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Importance of HPC in Scientific Computing

[1] J. Thomas, “Model for COVID-19 drug discovery a Gordon Bell finalist,” Lawrence Livermore National Laboratory, 2020. Available: 
https://www.llnl.gov/news/model-covid-19-drug-discovery-gordon-bell-finalist.
[2] “Investigating Dyes for Solar Cells from Start to Finish,” U.S. DOE Office of Science (SC), Oct. 28, 2019. Available: 
https://science.osti.gov/ascr/Highlights/2019/ASCR-2019-10-a.
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HPC Performance Analysis Workflow
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HPC Performance Analysis Workflow
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[3] A. Bhatele, S. Brink, and T. Gamblin, “Hatchet: Pruning the Overgrowth in Parallel Profiles,” in Proceedings of SC 2019, November 17-19, 2019. Available: 
https://doi.org/10.1145/3295500.3356219
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The Problem with Performance Analysis

Performance 
Measurement 
Tool (Profiler)

HPC
Application

Performance 
Data File

Visualization and 
Analysis

(i.e., with Hatchet)



9
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The Problem with Performance Analysis

Visualization and 
Analysis

(i.e., with Hatchet)

✓ Can use

✗
Cannot 

useMetrics:
Name: funcA
Time: 95us

L2 Cache Misses: 7

main

funcA funcB

funcC funcD

Call Graph

Goal
Create a tool that can enable users to utilize the 

contextual and relational data from the call graph 
that could not previously be used in analyzing 

performance data



Contributions
• Design and implement a new Call Path Query Language in Hatchet
• Define two dialects for our Query Language to simplify its use under 

diverse circumstances
• Classify the abilities of our Query Language and its dialects into 

features and capabilities
• Demonstrate the benefits of our Query Language through three case 

studies
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Call Path Query Language
• Enables Hatchet users to extract a set of paths that match certain 

properties from a call graph
• Two parts: (1) Query Composition and (2) Algorithm

12
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Call Path Query Language: Composition

13

Query

Query Node (1) Query 
Node 

(2)

Query 
Node 

(3)Quantifier
defines how many “real” 

nodes in a call path to match 
to a query node

Predicate
defines what conditions 

must be satisfied for a “real” 
node to match a query node

main

funcA funcB

funcC funcD



Call Path Query Language: Composition
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“Find all paths that start with a MPI node with 
more than 5 L2 cache misses, followed by 0 
or more of any node”

OR

“Find all subgraphs rooted at a MPI node with 
more than 5 L2 cache misses”



Call Path Query Language: Composition

15

query = (
QueryMatcher()
.match(

“.”,
lambda row: re.match(

“MPI_.*”,
row[“name”]

)
is not None
and row[“PAPI_L2_TCM”] > 5

)
.rel(“*”)

)

“Find all paths that start with a MPI node with 
more than 5 L2 cache misses, followed by 0 
or more of any node”

OR

“Find all subgraphs rooted at a MPI node with 
more than 5 L2 cache misses”

“Base” Syntax:



Call Path Query Language: Composition
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Query: 
QueryMatcher
Python class

Query Node:
• match() sets 

the first query 
node in the 
query

• rel() adds a 
query node to 
the end of the 
query

query = (
QueryMatcher()
.match(

“.”,
lambda row: re.match(

“MPI_.*”,
row[“name”]

)
is not None
and row[“PAPI_L2_TCM”] > 5

)
.rel(“*”)

)

“Base” Syntax:



Call Path Query Language: Composition
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Quantifier:
• “.”: match 1
• “*”: match 0 or 

more
• “+”: match 1 

or more
• Integer: match 

exact number

query = (
QueryMatcher()
.match(

“.”,
lambda row: re.match(

“MPI_.*”,
row[“name”]

)
is not None
and row[“PAPI_L2_TCM”] > 5

)
.rel(“*”)

)

“Base” Syntax:



Call Path Query Language: Composition

18

Predicate:
Python Callable 
with metrics as 

input and Boolean 
as output 

query = (
QueryMatcher()
.match(

“.”,
lambda row: re.match(

“MPI_.*”,
row[“name”]

)
is not None
and row[“PAPI_L2_TCM”] > 5

)
.rel(“*”)

)

“Base” Syntax:
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Call Path Query Language: Algorithm
Problem:

Find all paths in a call graph that match properties described by the 
user-provided query (subgraph isomorphism)

main

funcA funcB

funcC funcD

Call Graph

Query

Modified 
Ullmann’s 
Algorithm

main

funcA

funcD

[4] J. R. Ullmann, “An Algorithm for Subgraph Isomorphism,” J. ACM, vol. 23, no. 1, pp. 31–42, 1976. Available: http://doi.acm.org/10.1145/321921.321925
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Call Path Query Language: Algorithm
Problem:

Find all paths in a call graph that match properties described by the 
user-provided query (subgraph isomorphism)

Modified 
Ullmann’s 
Algorithm

Use predicates 
instead of degree-

based node 
comparison

Add support for 
quantifiers



Call Path Query Language
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For some users, this syntax is:
• Too verbose and complex
• Unusable in some situations 

(e.g., creating a query in 
another programming 
language)

query = (
QueryMatcher()
.match(

“.”,
lambda row: re.match(

“MPI_.*”,
row[“name”]

)
is not None
and row[“PAPI_L2_TCM”] > 5

)
.rel(“*”)

)

“Base” Syntax:



Contributions
• Design and implement a new Call Path Query Language in Hatchet
• Define two dialects for our Query Language to simplify its use under 

diverse circumstances
• Classify the abilities of our Query Language and its dialects into 

features and capabilities
• Demonstrate the benefits of our Query Language through three case 

studies

22



Simplifying Queries with Dialects
• Simplify use of Call Path Query Language and allow use under 

diverse circumstances 
• Internally translated into “base” Query Language syntax
• Two Dialects:
— Object-based Dialect

— Provides a simpler, less verbose way of writing queries
— String-based Dialect

— Provides a way to write queries that is decoupled from Python

23



Simplifying Queries with Dialects
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query = (
QueryMatcher()
.match(

“.”,
lambda row: re.match(

“MPI_.*”,
row[“name”]

)
is not None
and row[“PAPI_L2_TCM”] > 5

)
.rel(“*”)

)

“Base” Syntax:



Simplifying Queries with Dialects
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query = (
QueryMatcher()
.match(

“.”,
lambda row: re.match(

“MPI_.*”,
row[“name”]

)
is not None
and row[“PAPI_L2_TCM”] > 5

)
.rel(“*”)

)

“Base” Syntax:
query = [

(
“.”,
{

“name”: “MPI_.*”,
“PAPI_L2_TCM”: “> 5”

}
),
“*”

]

Object-based Dialect:



query = (
QueryMatcher()
.match(

“.”,
lambda row: re.match(

“MPI_.*”,
row[“name”]

)
is not None
and row[“PAPI_L2_TCM”] > 5

)
.rel(“*”)

)

“Base” Syntax:
query = [

(
“.”,
{

“name”: “MPI_.*”,
“PAPI_L2_TCM”: “> 5”

}
),
“*”

]

Object-based Dialect:

Simplifying Queries with Dialects
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query = (
QueryMatcher()
.match(

“.”,
lambda row: re.match(

“MPI_.*”,
row[“name”]

)
is not None
and row[“PAPI_L2_TCM”] > 5

)
.rel(“*”)

)

“Base” Syntax:
query = [

(
“.”,
{

“name”: “MPI_.*”,
“PAPI_L2_TCM”: “> 5”

}
),
“*”

]

Object-based Dialect:

Simplifying Queries with Dialects
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Simplifying Queries with Dialects
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query = (
QueryMatcher()
.match(

“.”,
lambda row: re.match(

“MPI_.*”,
row[“name”]

)
is not None
and row[“PAPI_L2_TCM”] > 5

)
.rel(“*”)

)

“Base” Syntax:
query = [

(
“.”,
{

“name”: “MPI_.*”,
“PAPI_L2_TCM”: “> 5”

}
),
“*”

]

Object-based Dialect:
query = """
MATCH (".", p)->("*")
WHERE p."name" =~ "MPI_.*" AND

p."PAPI_L2_TCM" > 5
"""

String-based Dialect:



query = (
QueryMatcher()
.match(

“.”,
lambda row: re.match(

“MPI_.*”,
row[“name”]

)
is not None
and row[“PAPI_L2_TCM”] > 5

)
.rel(“*”)

)

“Base” Syntax:
query = [

(
“.”,
{

“name”: “MPI_.*”,
“PAPI_L2_TCM”: “> 5”

}
),
“*”

]

Object-based Dialect:
query = """
MATCH (".", p)->("*")
WHERE p."name" =~ "MPI_.*" AND

p."PAPI_L2_TCM" > 5
"""

String-based Dialect:

Simplifying Queries with Dialects
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query = (
QueryMatcher()
.match(

“.”,
lambda row: re.match(

“MPI_.*”,
row[“name”]

)
is not None
and row[“PAPI_L2_TCM”] > 5

)
.rel(“*”)

)

“Base” Syntax:
query = [

(
“.”,
{

“name”: “MPI_.*”,
“PAPI_L2_TCM”: “> 5”

}
),
“*”

]

Object-based Dialect:
query = """
MATCH (".", p)->("*")
WHERE p."name" =~ "MPI_.*" AND

p."PAPI_L2_TCM" > 5
"""

String-based Dialect:

Simplifying Queries with Dialects
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Simplifying Queries with Dialects
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query = (
QueryMatcher()
.match(

“.”,
lambda row: re.match(

“MPI_.*”,
row[“name”]

)
is not None
and row[“PAPI_L2_TCM”] > 5

)
.rel(“*”)

)

“Base” Syntax:
query = [

(
“.”,
{

“name”: “MPI_.*”,
“PAPI_L2_TCM”: “> 5”

}
),
“*”

]

Object-based Dialect:
query = """
MATCH (".", p)->("*")
WHERE p."name" =~ "MPI_.*" AND

p."PAPI_L2_TCM" > 5
"""

String-based Dialect:

Complexity and Verbosity (Most to Least)
1 3 2



Simplifying Queries with Dialects
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query = (
QueryMatcher()
.match(

“.”,
lambda row: re.match(

“MPI_.*”,
row[“name”]

)
is not None
and row[“PAPI_L2_TCM”] > 5

)
.rel(“*”)

)

“Base” Syntax:
query = [

(
“.”,
{

“name”: “MPI_.*”,
“PAPI_L2_TCM”: “> 5”

}
),
“*”

]

Object-based Dialect:
query = """
MATCH (".", p)->("*")
WHERE p."name" =~ "MPI_.*" AND

p."PAPI_L2_TCM" > 5
"""

String-based Dialect:

• Pros
— Can represent complex 

queries

• Cons
— Most complex and verbose 

syntax
— Requires knowledge of 

other libraries (e.g., pandas)
— Can only be created in 

Python

• Pros
— Simplest and least verbose 

syntax
— Great for simple queries

• Cons
— Cannot represent complex 

queries
— Can only be created in 

Python

• Pros
— Can be created in any 

programming language
— Simpler and less verbose 

than “base” syntax

• Cons
— Cannot represent some 

complex queries
— Requires learning a 

custom language



Contributions
• Design and implement a new Call Path Query Language in Hatchet
• Define two dialects for our Query Language to simplify its use under 

diverse circumstances
• Classify the abilities of our Query Language and its dialects into 

features and capabilities*
• Demonstrate the benefits of our Query Language through three case 

studies

33

* If you want to see the differences in features between the Query Language and its dialects, 
check out our paper: “Enabling Call Path Querying in Hatchet to Identify Performance Bottlenecks 
in Scientific Applications”



Contributions
• Design and implement a new Call Path Query Language in Hatchet
• Define two dialects for our Query Language to simplify its use under 

diverse circumstances
• Classify the abilities of our Query Language and its dialects into 

features and capabilities
• Demonstrate the benefits of our Query Language through three case 

studies*

34

* Only one case study is shown due to time. If you want to see the others, check out our paper: 
“Enabling Call Path Querying in Hatchet to Identify Performance Bottlenecks in Scientific 
Applications”
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• AMG2013:
— Benchmark from the CORAL-2 suite
— Parallel algebraic multigrid solver for 

linear systems on unstructured 
meshes
• Used in applications like 

Computational Fluid Dynamics

36

Performance 
Measurement 
Tool (Profiler)

HPC
Application

Performance 
Data File

Visualization and 
Analysis

(i.e., with Hatchet)

• MPI Libraries:
— MVAPICH
— Spectrum-MPI

Comparing Tools with Queries

[5] “AMG2013,” Lawrence Livermore National Laboratory. Available: https://asc.llnl.gov/codes/proxy-apps/amg2013.
[6] “CORAL-2 Benchmarks,” Lawrence Livermore National Laboratory. Available: https://asc.llnl.gov/coral-2-benchmarks.
[7] K. Stüben, “A review of algebraic multigrid,” J. Comput. Appl. Math., no. 1–2, pp. 281–309, 2001, Available: https://doi.org/10.1016/S0377-0427(00)00516-1



Comparing Tools with Queries
• All runs performed on LLNL’s 

Lassen supercomputer
— 795 AC922 nodes

• 2 IBM POWER9 CPUs per node (20 
usable cores per node)

• 256 GB Memory
• NVIDIA V100 GPUs

— InfiniBand EDR Interconnect

37
[8] “Lassen,” HPC @ LLNL. Available: https://hpc.llnl.gov/hardware/compute-platforms/lassen.
[9] “Using LC’s Sierra Systems,” HPC @ LLNL. Available: https://hpc.llnl.gov/documentation/tutorials/using-lc-s-sierra-systems.



Comparing Tools with Queries

• Run AMG2013 with MVAPICH and Spectrum-MPI while profiling 
with HPCToolkit
— 64, 128, 256, and 512 MPI ranks

38

Performance 
Measurement 
Tool (Profiler)

HPC
Application

Performance 
Data File

Visualization and 
Analysis

(i.e., with Hatchet)

[10] L. Adhianto et al., “HPCTOOLKIT: tools for performance analysis of optimized parallel programs,” Concurrency and Computation: 
Practice and Experience, 2009. Available: https://doi.org/10.1002/cpe.1553



Comparing Tools with Queries

• Goal: compare the abilities of existing tools (i.e., Hatchet) and our 
Query Language at extracting knowledge from performance data

• Case Study: compare the performance of MVAPICH and Spectrum-
MPI by running AMG2013 at different scales
— Use Hatchet with and without our Query Language
— Use Object-based Dialect

39

Performance 
Measurement 
Tool (Profiler)

HPC
Application

Performance 
Data File

Visualization and 
Analysis

(i.e., with Hatchet)



Round 1: MPI w/o Query Language
• Determine how much time was spent 

in each MPI function
• Hatchet without Query Language
• “Remaining MPI Time” = functions 

that take less than 5% of total MPI 
time

40

MPI_Finalize MPI_Allreduce

MPI_Allgather MPI_Waitall

Remaining MPI Time
M = MVAPICH S = Spectrum-MPI



Round 1: MPI w/o Query Language

41

MPI_Finalize MPI_Allreduce

MPI_Allgather MPI_Waitall

Remaining MPI Time*

MPI_Allgather
takes more than 75% 
of total MPI time for 

all runs

M = MVAPICH S = Spectrum-MPI

* ”Remaining MPI Time” = functions that take less than 5% of total MPI time



Round 1: MPI w/o Query Language
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MPI_Finalize MPI_Allreduce

MPI_Allgather MPI_Waitall

Remaining MPI Time*

MPI_Allgather
takes more than 75% 
of total MPI time for 

all runs

MVAPICH 
significantly 
outperforms 

Spectrum-MPI

M = MVAPICH S = Spectrum-MPI

* ”Remaining MPI Time” = functions that take less than 5% of total MPI time



Round 1: MPI w/o Query Language
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MPI_Finalize MPI_Allreduce

MPI_Allgather MPI_Waitall

Remaining MPI Time*

MPI_Allgather
takes more than 75% 
of total MPI time for 

all runs

MVAPICH 
significantly 
outperforms 

Spectrum-MPI

M = MVAPICH S = Spectrum-MPI

Spectrum-MPI’s poor performance 
can hurt scientific applications that 

depend on it

* ”Remaining MPI Time” = functions that take less than 5% of total MPI time



Round 1: MPI w/o Query Language

44

MPI_Finalize MPI_Allreduce

MPI_Allgather MPI_Waitall

Remaining MPI Time*

MPI_Allgather
takes more than 75% 
of total MPI time for 

all runs

MVAPICH 
significantly 
outperforms 

Spectrum-MPI

M = MVAPICH S = Spectrum-MPI

Without Query Language:
We cannot determine any specific 
potential cause of Spectrum-MPI’s 

poor performance

Spectrum-MPI’s poor performance 
can hurt scientific applications that 

depend on it

* ”Remaining MPI Time” = functions that take less than 5% of total MPI time



Round 2: MPI w/ Query Language

45

• Determine how much time was spent 
in the children of the MPI functions

• Hatchet with Query Language
— Use non-Query Language filtering to 

remove MPI nodes

[{“name”: “P?MPI_.*”}, “*”]

pthread_spin_lock.c:26 memset.S:1133

<unknown file> 
[libmlx5.so.1.0.0]:0

<unknown file> 
[libmlx5.so.1.0.0]:1133

stl_vector.h:0 Geometry.h:0

malloc.c:0 Remaining MPI Time*M = MVAPICH S = Spectrum-MPI

* ”Remaining MPI Time” = functions that take less than 5% of total MPI time



Round 2: MPI w/ Query Language

46

Spectrum-MPI uses 
libmlx5 (Mellanox 

InfiniBand driver) much 
more than MVAPICH

pthread_spin_lock.c:26 memset.S:1133

<unknown file> 
[libmlx5.so.1.0.0]:0

<unknown file> 
[libmlx5.so.1.0.0]:1133

stl_vector.h:0 Geometry.h:0

malloc.c:0 Remaining MPI Time*M = MVAPICH S = Spectrum-MPI

* ”Remaining MPI Time” = functions that take less than 5% of total MPI time



Round 2: MPI w/ Query Language

47

Spectrum-MPI uses 
libmlx5 (Mellanox 

InfiniBand driver) much 
more than MVAPICH

Spectrum-MPI uses 
pthread_spin_lock for a 

larger percentage of its 
MPI time than MVAPICH

pthread_spin_lock.c:26 memset.S:1133

<unknown file> 
[libmlx5.so.1.0.0]:0

<unknown file> 
[libmlx5.so.1.0.0]:1133

stl_vector.h:0 Geometry.h:0

malloc.c:0 Remaining MPI Time*M = MVAPICH S = Spectrum-MPI

* ”Remaining MPI Time” = functions that take less than 5% of total MPI time



Round 2: MPI w/ Query Language

48

Spectrum-MPI uses 
libmlx5 (Mellanox 

InfiniBand driver) much 
more than MVAPICH

Spectrum-MPI uses 
pthread_spin_lock for a 

larger percentage of its 
MPI time than MVAPICH

pthread_spin_lock.c:26 memset.S:1133

<unknown file> 
[libmlx5.so.1.0.0]:0

<unknown file> 
[libmlx5.so.1.0.0]:1133

stl_vector.h:0 Geometry.h:0

malloc.c:0 Remaining MPI Time*M = MVAPICH S = Spectrum-MPI

With Query Language:
We can point to Spectrum-MPI’s use 
of libmlx5 and pthread_spin_lock

as likely causes of worse 
performance

* ”Remaining MPI Time” = functions that take less than 5% of total MPI time



Round 1: MPI w/o Query Language

49

MPI_Finalize MPI_Allreduce

MPI_Allgather MPI_Waitall

Remaining MPI Time*

MPI_Allgather
takes more than 75% 
of total MPI time for 

all runs

MVAPICH 
significantly 
outperforms 

Spectrum-MPI

M = MVAPICH S = Spectrum-MPI

* ”Remaining MPI Time” = functions that take less than 5% of total MPI time



Round 3: MPI_Allgather w/ Query Language

50

• Determine how much time was spent 
in the children of MPI_Allgather

• Hatchet with Query Language
— Use non-Query Language filtering to 

remove MPI_Allgather nodes

[{“name”: “P?MPI_Allgather”}, “*”]

pthread_spin_lock.c:26 memset.S:1133

<unknown file> 
[libmlx5.so.1.0.0]:0

<unknown file> 
[libmlx5.so.1.0.0]:1133

stl_vector.h:0 Geometry.h:0

malloc.c:0 Remaining MPI_Allgather Time*M = MVAPICH S = Spectrum-MPI

* ”Remaining MPI Time” = functions that take less than 5% of total MPI_Allgather time
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Spectrum-MPI uses 
pthread_spin_lock for a 

larger percentage of its 
time in MPI_Allgather

than MVAPICH

M = MVAPICH S = Spectrum-MPI

Round 3: MPI_Allgather w/ Query Language

* ”Remaining MPI Time” = functions that take less than 5% of total MPI_Allgather time

pthread_spin_lock.c:26 memset.S:1133

<unknown file> 
[libmlx5.so.1.0.0]:0

<unknown file> 
[libmlx5.so.1.0.0]:1133

stl_vector.h:0 Geometry.h:0

malloc.c:0 Remaining MPI_Allgather Time*
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Spectrum-MPI uses 
pthread_spin_lock for a 

larger percentage of its 
time in MPI_Allgather

than MVAPICH

With Query Language:
We can point to Spectrum-MPI’s use 

of pthread_spin_lock as likely 
causes of worse performance in 

MPI_Allgather

M = MVAPICH S = Spectrum-MPI

Round 3: MPI_Allgather w/ Query Language

* ”Remaining MPI Time” = functions that take less than 5% of total MPI_Allgather time

pthread_spin_lock.c:26 memset.S:1133

<unknown file> 
[libmlx5.so.1.0.0]:0

<unknown file> 
[libmlx5.so.1.0.0]:1133

stl_vector.h:0 Geometry.h:0

malloc.c:0 Remaining MPI_Allgather Time*



What did the Query Language provide?

53

Spectrum-MPI uses 
pthread_spin_lock for a 

larger percentage of its 
time in MPI_Allgather

than MVAPICH

Spectrum-MPI uses 
libmlx5 (Mellanox 

InfiniBand driver) much 
more than MVAPICH

Spectrum-MPI uses 
pthread_spin_lock for a 

larger percentage of its 
MPI time than MVAPICH



What did the Query Language provide?

54

We couldn’t have found any of this using Hatchet without 
the Query Language!

Spectrum-MPI uses 
pthread_spin_lock for a 

larger percentage of its 
time in MPI_Allgather

than MVAPICH

Spectrum-MPI uses 
libmlx5 (Mellanox 

InfiniBand driver) much 
more than MVAPICH

Spectrum-MPI uses 
pthread_spin_lock for a 

larger percentage of its 
MPI time than MVAPICH



Lessons Learned and Future Work

• Our work enables users to discover new insights into their 
applications’ performance 
— Identify specific functions for further optimization
— Attribute poor performance to specific functions
— Reduce massively the size of call graphs
— Enable easy and safe interaction between Hatchet and other tools (through 

the String-based Dialect)
• We will apply our Query Language and dialects to performance data 

from scientific applications

55



Want to try out the Query Language?

56

BinderHub

https://mybinder.org/v2/gh/llnl/hatchet-tutorial/main

GitHub Repo

https://github.com/LLNL/hatchet-tutorial
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