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Abstract—The manner in which data is represented, accessed
and transmitted has an affect upon the efficiency of any com-
puting system. In the domain of high performance computing,
traditional frameworks like MPI have relied upon a relatively
static type system with a high degree of a priori knowledge shared
among the participants. However, modern scientific computing
is increasingly distributed and dynamic, requiring the ability to
dynamically create multi-platform workflows, to move processing
to data, and to perform both in situ and streaming data
analysis. Traditional approaches to data type description and
communication in middleware, which typically either require a
priori agreement on data types, or resort to highly inefficient
representations like XML, are insufficient for the new domain of
dynamic science. This paper describes a different approach, using
FFS, a middleware library that implements efficient manipulation
of application-level data. FFS provides for highly efficient binary
data communication, XML-like examination of unknown data,
and both third-party and in situ data processing via dynamic
code generation. All of these capabilities are fully dynamic at
run-time, without requiring a priori agreements or knowledge of
the exact form of the data being communicated or analyzed.

I. INTRODUCTION

Scientific computing has always been a data-intensive do-
main, but with high performance networks, limitations in the
scalability of single machines and the natural physical distribu-
tion of science teams, it increasingly has turned to distributed
computing solutions. Application environments have evolved
from tightly-coupled components running in a single location
to collaborating components shared amongst diverse under-
lying computational centers. For example, HPC components
include those responsible for data analysis, temporary and long
term storage, data visualization, data preprocessing or staging
for input or output, and others. Linking such components in
ways that are flexible and dynamic but do not compromise
performance requires careful attention to the manner in which
data is represented, accessed and transmitted. Adding impor-
tant new capabilities such as moving computation to data also
requires careful thought about how such mobile computation
can be represented and implemented.

Traditional high performance systems have generally relied
upon binary data representations and a high degree of a
priori knowledge between parties exchanging data. However,
in many D3 (data-intensive, distributed and dynamic) sci-

ence situations, requiring agreement on basic representation
is overly restrictive as a priori knowledge may be imper-
fect or non-existent, or the linked components may simply
use different representations of semantically similar data.
Straightforward alternatives, such as using XML/XSLT[1],
name/value schemes or object-based marshaling[2] have sig-
nificantly higher overhead than traditional approaches[3] and
are not readily suitable for data-intensive HPC applications.

This paper describes a different approach, using FFS (Fast
Flexible Serialization), an approach to data representation,
processing and marshaling that preserves the performance of
traditional approaches while relaxing the requirement of a
priori knowledge and providing complex run-time flexibility.
FFS provides for highly efficient binary data communication,
XML-like examination of unknown data, and both third-party
and in situ data processing via dynamic code generation. All
of these capabilities are fully dynamic at run-time, without
requiring a priori agreements or knowledge of the exact form
of the data being communicated or analyzed. The efficient
binary representation of the data object is also realized in the
output format for the FFSfile, an advanced object store-like file
format that supports attribute based querying for data objects
while providing transparent support for machine portability
and in situ processing.

FFS addresses the challenges posed by distributed com-
puting requirements without compromising the performance
characteristics important for the data intensive nature of the
target applications. The FFS approach to handling data has
been utilized in a number of scientific middleware solutions
by our group and collaborators. We will focus here on two
specific instances in this paper, a code coupling middleware
with a channelized pub/sub interface [4] based on the EVPath
event transport library [5] and a high performance, scalable
data extraction library called JITStager[6]. The details of each
of these systems are discussed elsewhere, but both of them are
completely consistent with the D3 vision discussed earlier.

EVPath is an event processing architecture that supports
high performance data streaming in overlay networks with in-
ternal data processing. FFS enables EVPath to be a fully type-
aware middleware, marshaling and unmarshaling application-
level messages as required for its operations and using it



to enact mobile application-level processing in its overlay
network. On the other hand, JITStager addresses the per-
formance needs of massively scalable parallel applications
for data extraction to staging nodes. In addition to the high
performance data extraction mechanism, JITStager uses the
self describing nature of the FFS data format in conjunction
with the CoD dynamic compiler to allow low overhead data
marshaling and data transformations for I/O pipelines and in
situ data processing.

This paper examines the communication and computational
needs of D3 science applications and derives a set of require-
ments. We then describe the attributes of FFS that address
these needs and demonstrate how FFS forms the foundation of
the two aforementioned D3 middlewares. We evaluate the FFS
framework both independently in a series of microbenchmarks
as well as in the context of these middleware libraries.

II. MOTIVATING APPLICATIONS & REQUIREMENTS

A. Distributed Materials Design

For the illustrative purposes of this paper, we consider one
particular type of D3 science application, although the core
architecture has proven itself to be relevant in a number of
other scenarios. Specifically, we want to focus on the capa-
bilities and requirements for large, design-space optimization
problems like design-of-materials [7]. These are multi-physics,
multi-collaborator, multi-site, and multi-objective projects that
require dynamic messaging infrastructures quite different from
the highly structured ones used in traditional simulation do-
mains (i.e. MPI). In particular, these sorts of code bases
have to deal with very dynamic process models and flexible,
higher-level data models that must be maintained in between
executions of any individual component.

To be more concrete, consider designing a material to meet
a particular tensile strength requirement, such as designing an
ideal composite material to be used in a turbine blade. This is
not a simple combinatorial design space exploration using a
single code – the problem requires utilizing everything from
atomic level-codes to study the composite microstructure for
crack propagation, all the way up to macroscopic finite element
simulations of the entire blade structure. Depending on the
type of composite, there may be many intermediate models
that best represent the physics at the mesoscale structural level.

From a computer science perspective, this implies that
the overall execution cannot be captured in a single, unified
execution model. Tasks to explore novel configurations and
crack propagation will be dynamically spawned in order to
evaluate particular issues as the higher-level codes evolve.
Similarly, given the composition of the very different time and
length scales implied by this sort of system, there must be the
capability to both convert between data representations easily,
while simultaneously enabling higher-level experimental con-
cepts (like total error) to be maintained even if the individual
component does not understand it.

One approach to solving such problems is to adhere to a
componentized framework [8], where each component must
have a well-defined interface. Techniques can then be used to

automatically generate binding code at compile time to enable
the type conversion and inter-process communications [9],
[10]. For our approach, however, we wish to enable a more
flexible execution environment that is more solidly D3 in
nature – adding collaborative and multi-site capabilities to the
list of multi-* requirements for the code. The “heavy lifting”
can take place in traditional HPC centers, but the overall
environment must include the ability to stream such data to
secondary sites for further analysis, integration, interpretation,
and even visualization and collaborative discussion. Under
such requirements, the alternative approaches that require
compile-time knowledge of the complete composition, let
alone fixed process allocation knowledge (as MPI would
require), would clearly not be sufficient.

B. Computer Science Implications

Systems that seek to implement end-to-end real-time pro-
cessing of scientific data, particularly those that must support
distributed processing and dynamic connectivity, have some
common needs that drive requirements for their underlying
system of data representation and manipulation. As described
in the introduction, we focus here on the specific issues
associated with the flexible formatting requirements, although
we also describe some of the overlapping research we have
done in messaging, discovery, and active transport layers that
have been enabled by the core FFS capabilities.

It is clear that in an HPC environment, data marshaling and
unmarshaling costs must be minimized, avoiding copying data
if at all possible. Generally this indicates that the underlying
type system for communication must closely mirror the type
system of the underlying application, utilizing direct memory
access on marshaling and perhaps allowing direct use of
incoming data buffers. Additionally, the inclusion of some
kind of mobile code system is useful in order to support
in situ analysis (moving code to data). This support can
significantly improve scalability because of the potential for
the mobile code to perform filtering, data reduction, and/or
feature extraction in order to avoid wasting scarce bandwidth
transmitting data that will be later discarded or reduced.
Further, mobile code can be invaluable in linking diverse
components in data-intensive dynamic workflows because of
its ability to transform data representations to “make them
right” for the eventual consumer.

In order to maximize the utility of these capabilities, the
mobile code must be both efficient and flexible, running at
speeds near that of compiled code while operating on data
whose exact representation may not be known until run-time.
Additionally, because of the dynamic nature of these systems,
the ability to recognize and gain information about incoming
data types (that is, to access associated metadata or utilize
reflective properties) is invaluable. Finally, because of the data-
intensive nature of these HPC applications, the inclusion of
type meta-information must not have a significant effect upon
communication performance.

We can summarize the requirements for a type system for
D3 science applications as follows:



• low marshaling/unmarshaling costs, so as not to interfere
with delivering communication bandwidth and latency
near what the underlying network allows,

• the ability to recognize and gain information about in-
coming data types that may be unknown (i.e. associated
metadata or reflection),

• the ability to enact run-time specified functions to data
types that are potentially unknown until run-time, with
an efficiency near native code.

III. FFS DESIGN AND ARCHITECTURE

In order to meet the requirements above, FFS is designed
around a simple data representation and dynamic code gener-
ation for function enactment. A key design decision is that
all messages are tagged with a ’metadata token’ through
which a complete description of the structure of the data
can retrieved. This approach allows for the transport of fully-
described data without significant overhead on every message.
It also allows for the recognition of incoming message types
and the customization of handler functions where appropriate.

A. Data Representation

Some systems used for the transport and processing of
typed data differentiate between the representation used ’on-
the-wire’ and that used for in-memory for processing. XML,
for example, relies on a strictly textual representation for
transport and storage, but XSLT is a tree-transformation
language designed to manipulate Document Object Model
(DOM) trees. Because of its intended application domain in
high-performance computing, FFS uses an in-memory data
representation designed to be simple, but still rich enough
to support the classes of data that those applications need to
communicate. In particular, the FFS data model is roughly
equivalent to a C-style structure or a Fortran Derived type,
supplemented with some additional semantics that allow for
variably-sized arrays and other pointer-based structures. FFS
accommodates nested structures and recursively-defined data
structures such as lists, trees and graphs.

In order for FFS to transport an application-defined data
structure, the structure must be completely described to FFS.
The process for doing this is somewhat similar to constructing
a derived datatype in MPI. Figure 1 shows a very simple C-
style structure that might be used in a distributed monitoring
scenario.

One important features to note here is that the FMField
description captures necessary information about application-
level structures, including field names, types, sizes and offsets
from the start of the structure. MPI derived data types are
declared similarly, with the exceptions that FFS also associates
a name, rather than just a type, with each field, and FFS
separates the root data type (e.g. “integer”) from the size of
field. The struct_list associates a name (“message”) with
the structure described by the field list and provides FFS with
the structure’s size (which due to alignment requirements may
be different than simply the largest field offset and size). In this
simple case, the format_list contains just a single element

typedef struct {
int cpu load;
double mem use;
double net use;

} Msg, *MsgP;

FMField Msg field list[] = {
{“load”, “integer”, sizeof(int), FMOffset(MsgP, load)},
{“mem use”, “float”, sizeof(double), FMOffset(MsgP, mem use)},
{“net use”, “float”, sizeof(double), FMOffset(MsgP, net use)},
{NULL, NULL, 0, 0},

}
static FMStructDescRec struct list[] = {
{“message”, Msg field list, sizeof(Msg), NULL},
{NULL, NULL, 0, NULL}

};

Fig. 1. Sample FFS data structure declaration in C. The
FMOffset() macro calculates the offset of the field within
the structure.

(and the NULL end record). In more complex situations, the
format list includes the transitive closure of all structures that
make up the data structure.

The set of built-in FFS supported types includes “in-
teger”, “unsigned integer”, “float” and “string”. The latter
is a C-style NULL-terminated string. “Double” is included
as an alias for “float”, while “enumeration” and “boolean”
largely function as integer types. For nested structures, the
type field can be the name of another structure from the
struct_list. For example, Figure 2 shows an FFS dec-
laration for a nested structure that includes a “r3vector”
type. Field types may also specify statically-sized arrays (e.g.
“integer[100]”), or dynamically-sized arrays where the
actual size is given by another integer-typed variable in the
structure (e.g. “float[dimen1][dimen2]”).

It is worth noting that while the structure descriptions
in Figures 1 and 2 are static, deriving from a structure
that is declared at compile-time, FFS does not rely upon
(and is not aware of) that aspect of the descriptions. In the
context of the requirements laid out in Section II, static FFS
structure descriptions match the context of statically-compiled
D3 applications and are used to 1) describe the structure
of application data to be transmitted, or 2) to describe the
structure the incoming data must have in order to be delivered
to the receiving application. FFS does not require that these
descriptions be the same. Rather, FFS’ role is to be the
arbiter that enables a transformation between the two (or more)
potentially different data types used by the communicating
applications.

While static FFS structure descriptions generally make
sense when interfacing with statically typed languages like
C and Fortran, FFS does not rely upon them, and internal
type representations and operations are fully dynamic. This
flexibility allows FFS to perform processing on application-
level types in situations where the computation might not
have full a priori knowledge of the exact data layout at the
point of processing. These situations are common in both in
situ and in-transit processing and are more fully described in
Section III-E.



typedef struct {
double x;
double y;
double z;

} r3vector, *r3vectorP;

typedef struct {
int type;
double mass;
r3vector velocity;

} Particle, *PartP;

FMField r3vector fields[] = {
{“x”, “float”, sizeof(double), FMOffset(r3vectorP, x)},
{“y”, “float”, sizeof(double), FMOffset(r3vectorP, y)},
{“z”, “float”, sizeof(double), FMOffset(r3vectorP, z)},
{NULL, NULL, 0, 0},

}

FMField particle fields[] = {
{“type”, “integer”, sizeof(int), FMOffset(PartP, type)},
{“mass”, “float”, sizeof(double), FMOffset(PartP, mass)},
{“velocity”, “r3vector”, sizeof(r3vector), FMOffset(PartP, velocity)},
{NULL, NULL, 0, 0},

}

static FMStructDescRec struct list[] = {
{“particle”, particle fields, sizeof(Particle), NULL},
{“r3vector”, r3vector fields, sizeof(r3vector), NULL},
{NULL, NULL, 0, NULL}

};
Fig. 2. A more complex data structure declaration in C.

B. Data Transport

Many communication systems that support typed messages
require the sender to convert data to a standard format, such
as a pre-defined ’network’ representation, before transmission.
This can result in an unnecessary up/down translation (e.g. in a
homogeneous transfer where the native and network byte order
differ). Sometimes negotiation between a sender and receiver
can establish a common machine-level representation to be
used. FFS takes a different approach. As in its predecessor,
PBIO [11], FFS represents data on the network largely as it
is in application memory, except that pointers are converted
into integer offsets in the encoded message. In particular,
FFS does not compact ’holes’ in structures that might result
from alignment requirements, choosing instead to transport
those holes along with the ’real’ data so that message data
can largely be gathered directly from application memory to
avoid additional buffering. One significant advantage of this
approach is that FFS need not always copy messages before
transport. Instead, FFS can assemble a list of buffer/length
values that, when assembled, constitute an encoded message.
This list can be passed directly to gather-capable transport
routines like writev(), largely eliminating data copies from
the sending side of the transport. Figure 3 shows a byte-
wise representation of the structure and marshaling of the data
described by Figure 1.

C. The receiving side

As mentioned above, the same form of structure description
that is used by the sender to describe the data being sent is
used by the receiver to describe the data that is expected or
required. For direct communication between static languages,
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Fig. 3. A simple data structure with in-memory representation,
marshaled as a contiguous buffer or marshaled as a vector
of buffers (data remains in-place). N.B. the ’pad’ is unused
memory which might be added by the compiler to maintain
field alignment in the structure.

the data must exactly match the structure required by compiled
code, and the receiving-side structure descriptions are fixed
and rigid (particularly with respect to field sizes and offsets).
Where FFS is performing in-transit processing, the receiving-
side descriptions are more malleable because no statically
compiled code must access the data.

The FFS approach of using the sender’s native data repre-
sentation as a wire format can be viewed as an optimistic
approach. FFS explicitly does not rely upon a priori or
negotiated knowledge relating the sender and receiver of
data, but in the simplest scenario of a homogeneous transfer
between applications that have agreement between the data
formats provided and expected, the FFS approach results in
zero data copies by either sender or receiver. The received
data is directly usable by the application in the network buffer
without further manipulation.

However, if the sending and receiving applications differ
in their data representation, either because of architecture
differences or program-level disagreements on the structure
of data, then FFS must convert between the on-the-wire data
format and a native memory structure. Conversions are also
necessary if the message contains embedded pointers (such
as for strings or variably-sized arrays) that are represented as
message offsets on the wire.

To minimize data copies, FFS differentiates between the
circumstance where it the conversion from wire to native
format can take place directly in the network buffer and where
it cannot. The former case, in place conversion allows the
minimum data handling and memory use in such situations
as an exchange between homogeneous architectures with em-
bedded pointers (only the pointers need to be modified). It
is sometimes possible in heterogeneous exchanges, such as
an exchange between big-endian and little-endian architec-
tures. However if the conversion between wire and receiving
structure formats requires moving data to different offsets,
FFS often resorts to using a second buffer for the destination
structure.



Because FFS does not rely upon a priori knowledge,
the exact nature of the conversion between wire and native
format is not known until runtime and can vary for each
sender/receiver pair based upon their underlying architectures
and structure layouts. The conversion itself could be imple-
mented in a table-driven way. Since as the efficiency of the
conversion impacts the performance of the data exchange,
FFS optimizes it as much as possible by using dynamic code
generation to create customized conversion routines that map
each incoming data format to a native memory structure. The
details of the generated code are similar to that of PBIO as
described in [11]. FFS extends the capabilities of PBIO in
its ability to handle recursively-defined types such as linked
lists, trees and graphs, and its ability to generate conversion
routines on architectures that were not supported by PBIO.
FFS’s dynamic code generation capabilities are based on the
Georgia Tech DILL package that provides a virtual RISC
instruction set. The DILL system generates native machine
code directly into the application’s memory without reference
to an external compiler. In its use in FFS, DILL provides
no register allocation or optimization, but directly translates
virtual RISC instructions into instructions for the underlying
native architecture in a single pass.

The performance of the marshaling and unmarshaling
routines is critical to satisfying the requirements of high-
performance applications and plays a role in the evaluation
of network performance in real world HPC applications [12],
[4].

D. Format Identification and Handling

As mentioned above, marshaled FFS messages do not con-
tain the full metadata required to interpret them, but are instead
accompanied by a ’metadata token’ (or format ID) that can be
used to retrieve the full metadata (or format description). The
format description contains everything required to decode a
marshaled message, including the name, type, size and offset
of every field (essentially everything specified in the field and
format lists of Figs 1 and 2), and also architecture-specific
details, such as the byte-order, floating point format, and
address size.

Generally speaking, the receiver of FFS-encoded data re-
quires the full format description in order to utilize the
incoming message. FFS caches format descriptions whenever
possible, so the acquisition of a format description is a startup
cost that incurred at most once per message type/process for
each pair of communicating FFS clients. Because one-time
costs tend to be unimportant in data-intensive communications,
we have focused our efforts on making sure that format
descriptions are available when needed, rather than trying to
optimize their delivery.

The standard FFS mechanism for disseminating format
information is to use a third-party format server running at
a well-known address. When a format description (such as
those of Figs 1 and 2) is processed, FFS marshals the de-
scription into an internal canonical representation and creates
a format ID whose main component is an 8-byte hash of that

representation. Then this format ID / format description pair
(format pair) is registered with the third party server. When a
message is received by an FFS process, FFS first checks to see
if it has the format pair in its format cache. If it does not, it
sends the format ID to the third-party server and requests the
matching format description. Once the description is received,
it is entered into the format cache where it will be found
in subsequent searches. In practice, the number of format
lookups will be fewer than the number of communicating
pairs because many communicating peers will be of the same
architecture. So, for example, if two 64-bit x86 machines
processes operating with identical structure declarations send
data to a third process, that process will only do one format
lookup because its two peers will produce identical format
pairs.

Alternatively, FFS allows higher-level middleware to di-
rectly handle format distribution. For example, EVPath tracks
the FFS formats of its application-level messages and, before
it sends message encoded with FFS format X to peer Y, it
sends the format pair associated with format X to that peer
(once only, per peer). Peer Y, upon receiving a format pair,
enters the pair into its format cache where it will be found
in subsequent searches. This technique is also employed in
special circumstances, such as in the work described in [12]
where EVPath was used on tens of thousands of nodes on the
Cray “Jaguar” supercomputer at Oak Ridge National Labs. In
order not to have tens of thousands of nodes simultaneously
hitting the format server to register their (identical) format de-
scriptions, EVPath transported them on the wire to collection
sites.

From an efficiency point of view, the demand-based ap-
proach employed with an external format server minimizes
format lookups because many peers will end up with identical
format pairs, but the requirement to have a well-known server
shared among all communicating pairs might be onerous.
EVPath’s approach of directly sending the format description
before any message of that format on every connection incurs
a larger cost in terms of one-time communication overhead.
However, both costs are quickly amortized over the repeated
data exchanges that are typical in D3 science applications.

E. Mobile Functions and the CoD Language

A critical issue in the implementation of FFS and its ability
to meet the requirements laid out in Section II is the nature of
its mobile code support. There are several possible approaches
to this problem, including:

• severely restricting mobile functions to preselected values
or to boolean operators,

• relying on pre-generated shared object files, or
• using interpreted code.
Having a relatively restricted mobile code language, such

as one limited to combinations of boolean operators, is the
approach chosen in other event-oriented middleware systems,
such as the CORBA Notification Services and in Siena [13].
This approach facilitates efficient interpretation, but the re-
stricted language may not be able to express the full range



{
if ((input.trade_price < 75.5) ||

(input.trade_price > 78.5)) {
return 1; /* pass event over output link */

}
return 0; /* discard event */

}

Fig. 4. A specialization filter that passes only stock trades
outside a pre-defined range.

of conditions useful to an application, thus limiting its appli-
cability. To avoid this limitation, it is desirable to express F
in the form of a more general programming language. One
might consider supplying F in the form of a shared object
file that could be dynamically linked into the process of the
stone that required it. Using shared objects allows F to be a
general function, but requires F to be available as a native
object file everywhere it is required. This is relatively easy in
a homogeneous system, but it becomes increasingly difficult
as heterogeneity is introduced, particularly if type safety is to
be maintained.

In order to avoid problems with heterogeneity, one might
supply F in an interpreted language, such as a TCL function
or Java byte code. This would allow general functions and
alleviate the difficulties with heterogeneity, but it would impact
efficiency. Because of our intended application in the area of
high performance computing, and because many useful filter
and transformation functions are quite simple, D3 applications
need a different approach that would maintain the highest
efficiency.

FFS builds upon its use of dynamic code generation for
FFS conversion functions, preserving the expressiveness of a
general programming language and the efficiency of shared
objects while retaining the generality of interpreted languages.
Functionality such as in situ and in-transit processing are
expressed in CoD (C On Demand), a subset of a general
procedural language, and dynamic code generation is used to
create a native version of these functions on the host where
the function must be executed. CoD is currently a subset
of C, supporting the standard C operators and control flow
statements.

Like the DCG used for FFS format conversions, CoD’s
dynamic code generation capabilities are based on the Georgia
Tech DILL package, to which are added a lexer, parser, seman-
ticizer, and code generator. The CoD/Dill system is a library-
based compilation system that generates native machine code
directly into the application’s memory without reference to
an external compiler, assembler or linker. Only minimal opti-
mizations and basic register allocation are performed, but the
resulting native code still significantly outperforms interpreted
approaches.

Some in situ or in-transit filters may be quite simple, such
as the example in Figure 4. Applied in the context of a stock
trading example, this filter passes on trade information only
when the stock is trading outside of a specified range. This
filter function requires 330 microseconds to generate on a
2Ghz x86-64, comprises 40 instructions and executes in less
than a microsecond. Transformational functions (those that

{
int i, j;
double sum = 0.0;
for(i = 0; i<37; i= i+1) {

for(j = 0; j<253; j=j+1) {
sum = sum + input.wind_velocity[j][i];

}
}
output.average_velocity = sum / (37 * 253);
return 1;

}

Fig. 5. A specialization filter that computes the average of an
input array and passes the average to its output.

are not restricted to simply passing or suppressing the flow
of data) extend this functionality in a straightforward way.
For example, the CoD function defined in Figure 5 averages
wind data generated by an atmospheric simulation application,
thereby reducing the amount of data to be transmitted by
nearly four orders of magnitude.

IV. FFS USE IN HIGH PERFORMANCE MIDDLEWARE

The capability for data introspection supplemented by the
just-in-time transformations of CoD allow the FFS middleware
package a great deal of flexibility for D3 applications. In
particular, it allows placement and data conversion decisions
in higher-level middleware to be delayed to run-time, so
that a more effective overall strategy can be computed. This
capability allows one to support dynamic cases where the
strategy might change in the middle of execution, subject to
whatever problem-based performance metrics the higher-level
data management protocols establish.

In the following subsections, we detail specific examples of
how this just-in-time derivation and introspection capabilities
of FFS are applied to the targeted materials science appli-
cation described earlier. Performance evaluation numbers and
analysis are provided for each of the scenarios.

A. Data Morphing for Streaming Clients

In large multi-collaborator environments, and even in single
collaborator instances, it is not uncommon to have separate
code analysis and code coupling instances that have a forced
interface standard. It is also quite common that for some new
version of a code, that messaging interface will need to be
upgraded, modified, etc. In supporting our more dynamic mode
of connection for the materials design applications, we could
not rely on traditional compile-time verification of signature.
Instead, we constructed a scientific messaging middleware
capable of recognizing type and/or message incongruence on
the fly. Utilizing FFS (and through it CoD) to implement the
appropriate data morphing routines to “make the data right”
on the receiver’s side allows for the minimum of complexity
in development costs.

Figure 6 shows an instance of a simple transformation that a
developer would need to register with the system if he or she
decided that the current interface needed to be extended by
adding the average and standard deviation of an array of data.
This interface function would only need to be registered once,
and all messages published to the original interface would



{
... /* initializations */
for (i=0; i<input.num_recs; i++) {

sum = sum + input.array[i];
sum2 = sum2 + \

(input.array[i])*(input.array[i]);
}
output.avg = sum/input.num_recs ;
output.std_dev = sqrt(sum2/input.num_recs \

- output.avg*output.avg);
... /* any other value setting operations */
return 1;
}

}

Fig. 6. An example of a Data Morphing transformation for a case
where a format has been extended to include the average and standard
deviation of an array of values. Details such as initialization and
copyout of the array values are elided for simplicity.

immediately become available as inputs to any codes with the
upgrades. The details of the messaging and coordination layer
can be seen in [14], [4], [12], [6].

As a concrete instance of such a data morphing requirement
from the materials design application, we have implemented
and measured the impact of a transformation dictated by one
of the analysis codes utilized for understanding molecular
dynamics output data. As a first phase of interpreting the
raw atomic coordinates output by the lower-level code, a con-
nectivity graph is generated to represent the nearest neighbor
bonds between atoms. Subsequent analysis routines consume
this connectivity graph as an input in order to determine things
like crystalline faces, location or existence of cracks, etc.

From a data layout perspective, this graph can be repre-
sented in several different forms, and different components
wish to consume it in the most natural format for them. In
particular, one natural data representation is as a list of ordered
integer indices where the first index is strictly less than the
second (i.e. 1,34 means the atom at index #1 is adjacent to
atom #34). We refer to this as the “pair” data structure. This
representation is natural for any analysis that iterates over the
edges in a consecutive fashion.

However, some analyses iterate over the adjacency list of
each atom in turn. With the pair data structure, analyzing atoms
with very high index values may require iterating through
a large number of irrelevant data points to determine what
atoms are adjacent. In the extreme case of the last index
value, one would need to consume the entire list of edges
in order to select those few that are its neighbors. Here, an
“adjacency” format is preferable, where the data is represented
as an array of structs, each of which contains a list of those
atoms adjacent to the atom with the equivalent index value.
(i.e. atom adjacency[0] contains the adjl̇ist for atom #0.)

We have implemented exactly this conversion routine in
both C for static compilation and in CoD for dynamic
insertion. In Table I, we demonstrate the timing for data
morphing between codes publishing and subscribing using the
two different interfaces. For two input data sizes (1013 and
77728 atoms), we give the execution time for a compiled
conversion and a dynamically code generated conversion. We
also give execution times that demonstrate our DCG routine’s
ability to operate on marshaled data (that is, data straight off

TABLE I
DATA MORPHING TIMES BETWEEN ’PAIR’ AND ’ADJACENCY’ DATA

STRUCTURES. “HOMOGENEOUS” REFERENCE PLATFORM IS A 64-BIT
LITTLEENDIAN MACHINE. TIMES ARE MILLISECONDS/MESSAGE.

input data Compiled Generated Marshaled data
# of atoms Homo. 32-bit Bigend.

1013 0.546ms 0.608ms 0.608ms 0.608ms 0.612ms
77728 40.1ms 49.3ms 49.5ms 49.5ms 49.7ms

the wire that has not undergone unmarshaling).
The data in the table demonstrate that our DCG data

morphing routines are only 10-20% slower than the statically
compiled routine. This is not a significant penalty to pay in
return for the ability to relocate the computation to any in-
transit site and without regard to a priori knowledge!

Further, FFS is able to operate nearly as efficiently on
marshaled data as on unmarshaled data. In this example, our
processing requires reading all the incoming data, so avoiding
an unmarshal operation is not so significant. But in situations
where only a small amount of the incoming data needs to be
examined in order to perform routing or filtering, the ability
to operate on data in marshaled form offers significant perfor-
mance improvements. Dynamic code generation for this 34-
line routine required roughly 0.64 milliseconds and generated
400 x86-64 machine instructions.

B. In Situ Data Analysis

Building an in situ data morphing capability for D3 science
can be accomplished by coupling FFS with advanced network
scheduling, as described and evaluated in detail in [6]. One
key issue is that the marshaling and unmarshaling operations
described above do not interfere with standard network opera-
tions. Measurements in [15] show that FFS-based marshalling
imposes only a 15% overhead at message sizes of 10Kb and
essentially no overhead at sizes of 100Kb.

Using dynamic code generation can also enable significant
reductions in the data transfer times for data generated in
an in situ analysis function. For example, in a molecular
dynamics analysis pipeline, the atomic output is analyzed for
the appearance of a plastic deformation event. Once such
an event is detected the molecular data is then processed
with a different analysis function to understand the crystalline
structure near the deformation. Instead of building this support
in the application the data can be analyzed using a dynamically
generated code fragment. This allows the pipeline to only out-
put data to the next stage in the pipeline when the deformation
event is detected. Table II shows the performance benefits of
taking this dynamic approach.

V. FUTURE AND RELATED WORK IN I/O

Although this paper has so far highlighted the network-
centric nature of FFS, the techniques proposed have an equal
applicability to storage-driven solutions. Existing solutions
include those that adopt an intermediate format with a flexible
type descriptor, like XDR[16]. The advantage is that data on
disk or on the wire will always be a consistent format, but
it does mean that conversions may be required even in single
host situations.



TABLE II
DATA TRANSFER TIME REDUCTION BY MOVING THE ANALYSIS

OPERATION TO THE DATA

No in situ reduction In situ analysis
Transfer time (ms) 79.82 1.73

Marshalling Time (ms) 5.99 1.66

Another common approach is to utilize a fixed format, like
netCDF [17] or HDF5 [18]. Although these formats have a
fixed, hierarchical view of data, the flexibility of metadata
specification allows for a considerable variety of utilization
for storing and describing complex scientific data. In contrast,
the FFS approach offers more flexibility in construction of data
structures while maintaining the ability to describe hierarchi-
cal structures. However, the focus of FFS on data structure
description currently makes the creation of formats based on
the sorts of higher-level data model concepts more tedious for
scientific end users.

As part of on-going and future work, we have been explor-
ing the integration of FFS with the ADIOS data file format
BP [19] to address some of these data model concerns. ADIOS
is a componentized library interface that allows a user to
plug in different I/O transports (MPI I/O, Posix, JITStager,
or others). ADIOS currently can utilize an external XML
specification to bind I/O writes to a particular global format
descriptor which will then be reflected in the resulting BP
format. FFS has already been utilized inside ADIOS as an
intermediate format representation when moving data into a
staging area.

We see a synergistic opportunity by utilizing the support
for recursive and tree-based data structures from FFS to
extend BP’s current set of supported applications while using
ADIOS/BP’s higher-level format descriptors to provide better
end-user access to the data morphing capabilities of FFS.
Indeed, the ADIOS XML construction allows end users to
extend the data description easily at run-time to specify data
morphing requirements. This future work will result in a much
easier transition path for end users to access FFS’s active data
morphing and management capabilities.

VI. CONCLUSION

The ability to examine, manipulate and operate upon user-
level data, both in-transit and in situ, and without restrictive
assumptions about a priori knowledge, is critical to a holistic
approach to end-to-end processing and management of scien-
tific data. The JITStager and EVPath systems that we used
to drive the discussion and evaluation of FFS both seek to
meet different higher-level needs of D3 science applications,
yet they shared the need for a basic ability to manipulate
application data.

The capabilities and measurements above demonstrate the
viability and utility of FFS-based communication in D3
science scenarios. We have shown that FFS’ low-overhead
marshaling and unmarshaling and efficient dynamic code
generation allow significant flexibility in communication, in-
cluding supporting in situ and in-transit processing, without
compromising performance. All of these capabilities are fully

dynamic at run-time, without requiring a priori agreements or
knowledge of the exact form of the data being communicated
or analyzed.

While no single paradigm or middleware is likely to meet
the needs of every application under the D3 science umbrella,
FFS provides a powerful set of enabling capabilities for
supporting higher-level D3 services.
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