an ensemble approach whereby a group of ConveyorLC jobs
are managed and run by another component such as Flux.
This performance characteristic is complicated by the GMD
SC software, which is designed to run at varying scales to
support a broader set of domain specific applications. One
of the implications of this characteristic on the composition
is that the number of ConveyorLC jobs that are exposed to
GMD SC for coupling cannot be excessively large, a relative
performance trait generally opposed to that of ConveyorLC.
The final characteristics emerge from Flux: its scheduling
performance can also vary depending on the workload.

2) Optimality relies on composite functions: Figure 2 illus-
trates optimality using the relative performance and scalability
of characteristics of the task scheduler within ConveyorLC and

§ Complex interplays of many different application
— Generate, schedule and execute tasks in concert
— A task must be adapted between large numbers of components
— Single component optimization often does not mean …

§ An example found in our drug screening workflow
— F ◦ D: A large job size is better for Flux but can expose scalability 

issues within ConveyorLC Docking
— F’ ◦ D: Flux optimization non-intuitively shifts optimality

§ Optimality can be reasoned about
— Only when we consider the composite performance functions
— Across the interdependent application componentsF: Default Flux scheduler

F’: Optimized Flux scheduler
D: Docking task scheduler within ConveyorLC simulation code
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Our proposed performance variables-based approach allows for
easy reasoning of the key performance trade-off space.
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Fig. 3: Performance Variables

of the job scheduling and execution services within Flux. Here,
our performance variable is the size of each ConveyorLC job
that is scheduled and executed by Flux. Given a fixed number
of compute nodes (N ) that are managed by a Flux instance,
ConveyorLC can run in many different configurations. It can
run as single-node jobs (many jobs run in parallel), as a large
N -node job (one job runs at a time), or anything in-between.

The performance of the scheduler within either component
varies non-linearly and generally in an inverse manner. As the
size of ConveyorLC jobs increases the number of jobs run-
ning simultaneously decreases, which lowers the performance
overhead of scheduling and execution at the Flux level while
increasing the overhead at the ConveyorLC scheduler level.
Overall, the minimal makespan can only be determined on
the sum of the performance functions of the two schedulers:
F + D or F 0 + D as shown in Figure 2 where F is
the performance curve of Flux scheduling, F 0 is that of its
optimized scheduling, and D is the performance curve of the
task scheduler within ConveyorLC.

3) Performance variables: An optimization becomes
quickly non-trivial; real-world workflows would employ many
more components than our rather simple examples and many
performance variables beyond the job size variable would
affect the performance space. Figure 3 further expands on
our concept of performance variables. There are two types of
performance variables: 1) independent performance variables
and 2) dependent variables. As shown in Figure 3a, the
amount of resources allocated to docking simulations is an
independent variable. Researchers will choose it according to
their science objective. The job size of ConveyorLC is also an
independent variable: it will be chosen according to their prior
understanding of the scheduler behavior. Likewise, the start
time of the resources allocated to Fusion is an independent
performance variable. By contrast, the performance overhead
of Flux scheduling of ConveyorLC jobs become a dependent
variable that depends on both the resource allocation scale for
docking simulations and the size of ConveyorLC jobs. The

performance overhead of ConveyorLC scheduling becomes a
variable that depends on the size of ConveyorLC jobs. Finally,
the minimum amount of resources that Fusion needs for the
optimal makespan becomes another dependent variable that
depends on all three independent variables. Here, the identifi-
cation of the key performance variables and their dependence
relationship is critical for performance optimization. If one
component is optimized such that a dependent variable is
affected, researchers must account for all other dependent
variables correlated with it to understand its true impact.

IV. MANAGEABLE CROSS-COMPONENT PERFORMANCE
ANALYSIS

We now highlight our high-level principles for analyzing the
performance of composite workflows. First, each component
scheduler must identify the key performance and scalabil-
ity characteristics as pertaining to the planned composition
as early as possible. The domain experts of each compo-
nent should be responsible for this identification and cross-
discipline communications for later cross-component analysis.
Second, an overall workflow-level performance model must
guide the initial composition to allow for easy reasoning
of the overall workflow scheduling performance. This model
should be simple, yet rich to capture those events that are
on the critical path of the resulting end-to-end workflow.
Third, a well-defined method to monitor the performance
of the overall workflow is required. A composite workflow
almost always uses a large set of preexisting components,
each of which would generally use different logging and
built-in performance monitoring. Yet, we need a consistent
way to gather performance data for a particular composition
consisting of a disparate set of components to capture the
critical-path events.

A. Casting Critical Path Analysis (CPA)-based cross-cutting
performance concerns

For the first and second principles, we use CPA [34] as
the basis for our performance modeling. CPA is a common
technique to determine the cause of a workflow’s makespan
by finding the event path in the task execution history of
the workflow that has the longest duration. This critical path
identifies where in the workflow we should focus our attention.
This helps researchers reason about how various components
interact with one another as the tasks are moving through these
operations for execution.

For the third principle, we developed a simple AOP [20]-
based tool called PerfFlowAspect (PerfFlowAspect) [11]. It is
a simple performance analysis tool that can cast a cross-cutting
performance-analysis concern or aspect across a heteroge-
neous set of components used to create a composite science
workflow. It is designed specifically to allow researchers to
weave the performance aspect into critical points of execu-
tion across many workflow components without having to
lose the modularity and uniformity of how performance is
measured and controlled. It closely follows the AOP design
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of the job scheduling and execution services within Flux. Here,
our performance variable is the size of each ConveyorLC job
that is scheduled and executed by Flux. Given a fixed number
of compute nodes (N ) that are managed by a Flux instance,
ConveyorLC can run in many different configurations. It can
run as single-node jobs (many jobs run in parallel), as a large
N -node job (one job runs at a time), or anything in-between.

The performance of the scheduler within either component
varies non-linearly and generally in an inverse manner. As the
size of ConveyorLC jobs increases the number of jobs run-
ning simultaneously decreases, which lowers the performance
overhead of scheduling and execution at the Flux level while
increasing the overhead at the ConveyorLC scheduler level.
Overall, the minimal makespan can only be determined on
the sum of the performance functions of the two schedulers:
F + D or F 0 + D as shown in Figure 2 where F is
the performance curve of Flux scheduling, F 0 is that of its
optimized scheduling, and D is the performance curve of the
task scheduler within ConveyorLC.

3) Performance variables: An optimization becomes
quickly non-trivial; real-world workflows would employ many
more components than our rather simple examples and many
performance variables beyond the job size variable would
affect the performance space. Figure 3 further expands on
our concept of performance variables. There are two types of
performance variables: 1) independent performance variables
and 2) dependent variables. As shown in Figure 3a, the
amount of resources allocated to docking simulations is an
independent variable. Researchers will choose it according to
their science objective. The job size of ConveyorLC is also an
independent variable: it will be chosen according to their prior
understanding of the scheduler behavior. Likewise, the start
time of the resources allocated to Fusion is an independent
performance variable. By contrast, the performance overhead
of Flux scheduling of ConveyorLC jobs become a dependent
variable that depends on both the resource allocation scale for
docking simulations and the size of ConveyorLC jobs. The

performance overhead of ConveyorLC scheduling becomes a
variable that depends on the size of ConveyorLC jobs. Finally,
the minimum amount of resources that Fusion needs for the
optimal makespan becomes another dependent variable that
depends on all three independent variables. Here, the identifi-
cation of the key performance variables and their dependence
relationship is critical for performance optimization. If one
component is optimized such that a dependent variable is
affected, researchers must account for all other dependent
variables correlated with it to understand its true impact.

IV. MANAGEABLE CROSS-COMPONENT PERFORMANCE
ANALYSIS

We now highlight our high-level principles for analyzing the
performance of composite workflows. First, each component
scheduler must identify the key performance and scalabil-
ity characteristics as pertaining to the planned composition
as early as possible. The domain experts of each compo-
nent should be responsible for this identification and cross-
discipline communications for later cross-component analysis.
Second, an overall workflow-level performance model must
guide the initial composition to allow for easy reasoning
of the overall workflow scheduling performance. This model
should be simple, yet rich to capture those events that are
on the critical path of the resulting end-to-end workflow.
Third, a well-defined method to monitor the performance
of the overall workflow is required. A composite workflow
almost always uses a large set of preexisting components,
each of which would generally use different logging and
built-in performance monitoring. Yet, we need a consistent
way to gather performance data for a particular composition
consisting of a disparate set of components to capture the
critical-path events.

A. Casting Critical Path Analysis (CPA)-based cross-cutting
performance concerns

For the first and second principles, we use CPA [34] as
the basis for our performance modeling. CPA is a common
technique to determine the cause of a workflow’s makespan
by finding the event path in the task execution history of
the workflow that has the longest duration. This critical path
identifies where in the workflow we should focus our attention.
This helps researchers reason about how various components
interact with one another as the tasks are moving through these
operations for execution.

For the third principle, we developed a simple AOP [20]-
based tool called PerfFlowAspect (PerfFlowAspect) [11]. It is
a simple performance analysis tool that can cast a cross-cutting
performance-analysis concern or aspect across a heteroge-
neous set of components used to create a composite science
workflow. It is designed specifically to allow researchers to
weave the performance aspect into critical points of execu-
tion across many workflow components without having to
lose the modularity and uniformity of how performance is
measured and controlled. It closely follows the AOP design

Performance variables and dependencies 
of drug-screening composite workflow

Generalization

§ Independent performance variables
— Amounts of resources allocated to docking
— Size of ConveyorLC docking jobs
— Start time of resources allocated to Fusion

§ Dependent performance variables
— Performance of Flux job scheduling
— Performance of ConveyorLC scheduling

§ A point optimization must be reasoned
— With such performance dependencies
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Challenge 2: Analyzing the overall turn-around time performance of
a workflow in a manageable fashion.

§ Many HPC profilers, tracers and techniques exist, but …
— Target a single application performance analysis

§ Proposed principles for composite workflow analysis
— Each component scheduler exposes its performance characteristics
— An overall workflow-level performance model guides the composition

— Full observability on the performance of the complete workflow

§ Critical path analysis (CPA) is used as our modeling basis
— To embody the first two principles
— Determine the cause of a workflow’s makespan
— By finding the event path in the task execution history of the 

workflow that has the longest duration.

§ Developed PerfFlowAspect for the 3rd principle

patterns to minimize code modification needed for the dis-
parate workflow-management technologies and also to mod-
ularize the control for managing ways to cast cross-cutting
performance-analysis instrumentation across many compo-
nents.

PerfFlowAspect provides language support most relevant
for HPC workflows such as Python, C and C++. For Python,
it uses an annotating decorator whereby users can use
@PerfFlowAspect.aspect.critical_path() to
annotate their functions that are likely to be on the critical
path of the workflow’s end-to-end performance. These
annotated functions then serve as the join points that can
be weaved together with PerfFlowAspect and acted upon.
Once annotated, running this python code will produce a
performance trace data files that use Chrome Tracing Format
(CTF) in JSON so that it can be loaded into Google Chrome
Tracing or Perfetto to render the critical path events on the
global tracing timeline.

When these annotated functions, or join points, are weaved
together with PerfFlowAspect, users can invoke specific
performance-analysis actions, a piece of tracing code, on
those points of execution. They are often referred to as
advice in AOP. One type of advice within PerfFlowAspect
that our effort uses is Chrome tracing advice. This par-
ticular advice simply logs a performance event data in
CTF. PerfFlowAspect’s annotation also supports the no-
tion of pointcut: a predicate that matches join points. In
fact, @PerfFlowAspect.aspect.critical_path()

can take an optional keyword argument called pointcut whose
value can be around, before, after or their async variations
(around_async, before_async, and after_async).
pointcut=around will invoke the advice before and
after the execution of the annotated function whereas
pointcut=before or pointcut=after will only ad-
vise either corresponding point of function execution.

Unlike dynamic programming languages such as Python,
C/C++ cannot natively and easily weave PerfFlowAspect
into the target program (e.g., using language features like
Python decorator). To overcome this language-level limitation,
PerfFlowAspect introduces a simple LLVM pass which can
detect critical-path annotations in the target C/C++ source files
and to weave these annotated program points together with
PerfFlowAspect’s runtime library as part of Clang compilers’
optimization pass. This allows C/C++ and Python users alike
to use the consistent AOP abstraction of PerfFlowAspect. The
consistent abstraction and tool usage flow for both dynamic
languages and more traditional high performance computing
programming languages like C/C++ significantly facilitate the
high level of unity and modularity as required by the AOP
paradigm.

Each component developer in a multi-disciplinary team
like AHA MoleS can independently use PerfFlowAspect to
annotate their functions that are likely to be on the critical
path of the resulting workflow’s end-to-end performance.

• General case: when a Job completes, run the 
next Job (e.g., e5 -> e6.B)

• Occur many times
• T(MTQ), T(Adapter), T(Maestro) and T(Flux) are 

all on the critical path: T(WF)
• For many short running jobs, it is very important 

to lower T(WF)
• Need for building critical event tracing for all WF 

components
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e2
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Fig. 4: Critical path of Docking tasks for AHA MoleS

B. Application to AHA MoleS

As shown in Figure 1, AHA MoleS can be broadly catego-
rized as a producer-consumer workflow, where Docking tasks
running on a CPU-only supercomputer produce molecular
poses to be consumed by Fusion tasks running on a GPU-
equipped supercomputer. Figure 4 zooms in on a single Flux
instance that schedules and executes ConveyorLC jobs for
Docking tasks. We assume a task is generated by GMD SC,
which is sent to and enqueued into RabbitMQ before it is
dequeued by a GMD SC adapter (e1) that is responsible
for adapting the tasks for next steps. Because the GMD SC
adapter does not directly interface with Flux but via a Maestro
instance, the task has to be adapted to Maestro first via the
invocation of Maestro’s submit API (e2). Maestro then adapts
the task to Flux via the invocation of Flux’s submit API (e3).
Once the task is submitted to Flux, Flux must go through
critical events: its Fluxion scheduler first finds and allocates a
set of resources for this task (e4) and then its execution service
must launch and bootstrap the ConveyorLC job (e5).

The general case is when all of the compute node resources
managed by Flux have been utilized and a running job
completes e6. e6 is a job-complete event emitted from
Flux and e7 and e8 are a job-complete-detected events
emitted from Maestro and then from the GMD SC adapter. e9
indicates the GMD SC adapter sends a job-done message
to RabbitMQ. Between e5 and e6, there are many critical-
path events emitted from ConveyorLC as pertaining to its
task-level scheduling, which we omit. For the general case,
e1 through e9 represents the critical path of the Docking
portion of the workflow. This sequence can repeat many times
in particular when the size of each ConveyorLC job gets
smaller. Given the relative performance characteristics of Flux
and ConveyerLC scheduling, smaller jobs can significantly
increase the overall performance overhead of A, B and C
regions: R⇥

P4
i=1 t(ei, ei+1) where R denotes a repeat count

and t(ei, ei+1) denotes a duration between two consecutive
events. However, they can significantly decrease the overall

Critical path of Docking tasks for AHA MoleS
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We use Aspect Oriented Programming (AOP) to observe the 
performance of the workflow with modularity and uniformity.

• Black boxes are disparate workflow 
components

• Red strips are measurement codes
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§ AOP paradigm allows for
— Minimum modifications to the disparate application components
— Casting the cross-cutting performance-analysis concerns

§ PerfFlowAspect implements this concept
— Decorator-based annotation for Python

• @critical_path (pointcut=<type>)
— __attribute__ based compiler instrumentation (LLVM-based)

• __attribute__ ((annotate("@critical_path (pointcut=<type>)")))
— Provide one type of “advice”

• Advice emits tracing data on every annotated function invocation
• In Chrome Tracing Format (CTF)

§ Component application owners are responsible for
— Annotating their components independently
— On those functions on the plausibly critical path

§ Resulting composite workflow produces
— Performance traces and profiles
— Without sacrificing the requisite modularity and uniformity



9

Challenge 3: Easily re-configuring the workflow for iterative exploration of 
the end-to-end workflow turn-around time performance.

§ Addressed directly at the workflow software architecture level

§ Performance modeling and variables guide blending
— Via well-defined API 

§ Form a highly re-configurable base platform
— W/ respect to critical performance variable according to the CPA model
— E.g., Size for ConveyorLC docking jobs 

§ Iterate over the key performance configuration space
— Captured in our performance variables
— Analyzing the AOP traces/profiles for each iteration 
— Using the performance traces/profiles from PerfFlowAspect

Scalable Composition and Analysis Techniques for
Massive Scientific Workflows

Abstract—Composite science workflows are gaining traction
to manage the combined effects of (1) extreme hardware het-
erogeneity in new High Performance Computing (HPC) systems
and (2) growing software complexity – effects necessitated by
the convergence of traditional HPC with data sciences. Com-
posing, analyzing, and optimizing a composite workflow remains
highly challenging as the component technologies are generally
developed in isolation and often feature widely varying levels of
performance, scalability, and interoperability. In this paper, we
propose novel workflow composition and analysis techniques to
create and optimize a scalable and effective composite workflow
for heterogeneous HPC centers. Our proposed solution directly
addresses performance concerns that can affect workflow perfor-
mance. Our solution covers the full software lifecycle, ranging
from the workflow’s initial composition through performance
analysis and optimization. We used our techniques to imple-
ment the American Heart Association Molecule Screening (AHA
MoleS) workflow. Our evaluation suggests that our techniques
can significantly enhance the ability of a multi-disciplinary
research and development team to create a high performance
composite workflow.

I. INTRODUCTION

Current economic factors are ushering in a new era of
extremely heterogeneous HPC. As Moore’s Law is taper-
ing, specialized hardware such as graphics processing units
(GPU) [1] is increasingly taking the role previously played by
general purpose processors as the main computing workhorse.
As cloud computing has become a dominant market force [2],
[3], HPC has also begun to embrace a heterogeneous software
environment, marrying its software stack with cloud solutions.
Indicatively, 2018 was the first year in which new additions
to the biggest 500 supercomputers derived more performance
from specialized processors than from general purpose pro-
cessors. The key cloud solutions, including container and
container orchestration technologies such as Kubernetes [4]
and OpenShift (which is built on top of Kubernetes), are also
making inroads into HPC infrastructure [5], [6].

At the same time, the complexity of science workflows
on HPC systems is growing sharply. The convergence of
traditional HPC and new simulation, analysis, and data science
approaches including Machine Learning (ML) and Artificial
Intelligence (AI) provides unprecedented opportunities for
discovery, but also creates workflows [7], [8], [9] that are
far more complex than traditional ones. This trend is ne-
cessitated and further accelerated by extreme heterogeneity;
different workflow tasks [8], [10], [11] must be mapped to
different specialized hardware (e.g., CPU, GPU, disaggregated
AI accelerators [12], I/O storage of certain tiers in a multi-
tiered storage subsystem [13]) and/or different system software
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Workflow 
Specification

Container Services 
on Kubernetes
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Fig. 1: Our proposed composite science workflow architecture

(e.g., persistent container services such as message-queue
and database services running on an on-premises Kubernetes
cluster). Such increases in workflow complexity and in the
heterogeneity of hardware and system software have made it
more difficult for researchers to perform scientific analyses
using a conventional monolithic workflow architecture.

One of the alternative workflow software architectures that
has emerged in response to these trends is called composite
science workflows. In this architecture, researchers select a
set of preexisting workflow-management software components
and flexibly blend them with a disparate set of domain-specific
application and management software tools so as to create
an end-to-end workflow. This approach is gaining traction for
HPC. For example, the recent winner [14] and two of the three
finalists [11], [15] of the SC20 Gordon Bell Special Award
competition for COVID-19 leveraged scalable and composable
workflow technologies [16].

The composite science workflow approach is, however, a
burgeoning field, and there are still serious technical chal-
lenges to overcome. The key challenges arise from the fact
that the technologies used for composite workflows are gen-
erally developed in isolation and often feature widely varying
levels of performance, scalability and interoperability. Unless
researchers can balance these factors across the component
technologies as part of their composition, optimizing the
workflow can quickly become intractable. Furthermore, there
is a paucity of workflow composition principles and software
tools that researchers can use to reason about the performance
and scalability of the resulting workflow and to iterate over
its configuration space for optimization.

In this paper, we propose novel workflow composition
and analysis techniques to create and optimize a scalable
and effective composite science workflow for heterogeneous
HPC centers. Our solution incorporates Critical Path Analysis
(CPA)-based performance modeling and high-level perfor-

Proposed target composite science workflow architecture
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Cross-system workflow evaluation environment:

§ Build AHA Moles workflow software as a multidisciplinary team until …
— We can perform controlled benchmark runs at large scale
— Simultaneously using two supercomputers and on-premises RedHat OpenShift Kubernetes cluster at LLNL

§ Ruby: a CPU supercomputer with a total of 1,512 compute nodes.
— Each node contains two Intel Xeon CLX-8276L CPUs with a total of 56 cores.

§ Lassen: a CPU-GPU heterogeneous supercomputer with a total of 795 nodes.
— Each of the nodes has two IBM Power9 CPUs with a total of 44 cores
— Four Nvidia Tesla V100 (Volta) GPUs.

§ The RedHat OpenShift Kubernetes cluster consisting of
— Three Kubernetes servers and five worker nodes
— Together with a NetApp AFF A400 storage system providing object and persistent container storage
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Performance of eight different configurations of AHA Moles.

performance overhead of D region: R ⇥ t(e5, e6). This can
provide an insight into how this relative performance varies
over the variable: Size of ConveyorLC job.

Fusion tasks begin with a RabbitMQ message, which con-
tains a set of molecular poses to be scored by it. The number of
molecular poses in each message is controlled by the workflow
domain-specific parameter called Molecule batch size.
Each RabbitMQ message is consumed by a GMD SC adapter,
which creates and runs a corresponding Maestro specification.
Maestro prepares the run directories for the Fusion jobs and
submits the jobs to the enclosing Flux instance running on
the GPU-enabled supercomputer. Overall, the critical path
of Fusion is similar to Docking. The Docking and Fusion
tasks are composed together via the messages enqueued into
RabbitMQ by the GMD SC adaptors. To have a Fusion task
score a molecule post-Docking, the GMD SC adaptor that
consumed the initial Docking task enqueues a Fusion task into
the message queue after the Docking task completes.

C. Impacts of Varying Performance Variables
Eight different configurations of our workflow benchmark

runs have been performed with the combinations of two
versions of Flux, two settings of ConveyorLC Docking jobs,
and two settings of Fusion jobs (Table I). One version of Flux
is labeled as Default (flux-core v0.26 and fluxion v0.15)
and the other as Opt or Optimized (flux-core v0.27 and
fluxion v0.16). The latter version has proven far more efficient
and scalable when applied not only to our testing workloads
but also a large production scientific workflow Multiscale
Machine-Learned Modeling Infrastructure (MuMMI) [8, 3].
On Ruby, 981 nodes have been allocated with one node
reserved to run our custom scripts that perform batch creation
(using 4 threads) and batch completion (using 12 threads).
The number of molecules per batch is set to 1,715. The
remaining 980 nodes are divided into several Flux jobs; each
job is submitted and launched with the flux mini submit

command. One way is to divide them into four Flux jobs
so each run runs across 145 nodes. The other way is to
divide them into 196 Flux jobs so each run uses five nodes.
For the 145-node Docking job configuration, the number of
prefetch Docking jobs is set to 36. The number of prefetch
Docking jobs is 72 for the five-node job configuration. We
use the larger prefetch number for the five-node job since
this setting runs many more jobs simultaneously than the 145-
node job configuration. For the Fusion calculations on Lassen,
we use two different configurations: one with resource under-
provisioning and the other with over-provisioning. Our over-
provisioning setting allocates 220 Lassen nodes, which runs
880 Fusion jobs simultaneously, each job running on one of
the four GPUs of each Lassen node. With resource under-
provisioning, we only allocate 140 Lassen nodes and run 560
Fusion jobs simultaneously.

All eight benchmark runs use the same inputs of 2 million
docking calculations, which are divided into 1200 batches.
Some Fusion calculation batches crashed due to bad dock-
ing structure inputs. The crashes are unpredictable due to

TABLE I: Performance of eight different configurations

Flux Docking Fusion Makespan Per Mol.
Version Nodes/job Total nodes (s) (ms)
Default 145 220 15208 7.67
Default 5 220 7841 3.95
Default 145 140 15257 7.69
Default 5 140 9717 4.90
Opt. 145 220 19049 9.60
Opt. 5 220 8041 4.05
Opt. 145 140 19236 9.70
Opt. 5 140 9666 4.87

randomness in the docking and Fusion calculations. Up to 9
batches failed per benchmark run, so we calculate makespan
for each benchmark run based on the starting timestamp of
the first batch and the ending timestamp of the 10th-to-last
batch, truncating the timestamps for the maximum number of
failed batches equally for all benchmark runs. The makespan
time per molecule is calculated from the adjusted makespan
divided by the adjusted number of the molecules as shown in
Table I. One of the most significant differences in performance
is the choice of the number of nodes given to each individual
ConveyorLC Docking job. The makespan time per molecule
for the five-node Docking jobs ranges from 3.95 to 4.90
ms while that for the 145-node Docking jobs ranges from
7.67 to 9.70 ms. We observe about 1.6x to 2.4x speed-up
in performance by decreasing the number of Lassen nodes
used in individual Docking jobs alone from 145 to five nodes.
Another factor affecting performance is the choice of the
number of nodes for Fusion calculations. When the number
of nodes for Fusion calculations increases by 1.6x from 140
to 220, the speed-up of 1.2x for five-node Docking jobs is
more obvious than that of 145-node Docking jobs, which
shows no significant change. This is due to the fact that
the docking simulations using the 145-node Docking jobs
are the bottleneck in the workflow in such a way that we
cannot quickly produce the data for Fusion to utilize the
over-provisioned nodes. Therefore, the changes in performance
for 145-node Docking job configuration are marginal. To our
surprise, the default version of Flux systematically performs
better than the optimized one. For the five-node Docking job
setting, the default version is faster than the optimized one by
no more than a tenth millisecond. For the 145-node Docking
job setting, the default version is faster than the optimized
one by about 2 milliseconds. The version of Flux affects
the 145-node docking configuration more than the five-node
configuration.

D. Synthesis and Analysis

Section IV-C suggests that the choice of independent per-
formance variables is critically important for end-to-end work-
flow performance. With a better choice for a single indepen-
dent performance variable (Size of ConveyorLC job),
the workflow achieves up to a 2.45x performance improvement
over the slowest configuration in Table I. The fact that the
Default Flux version outperformed the Optimized ver-
sion is unexpected and suggests the non-linear nature of the

§ Flux Default (flux-core v0.26, fluxion v0.15)
§ Flux Optimized (flux-core v0.27, fluxion v0.16)

§ Fusion Over-provisioned (220 Lassen nodes)
§ Fusion Under-provisioned (140 Lassen nodes)

§ Large Docking Job (145 nodes)
§ Small Docking Job (5 nodes)

2.46x speed-up
Optimized Flux led 
to generally worse 

performance!
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Results synthesis and analysis

§ Choice of independent performance variables is critical

§ The fact that the default Flux version generally outperformed the optimized version is unexpected
— Signal the non-linear nature of the composite performance functions

§ A suboptimal choice of another independent performance variable can explain a significant under-
utilization of Lassen resources
— Start time of resources for Fusion
— Lead to a poor speedup with Fusion resource scaling.

• In the best case, a 1.57x Lassen resource increase provides only a 1.24x speedup.
• In the worse case, the same 1.57x Lassen resource increase is unable to offer any speedup whatsoever.
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Effectiveness of performance analysis and optimization:

§ Can our performance analysis techniques help researchers better understand the impacts of a key performance variable?

4
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Demonstration 1: How PerfFlowAnalysis can help understand the 
impact of performance variables: ConveyorLC job size
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• The same number of jobs at nearly 50 times larger scale makes everything go slow: 4.19x longer makespan as seen by Flux.
• Nevertheless, the overall makespan performance difference is only 1.93x slower.
• It suggests that more aggressive Fusion resource overprovision (Var: Amount of Resources for Fusion) and/or other fusion 

optimizations can further improve this workflow.

(a) Large ConveyorLC Docking job, large Fusion and default Flux
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Demonstration 2: How PerfFlow Analysis can help understand the 
impact of a single component performance overhead change.
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• The higher scheduling overhead with FluxOpt on the Docking jobs puts docking throughput on the critical path.
• 1.27x scheduling slowdown of Flux-Opt explains the overall 1.25x slowdown over that of Flux 
• W/ DockLarge, docking throughput is already lower than the max fusion throughput (even for Fusion resource 

underprovisioning). So making docking throughput slower directly leads to the overall slowdown of the same extent.

(b) Large ConveyorLC Docking job, large Fusion, optimized Flux

Fig. 5: PerfFlowAspect Traces Visualized in Perfetto
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(a) Small ConveyorLC Docking job, large Fusion and default Flux (b) Fusion traces for the best configuration

Fig. 6: PerfFlowAspect Traces Visualized in Perfetto

shows the traces of the Maestro adapter traces for Fusion.
Figure 6b in combination with Figure 6a clearly suggest that
there is a significant resource idling due to tight synchroniza-
tion of Docking and Fusion startup and shutdown. Figure 6a is
the best Docking configuration where Docking for all of the
compounds completes in 3,341 seconds. Once this is done,
however, there is no activity traced from within the Flux
instance, indicating Ruby resources idled during the remainder
of the time. As shown by the initial staggering patterns of
Figure 6b, the Maestro adapter activities also appear to be
ramping up slowly as not all Fusion resources are fully
utilized during this ramp-up phase. Note that this was not
clearly shown from the traces of Flux because from Flux’s
perspective Fusion jobs were already submitted and running
and resources were fully utilized. This signifies the importance
of casting the performance analysis concerns across all of the
critical components as this kind of analysis would be infeasible
using single-component traces alone. Overall, it hints that the
more imbalanced Docking and Fusion throughput becomes,
the worse will this resource idling issue be. We communicated
this to the AHA MoleS workflow development team, and they
plan to implement a loose synchronization scheme between
Docking and Fusion.

VI. RELATED WORK

Many composite workflow approaches have been proposed,
which include MuMMI [8, 3], a massive ML-aided dis-
covery for Inertial Confinement Fusion (ICF) energy [26],
CASTELO [35], the recent winner [5] and two of the three

finalists [17, 25] of the SC20 Gordon Bell Special Award
competition, and VirtualFlow [14]. One finalist [32] of the
SC21 Gordon Bell Special Award competition developed a
multi-resolution composite workflow and ran it across multiple
top supercomputers. Our focus of the general design prin-
ciples, composition, performance analysis and optimization
techniques differentiate ours from their focus: advancement
of domain sciences. Further, composable and general-purpose
workflow management tools such as ExaWorks Software De-
velopment Toolkit (SDK) [27] have begun to gain traction
to enable more rapid development of this type of workflows.
We proposed an approach to rationalizing overall workflow
performance and its application to AHA MoleS, but our work
is directly applicable to the field at large including these
listed composite workflows and software tools that enable
them. Similarly, myriad performance tracing and profiling
tools exist, including HPCToolkit[1], TAU [28], Caliper [4],
Vampir and Score/P [21]. Their primarily focus is on the single
application level whereas ours is on gathering a holistic picture
of workflow-level performance.

VII. CONCLUSION

There is a growing consensus that three major characteris-
tics will define the next-generation of HPC centers: extreme
hardware heterogeneity at all levels; 2) closer convergence of
HPC with cloud computing software; and 3) complex scientific
workflows that must automatically and effectively map to
and run on next-generation resources across the entire center.
To provide a window into the challenges that these next-
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shows the traces of the Maestro adapter traces for Fusion.
Figure 6b in combination with Figure 6a clearly suggest that
there is a significant resource idling due to tight synchroniza-
tion of Docking and Fusion startup and shutdown. Figure 6a is
the best Docking configuration where Docking for all of the
compounds completes in 3,341 seconds. Once this is done,
however, there is no activity traced from within the Flux
instance, indicating Ruby resources idled during the remainder
of the time. As shown by the initial staggering patterns of
Figure 6b, the Maestro adapter activities also appear to be
ramping up slowly as not all Fusion resources are fully
utilized during this ramp-up phase. Note that this was not
clearly shown from the traces of Flux because from Flux’s
perspective Fusion jobs were already submitted and running
and resources were fully utilized. This signifies the importance
of casting the performance analysis concerns across all of the
critical components as this kind of analysis would be infeasible
using single-component traces alone. Overall, it hints that the
more imbalanced Docking and Fusion throughput becomes,
the worse will this resource idling issue be. We communicated
this to the AHA MoleS workflow development team, and they
plan to implement a loose synchronization scheme between
Docking and Fusion.

VI. RELATED WORK

Many composite workflow approaches have been proposed,
which include MuMMI [8, 3], a massive ML-aided dis-
covery for Inertial Confinement Fusion (ICF) energy [26],
CASTELO [35], the recent winner [5] and two of the three

finalists [17, 25] of the SC20 Gordon Bell Special Award
competition, and VirtualFlow [14]. One finalist [32] of the
SC21 Gordon Bell Special Award competition developed a
multi-resolution composite workflow and ran it across multiple
top supercomputers. Our focus of the general design prin-
ciples, composition, performance analysis and optimization
techniques differentiate ours from their focus: advancement
of domain sciences. Further, composable and general-purpose
workflow management tools such as ExaWorks Software De-
velopment Toolkit (SDK) [27] have begun to gain traction
to enable more rapid development of this type of workflows.
We proposed an approach to rationalizing overall workflow
performance and its application to AHA MoleS, but our work
is directly applicable to the field at large including these
listed composite workflows and software tools that enable
them. Similarly, myriad performance tracing and profiling
tools exist, including HPCToolkit[1], TAU [28], Caliper [4],
Vampir and Score/P [21]. Their primarily focus is on the single
application level whereas ours is on gathering a holistic picture
of workflow-level performance.

VII. CONCLUSION

There is a growing consensus that three major characteris-
tics will define the next-generation of HPC centers: extreme
hardware heterogeneity at all levels; 2) closer convergence of
HPC with cloud computing software; and 3) complex scientific
workflows that must automatically and effectively map to
and run on next-generation resources across the entire center.
To provide a window into the challenges that these next-

§ Can our analysis inform researchers of a previously unknown area for performance optimization? 
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Figure 6b in combination with Figure 6a clearly suggest that
there is a significant resource idling due to tight synchroniza-
tion of Docking and Fusion startup and shutdown. Figure 6a is
the best Docking configuration where Docking for all of the
compounds completes in 3,341 seconds. Once this is done,
however, there is no activity traced from within the Flux
instance, indicating Ruby resources idled during the remainder
of the time. As shown by the initial staggering patterns of
Figure 6b, the Maestro adapter activities also appear to be
ramping up slowly as not all Fusion resources are fully
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perspective Fusion jobs were already submitted and running
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which include MuMMI [8, 3], a massive ML-aided dis-
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techniques differentiate ours from their focus: advancement
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workflow management tools such as ExaWorks Software De-
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to enable more rapid development of this type of workflows.
We proposed an approach to rationalizing overall workflow
performance and its application to AHA MoleS, but our work
is directly applicable to the field at large including these
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Demonstration 2: How PerfFlow Analysis can help understand the 
impact of a single component performance overhead change.

14388 
Secs

<Flux,DockLarge,FusionLarge>
PerfFlowApect at the top-level Flux instance on Ruby 

<FluxOpt,DockLarge,FusionLarge>
PerfFlowApect at the top-level Flux instance on Ruby 

18318 
Secs

• The higher scheduling overhead with FluxOpt on the Docking jobs puts docking throughput on the critical path.
• 1.27x scheduling slowdown of Flux-Opt explains the overall 1.25x slowdown over that of Flux 
• W/ DockLarge, docking throughput is already lower than the max fusion throughput (even for Fusion resource 

underprovisioning). So making docking throughput slower directly leads to the overall slowdown of the same extent.

(b) Large ConveyorLC Docking job, large Fusion, optimized Flux

Fig. 5: PerfFlowAspect Traces Visualized in Perfetto

4
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Demonstration 1: How PerfFlowAnalysis can help understand the 
impact of performance variables: ConveyorLC job size

1203 
Jobs

14388 
Secs

<Flux,DockLarge,FusionLarge>
PerfFlowApect at the top-level Flux instance on Ruby 

<Flux,DockSmall,FusionLarge>
PerfFlowApect at the top-level Flux instance on Ruby 

1202 
Jobs

3431 
Secs

• The same number of jobs at nearly 50 times larger scale makes everything go slow: 4.19x longer makespan as seen by Flux.
• Nevertheless, the overall makespan performance difference is only 1.93x slower.
• It suggests that more aggressive Fusion resource overprovision (Var: Amount of Resources for Fusion) and/or other fusion 

optimizations can further improve this workflow.

(a) Small ConveyorLC Docking job, large Fusion and default Flux (b) Fusion traces for the best configuration

Fig. 6: PerfFlowAspect Traces Visualized in Perfetto

shows the traces of the Maestro adapter traces for Fusion.
Figure 6b in combination with Figure 6a clearly suggest that
there is a significant resource idling due to tight synchroniza-
tion of Docking and Fusion startup and shutdown. Figure 6a is
the best Docking configuration where Docking for all of the
compounds completes in 3,341 seconds. Once this is done,
however, there is no activity traced from within the Flux
instance, indicating Ruby resources idled during the remainder
of the time. As shown by the initial staggering patterns of
Figure 6b, the Maestro adapter activities also appear to be
ramping up slowly as not all Fusion resources are fully
utilized during this ramp-up phase. Note that this was not
clearly shown from the traces of Flux because from Flux’s
perspective Fusion jobs were already submitted and running
and resources were fully utilized. This signifies the importance
of casting the performance analysis concerns across all of the
critical components as this kind of analysis would be infeasible
using single-component traces alone. Overall, it hints that the
more imbalanced Docking and Fusion throughput becomes,
the worse will this resource idling issue be. We communicated
this to the AHA MoleS workflow development team, and they
plan to implement a loose synchronization scheme between
Docking and Fusion.

VI. RELATED WORK

Many composite workflow approaches have been proposed,
which include MuMMI [8, 3], a massive ML-aided dis-
covery for Inertial Confinement Fusion (ICF) energy [26],
CASTELO [35], the recent winner [5] and two of the three

finalists [17, 25] of the SC20 Gordon Bell Special Award
competition, and VirtualFlow [14]. One finalist [32] of the
SC21 Gordon Bell Special Award competition developed a
multi-resolution composite workflow and ran it across multiple
top supercomputers. Our focus of the general design prin-
ciples, composition, performance analysis and optimization
techniques differentiate ours from their focus: advancement
of domain sciences. Further, composable and general-purpose
workflow management tools such as ExaWorks Software De-
velopment Toolkit (SDK) [27] have begun to gain traction
to enable more rapid development of this type of workflows.
We proposed an approach to rationalizing overall workflow
performance and its application to AHA MoleS, but our work
is directly applicable to the field at large including these
listed composite workflows and software tools that enable
them. Similarly, myriad performance tracing and profiling
tools exist, including HPCToolkit[1], TAU [28], Caliper [4],
Vampir and Score/P [21]. Their primarily focus is on the single
application level whereas ours is on gathering a holistic picture
of workflow-level performance.

VII. CONCLUSION

There is a growing consensus that three major characteris-
tics will define the next-generation of HPC centers: extreme
hardware heterogeneity at all levels; 2) closer convergence of
HPC with cloud computing software; and 3) complex scientific
workflows that must automatically and effectively map to
and run on next-generation resources across the entire center.
To provide a window into the challenges that these next-
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Our solutions can enhance the capacity of a multi-disciplinary team to 
create, analyze and optimize a high-performance composite workflow.

§ A growing consensus that three major characteristics define the next-generation of HPC centers
— Extreme hardware heterogeneity at all levels
— Closer convergence of HPC with cloud computing software
— Complex scientific workflows that must automatically run on next-generation resources across the entire center

§ Our work provides a window into the challenges that these cross-system workflows will face
— Based on multi-disciplinary effort to run a drug screen workflow across 3 completely different types of center resources

§ Creating a cross-system workflow using portable software components is an important step, but
— Gaining a deep understanding of the performance space of the composite workflow is equally challenging
— Introduce the concept of performance variables to capture the interplay of different software components
— Instrumenting and analyzing workflows are an unmet challenge which we overcome with PerfFlowAspect
— Difficulties of composite science workflow performance tuning is solved by our direct iteration-based exploration support

§ Our experiments show that our solutions significantly address the corresponding challenges
— A better choice for an independent performance variable alone can provide AHA MoleS up to a 2.45x improvement
— Identification of dependent variables significantly helps narrow down the search space of end-to-end workflow tuning.
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