
Enabling Call Path Querying in Hatchet to 
Identify Performance Bottlenecks in 

Scientific Applications
Ian Lumsden, Jakob Luettgau, Vanessa Lama, Connor Scully-Allison,

Stephanie Brink, Katherine E. Isaacs, Olga Pearce, Michela Taufer

LLNL-PRES-840755

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-
AC52-07NA27344. Lawrence Livermore National Security, LLC

October 13, 2022
2022 IEEE International Conference on eScience



2

Importance of HPC in Scientific Computing

[1] J. Thomas, “Model for COVID-19 drug discovery a Gordon Bell finalist,” Lawrence Livermore National Laboratory, 2020. Available: 
https://www.llnl.gov/news/model-covid-19-drug-discovery-gordon-bell-finalist.
[2] “Investigating Dyes for Solar Cells from Start to Finish,” U.S. DOE Office of Science (SC), Oct. 28, 2019. Available: 
https://science.osti.gov/ascr/Highlights/2019/ASCR-2019-10-a.



3

HPC Performance Analysis Workflow

HPC
Application



4

HPC Performance Analysis Workflow

Performance 
Measurement 
Tool (Profiler)

HPC
Application



5

HPC Performance Analysis Workflow

Performance 
Measurement 
Tool (Profiler)

HPC
Application

Performance 
Data File

Metrics:
Name: funcA
Time: 95us

L2 Cache Misses: 7

main

funcA funcB

funcC funcD

Call Graph



6

HPC Performance Analysis Workflow

Performance 
Measurement 
Tool (Profiler)

HPC
Application

Performance 
Data File

main

funcA funcB

funcC funcD

Call Graph

Call Path

Metrics:
Name: funcA
Time: 95us

L2 Cache Misses: 7



7

HPC Performance Analysis Workflow

Performance 
Measurement 
Tool (Profiler)

HPC
Application

Performance 
Data File

Visualization and 
Analysis

(i.e., with Hatchet)

[3] A. Bhatele, S. Brink, and T. Gamblin, “Hatchet: Pruning the Overgrowth in Parallel Profiles,” in Proceedings of SC 2019, November 17-19, 2019. Available: 
https://doi.org/10.1145/3295500.3356219



8

The Problem with Performance Analysis

Performance 
Measurement 
Tool (Profiler)

HPC
Application

Performance 
Data File

Visualization and 
Analysis

(i.e., with Hatchet)



9

The Problem with Performance Analysis

Visualization and 
Analysis

(i.e., with Hatchet)

✓ Can use

✗
Cannot 

useMetrics:
Name: funcA
Time: 95us

L2 Cache Misses: 7

main

funcA funcB

funcC funcD

Call Graph



10

The Problem with Performance Analysis

Visualization and 
Analysis

(i.e., with Hatchet)

✓ Can use

✗
Cannot 

useMetrics:
Name: funcA
Time: 95us

L2 Cache Misses: 7

main

funcA funcB

funcC funcD

Call Graph

Goal
Create a tool that can enable users to utilize the 

contextual and relational data from the call graph 
that could not previously be used in analyzing 

performance data



Contributions
• Design and implement a new Call Path Query Language in Hatchet
• Define two dialects for our Query Language to simplify its use under 

diverse circumstances
• Classify the abilities of our Query Language and its dialects into 

features and capabilities
• Demonstrate the benefits of our Query Language through three case 

studies

11



Call Path Query Language
• Enables Hatchet users to extract a set of paths that match certain 

properties from a call graph
• Two parts: (1) Query Composition and (2) Algorithm

12

main

funcA funcB

funcC funcD

Call Graph

Query

Query Language

main

funcA

funcD



Call Path Query Language: Composition

13

Query

Query Node (1) Query 
Node 

(2)

Query 
Node 

(3)Quantifier
defines how many “real” 

nodes in a call path to match 
to a query node

Predicate
defines what conditions 

must be satisfied for a “real” 
node to match a query node

main

funcA funcB

funcC funcD



Call Path Query Language: Composition

14

“Find all paths that start with a MPI node with 
more than 5 L2 cache misses, followed by 0 
or more of any node”

OR

“Find all subgraphs rooted at a MPI node with 
more than 5 L2 cache misses”



Call Path Query Language: Composition

15

query = (
QueryMatcher()
.match(

“.”,
lambda row: re.match(

“MPI_.*”,
row[“name”]

)
is not None
and row[“PAPI_L2_TCM”] > 5

)
.rel(“*”)

)

“Find all paths that start with a MPI node with 
more than 5 L2 cache misses, followed by 0 
or more of any node”

OR

“Find all subgraphs rooted at a MPI node with 
more than 5 L2 cache misses”

“Base” Syntax:



Call Path Query Language: Composition

16

Query: 
QueryMatcher
Python class

Query Node:
• match() sets 

the first query 
node in the 
query

• rel() adds a 
query node to 
the end of the 
query

query = (
QueryMatcher()
.match(

“.”,
lambda row: re.match(

“MPI_.*”,
row[“name”]

)
is not None
and row[“PAPI_L2_TCM”] > 5

)
.rel(“*”)

)

“Base” Syntax:



Call Path Query Language: Composition

17

Quantifier:
• “.”: match 1
• “*”: match 0 or 

more
• “+”: match 1 

or more
• Integer: match 

exact number

query = (
QueryMatcher()
.match(

“.”,
lambda row: re.match(

“MPI_.*”,
row[“name”]

)
is not None
and row[“PAPI_L2_TCM”] > 5

)
.rel(“*”)

)

“Base” Syntax:



Call Path Query Language: Composition

18

Predicate:
Python Callable 
with metrics as 

input and Boolean 
as output 

query = (
QueryMatcher()
.match(

“.”,
lambda row: re.match(

“MPI_.*”,
row[“name”]

)
is not None
and row[“PAPI_L2_TCM”] > 5

)
.rel(“*”)

)

“Base” Syntax:



19

Call Path Query Language: Algorithm
Problem:

Find all paths in a call graph that match properties described by the 
user-provided query (subgraph isomorphism)

main

funcA funcB

funcC funcD

Call Graph

Query

Modified 
Ullmann’s 
Algorithm

main

funcA

funcD

[4] J. R. Ullmann, “An Algorithm for Subgraph Isomorphism,” J. ACM, vol. 23, no. 1, pp. 31–42, 1976. Available: http://doi.acm.org/10.1145/321921.321925



20

Call Path Query Language: Algorithm
Problem:

Find all paths in a call graph that match properties described by the 
user-provided query (subgraph isomorphism)

Modified 
Ullmann’s 
Algorithm

Use predicates 
instead of degree-

based node 
comparison

Add support for 
quantifiers



Call Path Query Language

21

For some users, this syntax is:
• Too verbose and complex
• Unusable in some situations 

(e.g., creating a query in 
another programming 
language)

query = (
QueryMatcher()
.match(

“.”,
lambda row: re.match(

“MPI_.*”,
row[“name”]

)
is not None
and row[“PAPI_L2_TCM”] > 5

)
.rel(“*”)

)

“Base” Syntax:



Contributions
• Design and implement a new Call Path Query Language in Hatchet
• Define two dialects for our Query Language to simplify its use under 

diverse circumstances
• Classify the abilities of our Query Language and its dialects into 

features and capabilities
• Demonstrate the benefits of our Query Language through three case 

studies

22



Simplifying Queries with Dialects
• Simplify use of Call Path Query Language and allow use under 

diverse circumstances 
• Internally translated into “base” Query Language syntax
• Two Dialects:
— Object-based Dialect

— Provides a simpler, less verbose way of writing queries
— String-based Dialect

— Provides a way to write queries that is decoupled from Python

23



Simplifying Queries with Dialects

24

query = (
QueryMatcher()
.match(

“.”,
lambda row: re.match(

“MPI_.*”,
row[“name”]

)
is not None
and row[“PAPI_L2_TCM”] > 5

)
.rel(“*”)

)

“Base” Syntax:



Simplifying Queries with Dialects

25

query = (
QueryMatcher()
.match(

“.”,
lambda row: re.match(

“MPI_.*”,
row[“name”]

)
is not None
and row[“PAPI_L2_TCM”] > 5

)
.rel(“*”)

)

“Base” Syntax:
query = [

(
“.”,
{

“name”: “MPI_.*”,
“PAPI_L2_TCM”: “> 5”

}
),
“*”

]

Object-based Dialect:



query = (
QueryMatcher()
.match(

“.”,
lambda row: re.match(

“MPI_.*”,
row[“name”]

)
is not None
and row[“PAPI_L2_TCM”] > 5

)
.rel(“*”)

)

“Base” Syntax:
query = [

(
“.”,
{

“name”: “MPI_.*”,
“PAPI_L2_TCM”: “> 5”

}
),
“*”

]

Object-based Dialect:

Simplifying Queries with Dialects

26



query = (
QueryMatcher()
.match(

“.”,
lambda row: re.match(

“MPI_.*”,
row[“name”]

)
is not None
and row[“PAPI_L2_TCM”] > 5

)
.rel(“*”)

)

“Base” Syntax:
query = [

(
“.”,
{

“name”: “MPI_.*”,
“PAPI_L2_TCM”: “> 5”

}
),
“*”

]

Object-based Dialect:

Simplifying Queries with Dialects

27



Simplifying Queries with Dialects

28

query = (
QueryMatcher()
.match(

“.”,
lambda row: re.match(

“MPI_.*”,
row[“name”]

)
is not None
and row[“PAPI_L2_TCM”] > 5

)
.rel(“*”)

)

“Base” Syntax:
query = [

(
“.”,
{

“name”: “MPI_.*”,
“PAPI_L2_TCM”: “> 5”

}
),
“*”

]

Object-based Dialect:
query = """
MATCH (".", p)->("*")
WHERE p."name" =~ "MPI_.*" AND

p."PAPI_L2_TCM" > 5
"""

String-based Dialect:



query = (
QueryMatcher()
.match(

“.”,
lambda row: re.match(

“MPI_.*”,
row[“name”]

)
is not None
and row[“PAPI_L2_TCM”] > 5

)
.rel(“*”)

)

“Base” Syntax:
query = [

(
“.”,
{

“name”: “MPI_.*”,
“PAPI_L2_TCM”: “> 5”

}
),
“*”

]

Object-based Dialect:
query = """
MATCH (".", p)->("*")
WHERE p."name" =~ "MPI_.*" AND

p."PAPI_L2_TCM" > 5
"""

String-based Dialect:

Simplifying Queries with Dialects

29



query = (
QueryMatcher()
.match(

“.”,
lambda row: re.match(

“MPI_.*”,
row[“name”]

)
is not None
and row[“PAPI_L2_TCM”] > 5

)
.rel(“*”)

)

“Base” Syntax:
query = [

(
“.”,
{

“name”: “MPI_.*”,
“PAPI_L2_TCM”: “> 5”

}
),
“*”

]

Object-based Dialect:
query = """
MATCH (".", p)->("*")
WHERE p."name" =~ "MPI_.*" AND

p."PAPI_L2_TCM" > 5
"""

String-based Dialect:

Simplifying Queries with Dialects

30



Simplifying Queries with Dialects

31

query = (
QueryMatcher()
.match(

“.”,
lambda row: re.match(

“MPI_.*”,
row[“name”]

)
is not None
and row[“PAPI_L2_TCM”] > 5

)
.rel(“*”)

)

“Base” Syntax:
query = [

(
“.”,
{

“name”: “MPI_.*”,
“PAPI_L2_TCM”: “> 5”

}
),
“*”

]

Object-based Dialect:
query = """
MATCH (".", p)->("*")
WHERE p."name" =~ "MPI_.*" AND

p."PAPI_L2_TCM" > 5
"""

String-based Dialect:

Complexity and Verbosity (Most to Least)
1 3 2



Simplifying Queries with Dialects

32

query = (
QueryMatcher()
.match(

“.”,
lambda row: re.match(

“MPI_.*”,
row[“name”]

)
is not None
and row[“PAPI_L2_TCM”] > 5

)
.rel(“*”)

)

“Base” Syntax:
query = [

(
“.”,
{

“name”: “MPI_.*”,
“PAPI_L2_TCM”: “> 5”

}
),
“*”

]

Object-based Dialect:
query = """
MATCH (".", p)->("*")
WHERE p."name" =~ "MPI_.*" AND

p."PAPI_L2_TCM" > 5
"""

String-based Dialect:

• Pros
— Can represent complex 

queries

• Cons
— Most complex and verbose 

syntax
— Requires knowledge of 

other libraries (e.g., pandas)
— Can only be created in 

Python

• Pros
— Simplest and least verbose 

syntax
— Great for simple queries

• Cons
— Cannot represent complex 

queries
— Can only be created in 

Python

• Pros
— Can be created in any 

programming language
— Simpler and less verbose 

than “base” syntax

• Cons
— Cannot represent some 

complex queries
— Requires learning a 

custom language



Contributions
• Design and implement a new Call Path Query Language in Hatchet
• Define two dialects for our Query Language to simplify its use under 

diverse circumstances
• Classify the abilities of our Query Language and its dialects into 

features and capabilities*
• Demonstrate the benefits of our Query Language through three case 

studies

33

* If you want to see the differences in features between the Query Language and its dialects, 
check out our paper: “Enabling Call Path Querying in Hatchet to Identify Performance Bottlenecks 
in Scientific Applications”



Contributions
• Design and implement a new Call Path Query Language in Hatchet
• Define two dialects for our Query Language to simplify its use under 

diverse circumstances
• Classify the abilities of our Query Language and its dialects into 

features and capabilities
• Demonstrate the benefits of our Query Language through three case 

studies*

34

* Only one case study is shown due to time. If you want to see the others, check out our paper: 
“Enabling Call Path Querying in Hatchet to Identify Performance Bottlenecks in Scientific 
Applications”



35

Performance 
Measurement 
Tool (Profiler)

HPC
Application

Performance 
Data File

Visualization and 
Analysis

(i.e., with Hatchet)

Comparing Tools with Queries



• AMG2013:
— Benchmark from the CORAL-2 suite
— Parallel algebraic multigrid solver for 

linear systems on unstructured 
meshes
• Used in applications like 

Computational Fluid Dynamics

36

Performance 
Measurement 
Tool (Profiler)

HPC
Application

Performance 
Data File

Visualization and 
Analysis

(i.e., with Hatchet)

• MPI Libraries:
— MVAPICH
— Spectrum-MPI

Comparing Tools with Queries

[5] “AMG2013,” Lawrence Livermore National Laboratory. Available: https://asc.llnl.gov/codes/proxy-apps/amg2013.
[6] “CORAL-2 Benchmarks,” Lawrence Livermore National Laboratory. Available: https://asc.llnl.gov/coral-2-benchmarks.
[7] K. Stüben, “A review of algebraic multigrid,” J. Comput. Appl. Math., no. 1–2, pp. 281–309, 2001, Available: https://doi.org/10.1016/S0377-0427(00)00516-1



Comparing Tools with Queries
• All runs performed on LLNL’s 

Lassen supercomputer
— 795 AC922 nodes

• 2 IBM POWER9 CPUs per node (20 
usable cores per node)

• 256 GB Memory
• NVIDIA V100 GPUs

— InfiniBand EDR Interconnect

37
[8] “Lassen,” HPC @ LLNL. Available: https://hpc.llnl.gov/hardware/compute-platforms/lassen.
[9] “Using LC’s Sierra Systems,” HPC @ LLNL. Available: https://hpc.llnl.gov/documentation/tutorials/using-lc-s-sierra-systems.



Comparing Tools with Queries

• Run AMG2013 with MVAPICH and Spectrum-MPI while profiling 
with HPCToolkit
— 64, 128, 256, and 512 MPI ranks

38

Performance 
Measurement 
Tool (Profiler)

HPC
Application

Performance 
Data File

Visualization and 
Analysis

(i.e., with Hatchet)

[10] L. Adhianto et al., “HPCTOOLKIT: tools for performance analysis of optimized parallel programs,” Concurrency and Computation: 
Practice and Experience, 2009. Available: https://doi.org/10.1002/cpe.1553



Comparing Tools with Queries

• Goal: compare the abilities of existing tools (i.e., Hatchet) and our 
Query Language at extracting knowledge from performance data

• Case Study: compare the performance of MVAPICH and Spectrum-
MPI by running AMG2013 at different scales
— Use Hatchet with and without our Query Language
— Use Object-based Dialect

39

Performance 
Measurement 
Tool (Profiler)

HPC
Application

Performance 
Data File

Visualization and 
Analysis

(i.e., with Hatchet)



Round 1: MPI w/o Query Language
• Determine how much time was spent 

in each MPI function
• Hatchet without Query Language
• “Remaining MPI Time” = functions 

that take less than 5% of total MPI 
time

40

MPI_Finalize MPI_Allreduce

MPI_Allgather MPI_Waitall

Remaining MPI Time
M = MVAPICH S = Spectrum-MPI



Round 1: MPI w/o Query Language

41

MPI_Finalize MPI_Allreduce

MPI_Allgather MPI_Waitall

Remaining MPI Time*

MPI_Allgather
takes more than 75% 
of total MPI time for 

all runs

M = MVAPICH S = Spectrum-MPI

* ”Remaining MPI Time” = functions that take less than 5% of total MPI time



Round 1: MPI w/o Query Language

42

MPI_Finalize MPI_Allreduce

MPI_Allgather MPI_Waitall

Remaining MPI Time*

MPI_Allgather
takes more than 75% 
of total MPI time for 

all runs

MVAPICH 
significantly 
outperforms 

Spectrum-MPI

M = MVAPICH S = Spectrum-MPI

* ”Remaining MPI Time” = functions that take less than 5% of total MPI time



Round 1: MPI w/o Query Language

43

MPI_Finalize MPI_Allreduce

MPI_Allgather MPI_Waitall

Remaining MPI Time*

MPI_Allgather
takes more than 75% 
of total MPI time for 

all runs

MVAPICH 
significantly 
outperforms 

Spectrum-MPI

M = MVAPICH S = Spectrum-MPI

Spectrum-MPI’s poor performance 
can hurt scientific applications that 

depend on it

* ”Remaining MPI Time” = functions that take less than 5% of total MPI time



Round 1: MPI w/o Query Language

44

MPI_Finalize MPI_Allreduce

MPI_Allgather MPI_Waitall

Remaining MPI Time*

MPI_Allgather
takes more than 75% 
of total MPI time for 

all runs

MVAPICH 
significantly 
outperforms 

Spectrum-MPI

M = MVAPICH S = Spectrum-MPI

Without Query Language:
We cannot determine any specific 
potential cause of Spectrum-MPI’s 

poor performance

Spectrum-MPI’s poor performance 
can hurt scientific applications that 

depend on it

* ”Remaining MPI Time” = functions that take less than 5% of total MPI time



Round 2: MPI w/ Query Language

45

• Determine how much time was spent 
in the children of the MPI functions

• Hatchet with Query Language
— Use non-Query Language filtering to 

remove MPI nodes

[{“name”: “P?MPI_.*”}, “*”]

pthread_spin_lock.c:26 memset.S:1133

<unknown file> 
[libmlx5.so.1.0.0]:0

<unknown file> 
[libmlx5.so.1.0.0]:1133

stl_vector.h:0 Geometry.h:0

malloc.c:0 Remaining MPI Time*M = MVAPICH S = Spectrum-MPI

* ”Remaining MPI Time” = functions that take less than 5% of total MPI time



Round 2: MPI w/ Query Language

46

Spectrum-MPI uses 
libmlx5 (Mellanox 

InfiniBand driver) much 
more than MVAPICH

pthread_spin_lock.c:26 memset.S:1133

<unknown file> 
[libmlx5.so.1.0.0]:0

<unknown file> 
[libmlx5.so.1.0.0]:1133

stl_vector.h:0 Geometry.h:0

malloc.c:0 Remaining MPI Time*M = MVAPICH S = Spectrum-MPI

* ”Remaining MPI Time” = functions that take less than 5% of total MPI time



Round 2: MPI w/ Query Language

47

Spectrum-MPI uses 
libmlx5 (Mellanox 

InfiniBand driver) much 
more than MVAPICH

Spectrum-MPI uses 
pthread_spin_lock for a 

larger percentage of its 
MPI time than MVAPICH

pthread_spin_lock.c:26 memset.S:1133

<unknown file> 
[libmlx5.so.1.0.0]:0

<unknown file> 
[libmlx5.so.1.0.0]:1133

stl_vector.h:0 Geometry.h:0

malloc.c:0 Remaining MPI Time*M = MVAPICH S = Spectrum-MPI

* ”Remaining MPI Time” = functions that take less than 5% of total MPI time



Round 2: MPI w/ Query Language

48

Spectrum-MPI uses 
libmlx5 (Mellanox 

InfiniBand driver) much 
more than MVAPICH

Spectrum-MPI uses 
pthread_spin_lock for a 

larger percentage of its 
MPI time than MVAPICH

pthread_spin_lock.c:26 memset.S:1133

<unknown file> 
[libmlx5.so.1.0.0]:0

<unknown file> 
[libmlx5.so.1.0.0]:1133

stl_vector.h:0 Geometry.h:0

malloc.c:0 Remaining MPI Time*M = MVAPICH S = Spectrum-MPI

With Query Language:
We can point to Spectrum-MPI’s use 
of libmlx5 and pthread_spin_lock

as likely causes of worse 
performance

* ”Remaining MPI Time” = functions that take less than 5% of total MPI time



Round 1: MPI w/o Query Language

49

MPI_Finalize MPI_Allreduce

MPI_Allgather MPI_Waitall

Remaining MPI Time*

MPI_Allgather
takes more than 75% 
of total MPI time for 

all runs

MVAPICH 
significantly 
outperforms 

Spectrum-MPI

M = MVAPICH S = Spectrum-MPI

* ”Remaining MPI Time” = functions that take less than 5% of total MPI time



Round 3: MPI_Allgather w/ Query Language

50

• Determine how much time was spent 
in the children of MPI_Allgather

• Hatchet with Query Language
— Use non-Query Language filtering to 

remove MPI_Allgather nodes

[{“name”: “P?MPI_Allgather”}, “*”]

pthread_spin_lock.c:26 memset.S:1133

<unknown file> 
[libmlx5.so.1.0.0]:0

<unknown file> 
[libmlx5.so.1.0.0]:1133

stl_vector.h:0 Geometry.h:0

malloc.c:0 Remaining MPI_Allgather Time*M = MVAPICH S = Spectrum-MPI

* ”Remaining MPI Time” = functions that take less than 5% of total MPI_Allgather time



51

Spectrum-MPI uses 
pthread_spin_lock for a 

larger percentage of its 
time in MPI_Allgather

than MVAPICH

M = MVAPICH S = Spectrum-MPI

Round 3: MPI_Allgather w/ Query Language

* ”Remaining MPI Time” = functions that take less than 5% of total MPI_Allgather time

pthread_spin_lock.c:26 memset.S:1133

<unknown file> 
[libmlx5.so.1.0.0]:0

<unknown file> 
[libmlx5.so.1.0.0]:1133

stl_vector.h:0 Geometry.h:0

malloc.c:0 Remaining MPI_Allgather Time*



52

Spectrum-MPI uses 
pthread_spin_lock for a 

larger percentage of its 
time in MPI_Allgather

than MVAPICH

With Query Language:
We can point to Spectrum-MPI’s use 

of pthread_spin_lock as likely 
causes of worse performance in 

MPI_Allgather

M = MVAPICH S = Spectrum-MPI

Round 3: MPI_Allgather w/ Query Language

* ”Remaining MPI Time” = functions that take less than 5% of total MPI_Allgather time

pthread_spin_lock.c:26 memset.S:1133

<unknown file> 
[libmlx5.so.1.0.0]:0

<unknown file> 
[libmlx5.so.1.0.0]:1133

stl_vector.h:0 Geometry.h:0

malloc.c:0 Remaining MPI_Allgather Time*



What did the Query Language provide?

53

Spectrum-MPI uses 
pthread_spin_lock for a 

larger percentage of its 
time in MPI_Allgather

than MVAPICH

Spectrum-MPI uses 
libmlx5 (Mellanox 

InfiniBand driver) much 
more than MVAPICH

Spectrum-MPI uses 
pthread_spin_lock for a 

larger percentage of its 
MPI time than MVAPICH



What did the Query Language provide?

54

We couldn’t have found any of this using Hatchet without 
the Query Language!

Spectrum-MPI uses 
pthread_spin_lock for a 

larger percentage of its 
time in MPI_Allgather

than MVAPICH

Spectrum-MPI uses 
libmlx5 (Mellanox 

InfiniBand driver) much 
more than MVAPICH

Spectrum-MPI uses 
pthread_spin_lock for a 

larger percentage of its 
MPI time than MVAPICH



Lessons Learned and Future Work

• Our work enables users to discover new insights into their 
applications’ performance 
— Identify specific functions for further optimization
— Attribute poor performance to specific functions
— Reduce massively the size of call graphs
— Enable easy and safe interaction between Hatchet and other tools (through 

the String-based Dialect)
• We will apply our Query Language and dialects to performance data 

from scientific applications

55



Want to try out the Query Language?

56

BinderHub

https://mybinder.org/v2/gh/llnl/hatchet-tutorial/main

GitHub Repo

https://github.com/LLNL/hatchet-tutorial



Disclaimer
This document was prepared as an account of work sponsored by an agency of the United States government. Neither 
the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any 
warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or 
usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe 
privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, 
trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or 
favoring by the United States government or Lawrence Livermore National Security, LLC. The views and opinions of 
authors expressed herein do not necessarily state or reflect those of the United States government or Lawrence 
Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.


