

Low Cost FPGA Implementation of a SPI over High Speed
Optical SerDes

Peter Hobden†and Saket Srivastava†
†School of Engineering, University of Lincoln, United Kingdom

16633091@students.lincoln.ac.uk, Ssrivastava@lincoln.ac.uk

Abstract – Serial Peripheral Interface (SPI) is a commonly
used communication protocol that allows serial data transfer
between a master and a slave device over a short distance.
However, if we require just SPI over long distances currently
there is no effective low-cost solution. A SerDes provides a
solution to this shortcoming by sending parallel data as a serial
transmission and converting it back at the receiver end.
However, most of the current SerDes implementations are
expensive to implement and cater to very high-speed
applications, which is not the case in SPI. In this paper, we
present a simple to implement and low cost SerDes solution for
sending and receiving multiple SPI and GPIO lines. Our
proposed solution makes use of a low cost CLPD / FPGA and is
applicable for low data rate applications such as SPI. This paper
investigates the simplest solution to the problem, whilst
maintaining a reliable single wire / optical link. For testing, we
have implemented three novel encoding schemes that all provided
good results, each measured by performance against resource
usage. One of these encoding schemes has shown a drop-out rate
as low as 0.001% over a 24-hour period. Our proposed solution
when used in conjunction with an optical fibre medium could
potentially allow SPI transmission over several kilometres of
distance.

Keywords— SerDes (Serializer/Deserializer), Inter Integrated
Circuit (I2C), Serial Peripheral Interface (SPI), Intellectual
Property (IP), System-on-Chip (SoC), Verilog, VHDL (Hardware
description Language),Vivado (Xilinx’s synthesis tool) .

I. INTRODUCTION

The serial peripheral interface (SPI) bus is an unbalanced or
single-ended serial interface designed for short-distance
communication between integrated circuits on a printed circuit
board (PCB) [1] [2] [3] [4]. SPI is known as an average speed
synchronous serial protocol in which, a master device
(typically a controller) exchanges data with one or more slave
devices. The data exchange is full-duplex and requires
synchronization to an interface clock signal. Interestingly,
despite the widespread usage of SPI in most of today’s
electronics applications, currently there is no effective low-cost
solution for accessing data from an SPI bus over long distances
without seriously degrading the signal integrity. This has many
usages, such as providing a remote debug port for your SPI
bus.

A Serializer/Deserializer (SerDes) is a pair of functional
blocks commonly used in high speed communications to
compensate for limited input(s)/output(s). These blocks convert
data between serial data and parallel interfaces in each
direction. The term "SerDes" generically refers to interfaces
used in various technologies and applications. The primary use
of a SerDes is to provide data transmission over a
single/differential line to minimize the number of I/O pins and
interconnects. In principle, the idea of converting the SPI
parallel lines to a high speed SerDes, sound straight forward,
however in reality there are many challenges to overcome. One
of the biggest challenges is to achieve a long distance reliable
link with negligible addition to the build cost. The literature on
SPI protocols is extensive and the topic is classed as being old
in the embedded world (it dates to the early 1980s). To the best
of the author’s knowledge, there are no papers that implement

SPI over a low cost SerDes using an CLPD/FPGA. One recent
paper highlights the need for this technology, however no
details were provided regarding implementation or design [5].
Another paper makes a reference to using a coaxial
transmission line [1]. We have explained this in more detail in
the results section

The biggest advantage of combining the SPI with a SerDes,
is the capability to transmit and receive the SPI signal over
large distances. The simplest implementation would be to take
all the SPI lines and connect them directly between the SerDes
transceiver. This approach has the advantage that in theory you
can view the SPI signals on an oscilloscope/Analyser, seeing
the data lines going in and coming out at the receiver end of
SerDes. However, in practice this approach is not reliable due
to the following reasons: (a) Inductive effects present in long
transmission lines result in baseline wandering [1], which
causes the signal to drop out, thus resulting in a loss of
communications due to the line being not DC-balanced. In
simple terms, a long string of 1’s or 0’s would potentially
create a DC-unbalanced line. AC coupling can also add to
baseline wander. (b) Another challenging issue with
transmitting low frequency data (such as those over SPI) is that
the effective data-rates are very low (typically in the range of
10 Mbps) as compared to other long-distance protocols (E.g.
Ethernet transmits in Gbps range). This wide discrepancy in
data rates over the two mediums (which are being interfaced
over SerDes) may cause the transmitters and receivers to go in
to a sleep mode which will also disrupt data.

In our proposed solution, we have targeted challenge of
extending SPI to transmit and receive data over a long distance.
We address the issue of baseline wandering by implementing a
novel, low cost and easy to implement/debug IP encoder block
on a low cost CLPD/FPGA. Our proposed SerDes design also
addresses the huge imbalance in data rates of SPI transmission
(as highlighted above) and the effects of latency. The rest of
the paper is as follows. Section II provides a brief introduction
to SPI and SerDes technologies. Section III describes our
proposed design. We discuss the results of our proposed design
in Section V. The Conclusion and Summary are presented in
section VI.

II. SERIAL PERIPHERAL INTERFACE AND SERDES

In this section, we briefly mention various SPI
implementations, followed by an investigation in to the best
methods for interfacing the SPI to a SerDes link.

A. Serial Peripheral Interface (SPI)

Most SPI interfaces are recognisable with the following
data lines as shown in Figure 1.

 Clock (CLK) - An interface clock initiated by the
master device to ensure synchronous data transfers.

 Master Out Slave In (MOSI) - A data line for data sent
from the master to a slave (Dual/Quad has additional
lines to Double/Quadrupole the transfer speed).

 Master in Slave Out (MISO) -A data line for data sent
from a slave to the master. This could be shared with

Fig 2. FPGA implementation of the SPI Master showing different
component blocks

the data line in two wire mode, if this is supported by
the slave devices.

 Slave select/Chip enable (SS/CE) –-This is normally a
single wire, where a low equals chip ‘enable’ and a high
is chip ‘disable’, which is required for each slave device
on the bus.

The SPI supports multi-slave operation. The master and
slave can be the transmitter or receiver based on its mode of
operation. It can receive and transmit on both the rising and
falling edges of the clock independently. Normally the SPI
protocol follows some design steps. To start the signals
generation, the Master generates transaction signals with
respect to the system clock and SCLK. The MOSI pin starts
transferring data after to CE/SS. Whenever CE/SS is low it's
able to receive data coming from master through the MOSI pin.
The Slave transmits data through MISO pin using the shift
register one by one data shift and each bit transmits every clock
pulse. At the low level, the Data Register and eight-bit shift
register forms the main part of the SPI system. When an SPI
transfer gets a place, a bit of data gets shifted out of the SPI
master’s data register and then, the serial data which comes
from the slave’s data register in sequence is shifted into the
master’s data register. Therefore, by the time one SPI
transmission completes, i.e. after the 16th clock cycle, the
contents of the master and slave would have been swapped.
Transmissions often consist of 8-bit words.

To begin communication, the bus master configures the
clock, using a frequency supported by the slave device,
typically up to a few MHz’s. There’s no defined limit, except
that you can only run as fast as the maximum clock rate
supported by the slowest slave device on your bus. This is
normally 50 MHz’s due to the limits of TTL switching speeds.
This clock rate is important as we must make sure our SerDes
encoding scheme supports the lowest to the highest clock rates.

B. Communication Protocols for SPI

In the world of serial data communication, SPI interface is
considered as a small communication protocol and as such

doesn’t have a standard [3] [6]. USB, Ethernet and RS232
Serial are meant for “outside the box communications” and
data transfer in the whole system while serial peripheral
interface communication between integrated circuits is classed
as little or middle data transfer rates. We have ascertained that
an encoded scheme is required, which shall convert our SPIs
lines to parallel encoding lines that can be decoded and
reconstructed by our receiver, without adding any time latency.
There are many SerDes protocols in everyday use, such as
PCIe 4/3/2/1, USB 3.1 Gen 2 and Gen 1, 10G-KR, SATA3/2/1,
SFP+, RXAUI, XAUI, QSGMII and SGMII. All these
protocols are quite complex and require a large overhead to
implement and all add latency. For non-optical applications,
there is a good case to use the same SerDes protocols for SPI
instead of developing new ones. A good example of this would
be the how companies such as FTDI make a chip set that
converts USB to SPI and vice versa [7]. In
telecommunications, a similar problem existed to ours, and this
was solved using 8b/10b encoding scheme [8] [9] [10]. This
scheme consisted of 8-bit message words having two
corresponding 10-bit code words. One of these has positive
disparity (more 1's than 0's) and the other has negative disparity
(more 0's than 1's). When encoding you keep track of the
running disparity. If the running disparity is positive and the
next input octet gives you a choice of code words, you then
pick the one with negative disparity, and vice versa. In this
work we are looking at developing the simplest protocol that
could be implemented when resources are limited, so the

encoding can run on low cost CLPD/FPGA devices, using the
minimal of resources and reducing latency. We have
implemented three different encoding schemes to test the
proposed design as shown in Figure 2.

1) 8b/10b scheme
Xilinx provides 8b/10b a decoder IP block for their high-

end processors (Virtex-2 onwards). Opencores also provide a
generic synthesizable VHDL, which provides two separate
cores for encoding and decoding byte data according to the
8b/10b protocol that closely follows the original.

Fig. 1. SPI Block Diagram

2) XOR scheme
An alternative method to the one discussed above is to

make sure that the data is continuously changing about the
clock. For example, the data lines can be XORed against a
slower running clock. This will not create a perfectly DC
balanced signal, but it is the easier method to implement in
VHDL/Verilog, taking little resource overhead, so it can run
comfortably on a low cost CLPD.

3) Gray code scheme
The XORed method can be further advanced by using Gray

codes. This is known as reflected binary code (RBC), also
referred to just as reflected binary (RB) or Gray code [11]. The
RBC is an ordering of the binary numeral system such that two
successive values differ in only one bit (binary digit). The RBC
was originally designed to prevent spurious output from
electromechanical switches. Today, Gray codes are widely
used to facilitate error correction in digital communications
such as digital terrestrial and some cable television systems.
The resource requirement for Grey is greater than the XORed
method, but still classed as low.

C. SerDes Tranceivers on FPGA

As mentioned earlier, a Serializer/Deserializer (SerDes) is
a pair of functional blocks commonly used for high speed
communications while compensating for limited
input(s)/output(s). Except for some higher end FPGA/SoC
platforms, most other manufacturers do not provide a high-
speed IP SerDes block making use of the on-chip resources,
for the new JESD204 standard, mainly due to the cost and
resource constraints. JESD204 is a high-speed serial interface
for connecting data converters (ADCs and DACs) to logic
devices. Revision B of the standard supports serial data rates
up to 12.5 Gbps and ensures repeatable, deterministic latency
on the JESD204 link. As the speed and resolution of

converters continues to increase, the JESD204B interface has
become ever more common in high-speed converters and
integrated RF transceivers. In addition, flexible SerDes
designs in high end FPGAs have naturally started to replace
the traditional parallel LVDS/CMOS interface to converters
and are used to implement the JESD204B physical layer [12].
The JESD204B specification defines four key layers that
implement the protocol data stream. The transport layer maps
the conversion between samples and framed, unscrambled
octets. The optional scrambling layer scrambles and
descrambles the octets, spreading the spectral peaks to reduce
EMI. The data-link layer handles link synchronization, setup,
and maintenance, and encodes/decodes the optionally
scrambled octets to/from 10-bit characters.

D. Optical SerDes prerequisites

For a SerDes to work, on the receiver side, a clock must be
recovered from the data stream before accurate byte/word
alignment can occur. The clock recovery block can only
recover the clock and data if the input data stream contains
adequate data eye and the average DC component is zero. Our
encoding schemes need to be mindful of this. One other reason
that could cause the interface to malfunction is the lack of
synchronization due to large propagation delays. Over an
optical link, this should be small but if the line length is too
long, this could create an issue as the MISO and MOSI could
potentially become out of sync. The solution to this initially is
to run the SPI at a lower clock rate. A novel approach to the
solution used in this paper is to include in scheme an automatic
adjustment when re-creating the MISO line at the receiver end,
by re-syncing the MISO with the SPI clock line. This is the
advantage with implementing our own scheme as opposed to a
fixed hardware solution.

Fig. 3. Block diagram showing the SerDes connected on the SPI bus

Fig. 4. LVDS SerDes Transmitter/ Receiver

III. PROPOSED SERDES IMPEMENTATION ON AN

CLPD/FPGA

This section discusses the various options for implementing
SPI with SerDes on a low cost CLPD / FPGAs. Unlike
microcontrollers, FPGAs are flexible and don’t rely on
hardware blocks. For the SPI implementation, IP blocks such
as the ‘Quad SPI’ can be used, or writing a HDL module or
even creating a ‘Bit Bang’ C variant running under the Xilinx
Microblaze/Arm/Lattice Mico8. In the case of some FPGAs
like the Zynq and Ultrascale, the SPI can also be implemented
in hardware. This is then connected to the SerDes block, for
converting the SPI lines in to a single serial line. If the SerDes
link is down/not connected, the SPI block becomes the master
controller. If the link is up, then the remote host becomes the
master. This can be implemented on a single CLPD/FPGA or
two FPGAs (one for SerDes, the other for the Master SPI) as
shown in Figure 3.

Once you’ve implemented the SPI, this then needs
interfacing with our SerDes block. The standard interface is the
AXI4-Lite / AXI4 interface and in the case of Zynq, the PLB
(Processor Local Bus). One alternative to the AXI4-Lite /
AXI4 interface is the wishbone bus [13] as used by
‘Opencores’ and used by other FPGAs such as the Mach X02
from Lattice. In the Vivado and Lattice Diamond design
environments, digital logic can be defined using a block
diagram rather than writing traditional HDL code. Behind the
scenes, this generates the HDL code for you. These are called
IP blocks. Xilinx provide a soft SPI IP block called the ‘Quad
SPI’. The reason why it is called the quad I/O, is that the four-
bit data bus interface improves throughput by four times. The
additional lines are primarily used where performance is
critical, such as for Flash memory devices. One of the
advantages is that it also operates in a "legacy mode" acting as
a normal SPI controller, so it can be used to provide a normal
‘soft SPI’. The SPI should be connected to the AXI_LITE bus
and optionally to an interrupt.

Devices like the Zynq have two hardware SPI controllers,
using the MIO (Multiplexed Input Output) and one quad SPI,
which is dedicated for reading/writing to flash memory. In the
case of the MIO pins, the user constraints should not be present
as these pins are fixed by the hardware. This configuration is
then exported to software developers’ kit (SDK), where control
codes can be implemented. For development, Microprocessor
cores could be used for extra debugging to provide a low data
rate serial port for say connecting our LabVIEW GUI tool. For
a production version, it is not recommended to have this
function as it will increase the cost.

In our proposed solution, the idea is that the CLPD/FPGA
is divided into two blocks, one for handling the SPI and the
other for handling the SerDes including using our selected
encoding scheme. A novel part of the system, is to add a block
to re-synchronize the MISO lines after the decoding, allowing
for a long-distance connection. On the remote PCB, if the
SerDes link is down, the CLPD/FPGA shall operate in ‘Master
mode’ using the methods that we have discussed. If the SerDes
is connected, the bus shall then automatically switch to using
the remote connection as the Master (shown in Figure 3).

One advantage with having such a flexible system is that if
we ran out of parallel lines, we could create some virtual
additional lines just by using a clock edge and toggling to a
new set. The downside to this is that the potential maximum
data rate is then halved.

IV. HARDWARE INTERFACING

In our proposed implementation of SPI over SerDes, we
have opted to interface the SerDes over an Optical fibre. In our
example, we have implemented the (TI) SN65LV1023A
Transmitter together with the (TI) SN65LV1224B Receiver,
which is in turn connected to our CLPD/FPGA. Each device

works from a crystal input from which it multiplies by 12. It
then reads in 10 bits of data and transfers these over the serial
interface at the clock x12 speed, so for 12.5 MHz it is
transmitted at 150 Mbps. This is then connected to two
‘Firecomm EDL300k-120 optical diodes as shown in Figure 4.
Data can then be transmitted/received via an Optical fibre cable
to a duplicate setup. In our example we have made use of an
optical fibre link for long distance transmission, however these
could be replaced by other communication mediums (E.g. a
coaxial cable). At 150 Mbps, the connection between the
transceiver and the optical diodes is critical and as a result we
need to consider transmission line theory and pay careful
consideration to the PCB board layout. In our implementation,
we found that the voltage levels between the transceivers and
the optical devices were compatible, so we were left with
another challenge to ascertain whether use AC or DC coupling
for the interface.

The question regarding the use of AC or DC coupling for

the interface line between the transceivers and optical devices
depends on the presence or absence of DC offset (which is
generally present during data transmission). If the mean
amplitude of the receive/transmit signals is zero, there is no DC
offset. A waveform without a DC component is known as a
DC-balanced or DC-free waveform. Therefore, our default
position is always to recommend AC coupling as it prevents
DC power flow from IC-to-IC. DC power flow can cause
destructive effects during unexpected power surges or failure
of DC regulation. Our second major reason for recommending
AC coupling is that while many IC’s claim to have an LVDS
interface this is not always the case. Our experience is that
there is a lot of confusion in datasheets between LVDS and
LVPECL. In our case DC coupling is obviously an easy step as
both IC’s are 100% LVDS. However, for our general
recommendation, the safe option is always AC coupling. To

add AC coupling capacitors (ideally 100nF), then place them in
series with the TD+, TX-, RD+ and RD- lines. One needs to
make sure that the capacitors are as close as possible to the
transceiver module.

V. RESULTS

To fully test the SPI signal transmission over optical
SerDes, we ran the link for 24 hours using each one of the three
proposed encoding schemes proposed in section II.B. During
the test, random SPI traffic was generated. The received results
were compared with the transmitted data and the number of
errors recorded. Note that the SPI data clock was randomly set
from 10–50MHz. A LabVIEW GUI was written to record
parity and locking errors. The LabVIEW GUI also provided a
graphical logic analyser display for viewing the encoded and
decoded signals and the result recorded result were recorded in
Table 1.

For debugging with a scope, the ‘non-encoded’ method
seems most logical and you can easily view the transmitted and
received signals, but it is unreliable, and the signal dropped out
regularly. When we tested the design using our proposed
encoding schemes (XOR, Grey codes and 8b/10b / 8B10B), the
line stability increased manifold. However, incorporating these
encoding methods make debugging more challenging as the
SPI signals are no longer visible on a scope as regular SPI
signals.

Amongst the three proposed encoding methods, 8b/10b /
8B10B is the most reliable with just 1 dropout in every 10,000
transmissions, as it creates a more DC balanced signal.
However, this scheme is not so suitable for running on a low
cost CLPD due to the high recourse requirement. The XOR and
Grey Code schemes although less reliable, are much easier to
implement and debug with very low resource requirements.
Overall, among the three proposed schemes, the Grey Code
encoding scheme provides the most optimum solution for long
distance SPI signal communication.

As a further check on the links integrity the most common
industry standard is to produce an eye diagram, which
highlights the condition of the transmitted signal [14]. An eye
diagram of the links traffic was produced using a LeCroy high
frequency oscilloscope as shown in Figure 5. The SerDes
system has been found to operate in rather a specific way and
should not be used in ways that can compromise these findings.
The initiation sequence of SerDes needs a sync pulse on the
sync line and then the RX/LOCK line to be observed to
manage the link state, making sure that the link locks correctly.
One interesting observation, if the data on the data lines are
invalid and not using one of our encoded schemes, the link can

quickly go unstable and fault from at least the first 5 bytes sent.
If the /RXLOCK signal is not asserted then the link is unstable
and should not be used, a fault should be flagged here. If the
link is synchronised, then it should continue to use the encoded
data through the link otherwise the link could still fail.

TABLE 1. COMPARATIVE PERFORMANCE OF THE THREE PROPOSED ECODING
SCHEMES.

FPGA
Scheme

Results
Drop Out % Resources

No encoding ~100% (did not work) 5%
No encoding with a

clock line
~75.01% 7%

XOR ~6.95% 8%
Grey Codes ~3.5% 9%

8b/10b / 8B10B .001% 24%

VI. CONCLUSION

With this paper we have demonstrated that you can
successfully implement a single wire low cost SerDes link for
sending/receiving SPI and GPIO data, using a low cost
CLPD/FPGA, taking the minimum of the chip’s resources and
reducing any issues latency. We have also demonstrated that if
latency is an issue over a long distance, we can successfully re-
sync the MISO line using our novel scheme, which isn’t
possible with any hardware solutions.

REFERENCES
[1] T. Kugelstadt, "Extending the SPI bus for long-distance

communication," Analog Applications Journal.

[2] MOTOROLA INC., "SPI Block Guide V03.06 ,
Document number S12SPIV3/D," Document number
S12SPIV3/D , no. 04, 2003.

[3] F. March. Leens, "An Introduction to SPI Protocols -
Motorola.," 2003.

[4] F.Leens, "An Introduction to I2C and SPI Protocols,"
IEEE Instrumentation & Measurement Magazine, pp. 8-
13, 2009.

[5] Mike Dewey ,Jim Kent, "Implementing Digital Interfaces
with User Programmable FPGAs," IEEE, 2017.

[6] Oudjida, A., Berrandjia, M., Tiar, R., Liacha, A., &
Tahraoui, K., "FPGA Implementation of I2C & SPI
Protocols:a Comparative Study," IEEE, 2018.

[7] FTDI, "SPI to USB," [Online]. Available:
http://www.ftdichip.com/FTDrivers.htm.

[8] A. X. Widmer, P. A. Franaszek, "A DC-Balanced,
Partitioned-Block, 8B/10B Transmission Code," IBM
Journal of Research and Development , vol. 27, no. 5,

Fig. 5. Eye diagram of the SerDes link produced using the LeCroy High Frequency Oscilloscope

1983.

[9] K. Odaka, "Digital Audio Tape". US Patent 4,456,905,
1984.

[10] K. S. Immink, "Digital Audio Tape". US Patent
4,620,311, 1986 .

[11] F. Gray, "Pulse code communication". US Patent
2,632,058, 17 03 1953.

[12] T. Hill, "Comprehensive JESD204B Solution Accelerates
and Simplifies Development," White Paper: All
Programmable FPGAs and SoCs, vol. WP446 , no.
(v1.0.1), 2014.

[13] Opencores, "Specification for the “WISHBONE System-
on-Chip (SoC) Interconnection Architecture for Portable
IP Cores," 7 7 2002. [Online]. Available:
https://cdn.opencores.org/downloads/wbspec_b3.pdf.

[14] ON Semiconductor, "Understanding Data Eye Diagram
Methodology for Analyzing High Speed Digital Signals,"
June, 2015 − Rev. 1.

