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Case Study: Protein Diffraction Dataset

Domain Agnostic Methodology for NNs Search

Generate NNs

Generate and train several 
generations of NNs on a 
dataset using a NAS of 
desired choice

Select Pareto-optimal 
sets of NNs for each 
generation based on:
● high accuracy 
● low FLOPS usage

Select NNs

Refine by:
● choosing the optimal set 

of NNs 
● establishing FLOPS cutoff 
● long targeted training 

(more epochs) 

Refine NNs
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Using Neural Networks (NNs) for Scientific Discovery

Achieving high accuracy and efficient performance is a challenge, so:  

● We define a domain-agnostic methodology to find an efficient NN using a 

neural architecture search (NAS) 

● We optimize for accuracy (minimize error) and for efficiency (minimize 

inference FLOPS).

Scientific Datasets Neural Networks Scientific Discoveries

NN Model FLOPS Accuracy before 
refinement

Accuracy after 
refinement

Inference Time 
(s)

740 0.016 57.1 57.1 0.407

729 169.125 92.4 97.7 1.161

736 187.125 94.6 98.1 1.250

Generate NNs
Generate and train 30 
generations of NNs with 
NSGA-Net’s “macro-search” 
(750 NNs total)

Select 30 Pareto-
optimal sets of NNs 
based on objectives

Select NNs

Refine Gen. 30 (the 
optimal set of NNs) 
with a 200 FLOPS cutoff 
to get the 3 most 
efficient NNs 

Refine NNs

Best 2 NNs due to 
>97% accuracy and 
<200 FLOPS usage

Our methodology leverages NAS to find 

accurate and efficient NN architectures 

tailored to any scientific dataset.

Our methodology efficiently utilizes a NAS to find a NN architecture optimized 
to classifying scientific datasets based on accuracy and performance.

Applying our Methodology to Classify Protein Diffraction 
Dataset

Generation of Protein 
Diffraction Data
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