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Abstract – Serial Peripheral Interface (SPI) is a commonly 
used communication protocol that allows serial data transfer 
between a master and a slave device over a short distance. 
However, if we require just SPI over long distances currently 
there is no effective low-cost solution. A SerDes provides a 
solution to this shortcoming by sending parallel data as a serial 
transmission and converting it back at the receiver end. 
However, most of the current SerDes implementations are 
expensive to implement and cater to very high-speed 
applications, which is not the case in SPI. In this paper, we 
present a simple to implement and low cost SerDes solution for 
sending and receiving multiple SPI and GPIO lines. Our 
proposed solution makes use of a low cost CLPD / FPGA and is 
applicable for low data rate applications such as SPI. This paper 
investigates the simplest solution to the problem, whilst 
maintaining a reliable single wire / optical link. For testing, we 
have implemented three novel encoding schemes that all provided 
good results, each measured by performance against resource 
usage.  One of these encoding schemes has shown a drop-out rate 
as low as 0.001% over a 24-hour period. Our proposed solution 
when used in conjunction with an optical fibre medium could 
potentially allow SPI transmission over several kilometres of 
distance.  

Keywords— SerDes (Serializer/Deserializer), Inter Integrated 
Circuit (I2C), Serial Peripheral Interface (SPI), Intellectual 
Property (IP), System-on-Chip (SoC), Verilog, VHDL (Hardware 
description Language),Vivado (Xilinx’s synthesis tool) . 

I.  INTRODUCTION 

The serial peripheral interface (SPI) bus is an unbalanced or 
single-ended serial interface designed for short-distance 
communication between integrated circuits on a printed circuit 
board (PCB) [1] [2] [3] [4]. SPI is known as an average speed 
synchronous serial protocol in which, a master device 
(typically a controller) exchanges data with one or more slave 
devices. The data exchange is full-duplex and requires 
synchronization to an interface clock signal. Interestingly, 
despite the widespread usage of SPI in most of today’s 
electronics applications, currently there is no effective low-cost 
solution for accessing data from an SPI bus over long distances 
without seriously degrading the signal integrity. This has many 
usages, such as providing a remote debug port for your SPI 
bus. 

A Serializer/Deserializer (SerDes) is a pair of functional 
blocks commonly used in high speed communications to 
compensate for limited input(s)/output(s). These blocks convert 
data between serial data and parallel interfaces in each 
direction. The term "SerDes" generically refers to interfaces 
used in various technologies and applications. The primary use 
of a SerDes is to provide data transmission over a 
single/differential line to minimize the number of I/O pins and 
interconnects. In principle, the idea of converting the SPI 
parallel lines to a high speed SerDes, sound straight forward, 
however in reality there are many challenges to overcome. One 
of the biggest challenges is to achieve a long distance reliable 
link with negligible addition to the build cost. The literature on 
SPI protocols is extensive and the topic is classed as being old 
in the embedded world (it dates to the early 1980s). To the best 
of the author’s knowledge, there are no papers that implement 

SPI over a low cost SerDes using an CLPD/FPGA. One recent 
paper highlights the need for this technology, however no 
details were provided regarding implementation or design [5]. 
Another paper makes a reference to using a coaxial 
transmission line [1]. We have explained this in more detail in 
the results section 

The biggest advantage of combining the SPI with a SerDes, 
is the capability to transmit and receive the SPI signal over 
large distances. The simplest implementation would be to take 
all the SPI lines and connect them directly between the SerDes 
transceiver. This approach has the advantage that in theory you 
can view the SPI signals on an oscilloscope/Analyser, seeing 
the data lines going in and coming out at the receiver end of 
SerDes. However, in practice this approach is not reliable due 
to the following reasons: (a) Inductive effects present in long 
transmission lines result in baseline wandering [1], which 
causes the signal to drop out, thus resulting in a loss of 
communications due to the line being not DC-balanced. In 
simple terms, a long string of 1’s or 0’s would potentially 
create a DC-unbalanced line. AC coupling can also add to 
baseline wander. (b) Another challenging issue with 
transmitting low frequency data (such as those over SPI) is that 
the effective data-rates are very low (typically in the range of 
10 Mbps) as compared to other long-distance protocols (E.g. 
Ethernet transmits in Gbps range). This wide discrepancy in 
data rates over the two mediums (which are being interfaced 
over SerDes) may cause the transmitters and receivers to go in 
to a sleep mode which will also disrupt data.  

In our proposed solution, we have targeted challenge of 
extending SPI to transmit and receive data over a long distance. 
We address the issue of baseline wandering by implementing a 
novel, low cost and easy to implement/debug IP encoder block 
on a low cost CLPD/FPGA. Our proposed SerDes design also 
addresses the huge imbalance in data rates of SPI transmission 
(as highlighted above) and the effects of latency. The rest of 
the paper is as follows. Section II provides a brief introduction 
to SPI and SerDes technologies. Section III describes our 
proposed design. We discuss the results of our proposed design 
in Section V. The Conclusion and Summary are presented in 
section VI.  

II. SERIAL PERIPHERAL INTERFACE AND SERDES 

In this section, we briefly mention various SPI 
implementations, followed by an investigation in to the best 
methods for interfacing the SPI to a SerDes link.  

A. Serial Peripheral Interface (SPI) 

Most SPI interfaces are recognisable with the following 
data lines as shown in Figure 1. 

 Clock (CLK) - An interface clock initiated by the 
master device to ensure synchronous data transfers. 

 Master Out Slave In (MOSI) - A data line for data sent 
from the master to a slave (Dual/Quad has additional 
lines to Double/Quadrupole the transfer speed).  

 Master in Slave Out (MISO) -A data line for data sent 
from a slave to the master. This could be shared with 



 

Fig 2. FPGA implementation of the SPI Master showing different 
component blocks   

 

the data line in two wire mode, if this is supported by 
the slave devices.  

 Slave select/Chip enable (SS/CE) –-This is normally a 
single wire, where a low equals chip ‘enable’ and a high 
is chip ‘disable’, which is required for each slave device 
on the bus.  
 

The SPI supports multi-slave operation. The master and 
slave can be the transmitter or receiver based on its mode of 
operation. It can receive and transmit on both the rising and 
falling edges of the clock independently. Normally the SPI 
protocol follows some design steps. To start the signals 
generation, the Master generates transaction signals with 
respect to the system clock and SCLK. The MOSI pin starts 
transferring data after to CE/SS. Whenever CE/SS is low it's 
able to receive data coming from master through the MOSI pin. 
The Slave transmits data through MISO pin using the shift 
register one by one data shift and each bit transmits every clock 
pulse. At the low level, the Data Register and eight-bit shift 
register forms the main part of the SPI system. When an SPI 
transfer gets a place, a bit of data gets shifted out of the SPI 
master’s data register and then, the serial data which comes 
from the slave’s data register in sequence is shifted into the 
master’s data register. Therefore, by the time one SPI 
transmission completes, i.e. after the 16th clock cycle, the 
contents of the master and slave would have been swapped. 
Transmissions often consist of 8-bit words.  

To begin communication, the bus master configures the 
clock, using a frequency supported by the slave device, 
typically up to a few MHz’s. There’s no defined limit, except 
that you can only run as fast as the maximum clock rate 
supported by the slowest slave device on your bus. This is 
normally 50 MHz’s due to the limits of TTL switching speeds. 
This clock rate is important as we must make sure our SerDes 
encoding scheme supports the lowest to the highest clock rates. 

B.  Communication Protocols for SPI 

In the world of serial data communication, SPI interface is 
considered as a small communication protocol and as such 

doesn’t have a standard [3] [6]. USB, Ethernet and RS232 
Serial are meant for “outside the box communications” and 
data transfer in the whole system while serial peripheral 
interface communication between integrated circuits is classed 
as little or middle data transfer rates.  We have ascertained that 
an encoded scheme is required, which shall convert our SPIs 
lines to parallel encoding lines that can be decoded and 
reconstructed by our receiver, without adding any time latency. 
There are many SerDes protocols in everyday use, such as 
PCIe 4/3/2/1, USB 3.1 Gen 2 and Gen 1, 10G-KR, SATA3/2/1, 
SFP+, RXAUI, XAUI, QSGMII and SGMII. All these 
protocols are quite complex and require a large overhead to 
implement and all add latency. For non-optical applications, 
there is a good case to use the same SerDes protocols for SPI 
instead of developing new ones. A good example of this would 
be the how companies such as FTDI make a chip set that 
converts USB to SPI and vice versa [7]. In 
telecommunications, a similar problem existed to ours, and this 
was solved using 8b/10b encoding scheme [8] [9] [10].  This 
scheme consisted of 8-bit message words having two 
corresponding 10-bit code words. One of these has positive 
disparity (more 1's than 0's) and the other has negative disparity 
(more 0's than 1's).  When encoding you keep track of the 
running disparity. If the running disparity is positive and the 
next input octet gives you a choice of code words, you then 
pick the one with negative disparity, and vice versa. In this 
work we are looking at developing the simplest protocol that 
could be implemented when resources are limited, so the 

encoding can run on low cost CLPD/FPGA devices, using the 
minimal of resources and reducing latency. We have 
implemented three different encoding schemes to test the 
proposed design as shown in Figure 2. 

1) 8b/10b scheme 
Xilinx provides 8b/10b a decoder IP block for their high-

end processors (Virtex-2 onwards). Opencores also provide a 
generic synthesizable VHDL, which provides two separate 
cores for encoding and decoding byte data according to the 
8b/10b protocol that closely follows the original.  

 

 

 

Fig. 1. SPI Block Diagram 
 



 

2) XOR scheme 
An alternative method to the one discussed above is to 

make sure that the data is continuously changing about the 
clock. For example, the data lines can be XORed against a 
slower running clock. This will not create a perfectly DC 
balanced signal, but it is the easier method to implement in 
VHDL/Verilog, taking little resource overhead, so it can run 
comfortably on a low cost CLPD.  

3) Gray code scheme 
The XORed method can be further advanced by using Gray 

codes. This is known as reflected binary code (RBC), also 
referred to just as reflected binary (RB) or Gray code [11]. The 
RBC is an ordering of the binary numeral system such that two 
successive values differ in only one bit (binary digit). The RBC 
was originally designed to prevent spurious output from 
electromechanical switches. Today, Gray codes are widely 
used to facilitate error correction in digital communications 
such as digital terrestrial and some cable television systems. 
The resource requirement for Grey is greater than the XORed 
method, but still classed as low. 

C.  SerDes Tranceivers on FPGA 

As mentioned earlier, a Serializer/Deserializer (SerDes) is 
a pair of functional blocks commonly used for high speed 
communications while compensating for limited 
input(s)/output(s). Except for some higher end FPGA/SoC 
platforms, most other manufacturers do not provide a high-
speed IP SerDes block making use of the on-chip resources, 
for the new JESD204 standard, mainly due to the cost and 
resource constraints. JESD204 is a high-speed serial interface 
for connecting data converters (ADCs and DACs) to logic 
devices. Revision B of the standard supports serial data rates 
up to 12.5 Gbps and ensures repeatable, deterministic latency 
on the JESD204 link. As the speed and resolution of 

converters continues to increase, the JESD204B interface has 
become ever more common in high-speed converters and 
integrated RF transceivers. In addition, flexible SerDes 
designs in high end FPGAs have naturally started to replace 
the traditional parallel LVDS/CMOS interface to converters 
and are used to implement the JESD204B physical layer [12]. 
The JESD204B specification defines four key layers that 
implement the protocol data stream. The transport layer maps 
the conversion between samples and framed, unscrambled 
octets. The optional scrambling layer scrambles and 
descrambles the octets, spreading the spectral peaks to reduce 
EMI. The data-link layer handles link synchronization, setup, 
and maintenance, and encodes/decodes the optionally 
scrambled octets to/from 10-bit characters.  

D. Optical SerDes prerequisites 

For a SerDes to work, on the receiver side, a clock must be 
recovered from the data stream before accurate byte/word 
alignment can occur. The clock recovery block can only 
recover the clock and data if the input data stream contains 
adequate data eye and the average DC component is zero. Our 
encoding schemes need to be mindful of this. One other reason 
that could cause the interface to malfunction is the lack of 
synchronization due to large propagation delays. Over an 
optical link, this should be small but if the line length is too 
long, this could create an issue as the MISO and MOSI could 
potentially become out of sync. The solution to this initially is 
to run the SPI at a lower clock rate. A novel approach to the 
solution used in this paper is to include in scheme an automatic 
adjustment when re-creating the MISO line at the receiver end, 
by re-syncing the MISO with the SPI clock line. This is the 
advantage with implementing our own scheme as opposed to a 
fixed hardware solution. 

 
 

 
 

Fig. 3. Block diagram showing the SerDes connected on the SPI bus 



 

 
Fig. 4. LVDS SerDes Transmitter/ Receiver 

 

III. PROPOSED SERDES IMPEMENTATION ON AN 

CLPD/FPGA 

This section discusses the various options for implementing 
SPI with SerDes on a low cost CLPD / FPGAs. Unlike 
microcontrollers, FPGAs are flexible and don’t rely on 
hardware blocks.   For the SPI implementation, IP blocks such 
as the ‘Quad SPI’ can be used, or writing a HDL module or 
even creating a ‘Bit Bang’ C variant running under the Xilinx 
Microblaze/Arm/Lattice Mico8. In the case of some FPGAs 
like the Zynq and Ultrascale, the SPI can also be implemented 
in hardware. This is then connected to the SerDes block, for 
converting the SPI lines in to a single serial line. If the SerDes 
link is down/not connected, the SPI block becomes the master 
controller. If the link is up, then the remote host becomes the 
master. This can be implemented on a single CLPD/FPGA or 
two FPGAs (one for SerDes, the other for the Master SPI) as 
shown in Figure 3.  

Once you’ve implemented the SPI, this then needs 
interfacing with our SerDes block. The standard interface is the 
AXI4-Lite / AXI4 interface and in the case of Zynq, the PLB 
(Processor Local Bus). One alternative to the AXI4-Lite / 
AXI4 interface is the wishbone bus [13] as used by 
‘Opencores’ and used by other FPGAs such as the Mach X02 
from Lattice. In the Vivado and Lattice Diamond design 
environments, digital logic can be defined using a block 
diagram rather than writing traditional HDL code. Behind the 
scenes, this generates the HDL code for you. These are called 
IP blocks. Xilinx provide a soft SPI IP block called the ‘Quad 
SPI’. The reason why it is called the quad I/O, is that the four-
bit data bus interface improves throughput by four times. The 
additional lines are primarily used where performance is 
critical, such as for Flash memory devices. One of the 
advantages is that it also operates in a "legacy mode" acting as 
a normal SPI controller, so it can be used to provide a normal 
‘soft SPI’. The SPI should be connected to the AXI_LITE bus 
and optionally to an interrupt.  

Devices like the Zynq have two hardware SPI controllers, 
using the MIO (Multiplexed Input Output) and one quad SPI, 
which is dedicated for reading/writing to flash memory. In the 
case of the MIO pins, the user constraints should not be present 
as these pins are fixed by the hardware. This configuration is 
then exported to software developers’ kit (SDK), where control 
codes can be implemented. For development, Microprocessor 
cores could be used for extra debugging to provide a low data 
rate serial port for say connecting our LabVIEW GUI tool. For 
a production version, it is not recommended to have this 
function as it will increase the cost. 

In our proposed solution, the idea is that the CLPD/FPGA 
is divided into two blocks, one for handling the SPI and the 
other for handling the SerDes including using our selected 
encoding scheme. A novel part of the system, is to add a block 
to re-synchronize the MISO lines after the decoding, allowing 
for a long-distance connection. On the remote PCB, if the 
SerDes link is down, the CLPD/FPGA shall operate in ‘Master 
mode’ using the methods that we have discussed. If the SerDes 
is connected, the bus shall then automatically switch to using 
the remote connection as the Master (shown in Figure 3). 

One advantage with having such a flexible system is that if 
we ran out of parallel lines, we could create some virtual 
additional lines just by using a clock edge and toggling to a 
new set. The downside to this is that the potential maximum 
data rate is then halved. 

IV.  HARDWARE INTERFACING 

In our proposed implementation of SPI over SerDes, we 
have opted to interface the SerDes over an Optical fibre. In our 
example, we have implemented the (TI) SN65LV1023A 
Transmitter together with the (TI) SN65LV1224B Receiver, 
which is in turn connected to our CLPD/FPGA. Each device 

works from a crystal input from which it multiplies by 12. It 
then reads in 10 bits of data and transfers these over the serial 
interface at the clock x12 speed, so for 12.5 MHz it is 
transmitted at 150 Mbps. This is then connected to two 
‘Firecomm EDL300k-120 optical diodes as shown in Figure 4. 
Data can then be transmitted/received via an Optical fibre cable 
to a duplicate setup. In our example we have made use of an 
optical fibre link for long distance transmission, however these 
could be replaced by other communication mediums (E.g. a 
coaxial cable). At 150 Mbps, the connection between the 
transceiver and the optical diodes is critical and as a result we 
need to consider transmission line theory and pay careful 
consideration to the PCB board layout. In our implementation, 
we found that the voltage levels between the transceivers and 
the optical devices were compatible, so we were left with 
another challenge to ascertain whether use AC or DC coupling 
for the interface. 

 
The question regarding the use of AC or DC coupling for 

the interface line between the transceivers and optical devices 
depends on the presence or absence of DC offset (which is 
generally present during data transmission). If the mean 
amplitude of the receive/transmit signals is zero, there is no DC 
offset. A waveform without a DC component is known as a 
DC-balanced or DC-free waveform. Therefore, our default 
position is always to recommend AC coupling as it prevents 
DC power flow from IC-to-IC. DC power flow can cause 
destructive effects during unexpected power surges or failure 
of DC regulation. Our second major reason for recommending 
AC coupling is that while many IC’s claim to have an LVDS 
interface this is not always the case. Our experience is that 
there is a lot of confusion in datasheets between LVDS and 
LVPECL. In our case DC coupling is obviously an easy step as 
both IC’s are 100% LVDS. However, for our general 
recommendation, the safe option is always AC coupling. To 



 

add AC coupling capacitors (ideally 100nF), then place them in 
series with the TD+, TX-, RD+ and RD- lines. One needs to 
make sure that the capacitors are as close as possible to the 
transceiver module.  

V. RESULTS 

To fully test the SPI signal transmission over optical 
SerDes, we ran the link for 24 hours using each one of the three 
proposed encoding schemes proposed in section II.B. During 
the test, random SPI traffic was generated. The received results 
were compared with the transmitted data and the number of 
errors recorded. Note that the SPI data clock was randomly set 
from 10–50MHz. A LabVIEW GUI was written to record 
parity and locking errors. The LabVIEW GUI also provided a 
graphical logic analyser display for viewing the encoded and 
decoded signals and the result recorded result were recorded in 
Table 1.  

For debugging with a scope, the ‘non-encoded’ method 
seems most logical and you can easily view the transmitted and 
received signals, but it is unreliable, and the signal dropped out 
regularly. When we tested the design using our proposed 
encoding schemes (XOR, Grey codes and 8b/10b / 8B10B), the 
line stability increased manifold. However, incorporating these 
encoding methods make debugging more challenging as the 
SPI signals are no longer visible on a scope as regular SPI 
signals.  

Amongst the three proposed encoding methods, 8b/10b / 
8B10B is the most reliable with just 1 dropout in every 10,000 
transmissions, as it creates a more DC balanced signal. 
However, this scheme is not so suitable for running on a low 
cost CLPD due to the high recourse requirement. The XOR and 
Grey Code schemes although less reliable, are much easier to 
implement and debug with very low resource requirements. 
Overall, among the three proposed schemes, the Grey Code 
encoding scheme provides the most optimum solution for long 
distance SPI signal communication. 

As a further check on the links integrity the most common 
industry standard is to produce an eye diagram, which 
highlights the condition of the transmitted signal [14]. An eye 
diagram of the links traffic was produced using a LeCroy high 
frequency oscilloscope as shown in Figure 5. The SerDes 
system has been found to operate in rather a specific way and 
should not be used in ways that can compromise these findings. 
The initiation sequence of SerDes needs a sync pulse on the 
sync line and then the RX/LOCK line to be observed to 
manage the link state, making sure that the link locks correctly. 
One interesting observation, if the data on the data lines are 
invalid and not using one of our encoded schemes, the link can 

quickly go unstable and fault from at least the first 5 bytes sent. 
If the /RXLOCK signal is not asserted then the link is unstable 
and should not be used, a fault should be flagged here.  If the 
link is synchronised, then it should continue to use the encoded 
data through the link otherwise the link could still fail. 

TABLE 1. COMPARATIVE PERFORMANCE OF THE THREE PROPOSED ECODING 
SCHEMES.  

FPGA 
Scheme 

Results 
Drop Out % Resources 

No encoding ~100% (did not work) 5% 
No encoding with a 

clock line 
~75.01% 7% 

XOR ~6.95% 8% 
Grey Codes ~3.5% 9% 

8b/10b / 8B10B .001% 24% 

VI. CONCLUSION 

With this paper we have demonstrated that you can 
successfully implement a single wire low cost SerDes link for 
sending/receiving SPI and GPIO data, using a low cost 
CLPD/FPGA, taking the minimum of the chip’s resources and 
reducing any issues latency. We have also demonstrated that if 
latency is an issue over a long distance, we can successfully re-
sync the MISO line using our novel scheme, which isn’t 
possible with any hardware solutions. 
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