
ar
X

iv
:2

00
1.

01
07

1v
1

 [
cs

.C
R

]
 4

 J
an

 2
02

0
IEEE Copyright Notice

c©2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any

current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new

collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Accepted to be Published in: Proceedings of the 2019 5th IEEE International Symposium on Smart
Electronic Systems (IEEE-iSES), Dec. 16-18, 2019, Rourkela, India.

http://arxiv.org/abs/2001.01071v1

DLockout: A Design Lockout Technique for Key

Obfuscated RTL IP Designs
Sheikh Ariful Islam, Love Kumar Sah and Srinivas Katkoori

Department of Computer Science and Engineering

University of South Florida

Tampa, FL 33620

Email: {sheikhariful, lsah, katkoori}@mail.usf.edu

Abstract—Intellectual Property (IP) infringement including
piracy and over production have emerged as significant threats in
the semiconductor supply chain. Key based obfuscation techniques
(i.e., logic locking) are widely applied to secure legacy IP from such
attacks. However, the fundamental question remains open whether
an attacker is allowed an exponential amount of time to seek correct
key or could it be useful to lock out the design in a non-destructive
manner after several incorrect attempts. In this paper, we address
this question with a robust design lockout technique. Specifically,
we perform comparisons on obfuscation logic output that reflects
the condition (correct or incorrect) of the applied key without
changing the system behaviour. The proposed approach, when
combined with key obfuscation (logic locking) technique, increases
the difficulty of reverse engineering key obfuscated RTL module.
We provide security evaluation of DLockout against three common
side channel attacks followed by a quantitative assessment of the
resilience. We conducted a set of experiments on four datapath
intensive IPs and one crypto core for three different key lengths
(32-, 64-, and 128-bit) under typical design corner. On average,
DLockout incurs negligible area, power, and delay overheads.

I. INTRODUCTION

In recent decades, horizontal IC business model and vertical

disintegration of the design have proven themselves to manu-

facturing and testing of fabless design houses’ IP/IC in foreign

foundries [1]. This trend becomes attractive for a system integra-

tor to integrate Commercial Off the Shelf (COTS) components

to meet a strict requirement for time to market. In the heart of

this design ecosystem, original IP owners face several security

challenges. Frequent IP handover in the supply chain could

pose the IP to be vulnerable to unauthorized duplication and

piracy. Reverse engineering is commonly employed to execute

the variants of IP theft. To reduce the risk of IP theft, the promise

of obfuscation transforms the original IP into an equivalent

design with a greater barrier to uncover functional semantics

without the correct key.

The use of hardware obfuscation approaches [2], [3] in recent

years is becoming common practice to protect the legacy RTL IP.

These approaches perform transformations to the original FSM

by embedding additional states and depending on key value,

they control modes of operation. At the same time, state-of-the-

art obfuscation methods have been found to protect only RTL

Hardware Description Language and lacks flexibility in securing

both the datapath and controller of an RTL design. Furthermore,

existing obfuscation solutions at RT-level incur substantial per-

formance overhead while building the security into hardware.

Despite the major objective of key-based obfuscation or logic

locking, one important question remains unanswered: is the

brute-force attempt something that can be complemented with

early locking out the design for finite but incorrect attempts?

Motivated by the software IP licensing scheme, we present a

low-cost lockable obfuscation framework, DLockout, for hard-

ware IP. In software regime, a software owner favors a user

(attacker) to a finite number of attempts for legal use of the

software. After a finite number of incorrect tries, the user is

requested to provide another form of verification to regain

access to locked software IP. We do this in obfuscated RTL

IP by embedding comparators (XORs) to the obfuscation logic

(MUXes) in non-critical paths. Following that, we introduce a

counter to be compared with a preset threshold. This threshold

determines to what extent (number of attempts) the (in)correct

key can be applied. For each incorrect key retrieval attempt, the

counter value is incremented and when it reaches the threshold,

obfuscated IP is locked out. We then introduce a checker FSM in

obfuscated datapath that signals the controller during the lockout

to enter into a blackhole state. It ensures that all accesses to the

design by the legitimate users are valid as long as the correct key

is applied, thus maintaining the design for security. The design

lockout approach runs together with the original functionality

of the design and requires minimal changes in the obfuscated

RTL IP. To the best of our knowledge, DLockout is the first

comprehensive technique that enhances traditional key hardware

obfuscation with lockout mechanism. In summary, the novelty

of DLockout includes: (i) no storage of the key within the

obfuscated design; (ii) stealthy key propagation and comparison

through non-critical path(s); and (iii) minimal modifications

to an existing obfuscated RTL design with lightweight, low-

overhead comparators and checker FSM.

The remainder of the paper is organized as follows. Section II

reviews the necessary background and previous RTL obfuscation

schemes. Section III presents the attack model followed by

proposed DLockout architecture in Section IV. We provide the

security evaluations and experimental results in Section V and

VI respectively. Section VII concludes the paper.

II. BACKGROUND AND RELATED WORK

In this section, we review state-of-the-art literature on key-

based hardware obfuscation and obfuscating transformations at

RTL against IP piracy. Mode-based RTL obfuscation has been

studied in [4]. The technique works by extending the bit-length

of host registers for appropriate mode selection with moderate

overhead. The authors in [5] constructed the Control Flow Graph

(CFG) of the RTL description from gate-level designs. In this

obfuscation model, extra decision nodes depending on boolean

computations of state elements are inserted. ObfusFlow [2]

performs the XOR operation to a subset of internal nodes with

an additional FSM. The Boosted Finite State Machine (BFSM)

[6] hardens the original FSM by additional states. The technique

powers up the design with additional states such that a random

unique block is entered before going into working mode else

blackhole state mode is entered. The authors in [7] utilized

mobility of input operands during HLS to increase stealthiness

of RTL obfuscation. Although the technique introduces the

obfuscation during the early design, it does not include the abuse

case when an attacker may want to retrieve the key for a finite

number of times. The published RTL obfuscation works did not

consider key management block built in to prevent unauthorized

execution of RTL IP. We distinguish our work as follows: (a)

the key propagation is as stealthily as possible and locks out

the design for incorrect key when certain number of attempts

are made and (b) we provide the security evaluation of an RTL

design against state-of-the-art side channel analysis.

Input Operands with

fixed and unknown key

Incorrect attempts

exceed threshold?

Design Lockout

Yes

Algorithm Description

(C,C++)

Obfuscated RTL Design

(datapath + controller)

Insert DLockout

Architecture

1. Find obfuscation points

2. Embed comparators

3. Embed checker FSM to

enable design lockout

Obfuscated RTL with

DLockout

High-level Synthesis

No

Brute-force attack/

Key guessing attack

Fig. 1: DLockout integration in key obfuscated RTL design

III. THREAT MODEL

To reverse engineer the correct key, we assume an attacker

has access to a logic-level locked but flattened netlist and an

oracle black-box IC. We also assume that the design cannot

be subjected to sophisticated micro-probing attack (e.g. circuit

edit [8]). The published works in [9], [10] made the similar

assumptions for the threat model where the deobfuscation intent

was effective either on fully combinational or sequential design

at the gate-level. In addition, we assume that the attacker’s

objective is to reveal the key to enabling the true functionality

of the obfuscated RTL design. We also assume that the attacker

does not have access to internal nets except primary input(s) and

output(s). Under these assumptions, the adversary can apply any

input sequence, observe the output, and analyze the input-output

behavior.

IV. PROPOSED DLOCKOUT ARCHITECTURE

Our proposed technique, DLockout, in Fig. 1 defends against

counterfeiting and fights against reverse engineering aiming at

obtaining design data of IP. We ensure this by by embedding

comparators at the output of obfuscation logic after regular key

obfuscation is performed. As shown, it contains three major

steps for key verification. First, given a key obfuscated RTL

IP, the designer would incorporate DLockout using the method

proposed in Sections IV-A and IV-B. Secondly, an attacker (user)

during the post-synthesis stage of RTL in the supply chain would

apply regular input(s) and key bit(s) of a particular length. As

the extraction of the key is the most frequent target in any

obfuscation scheme, one can apply brute-force or intelligent key

inference techniques. A check between the allowed attempts

and the number of times (in)correct key applied will enable

or disable DLockout. Finally, when unsuccessful key extraction

trials end, the design is self-locked out permanently in a non-

destructive manner.

A. Design Lockout in RTL Datapath

DLockout relies on the observation that obfuscated RTL IP is

available after the designer performs scheduling, allocation, and

binding according to cost-speed trade-off during HLS [7], [11].

we follow the works in [7] to determine the place of insertion of

MUXes once the multiplexer based key at suitable obfuscation

points in an RTL datapath are performed. We then annotate

these obfuscating points with XORs to verify the applied key

are correct for the successful execution of the design. These

annotations are followed by a counter to ensure that the number

of the times the incorrect key can be applied does not exceed

the designer specified threshold, thus (semi)blocking the brute-

force approach. To ensure that an attacker would not utilize

“cold-reboot” to reset counter value and be benefited from

brute-force attempt, we assume the counter would be stored in

non-volatile storage. We augment the datapath with a 3-bit, 2-

input comparator. The annotated XORs’ output determines the

comparator output and introduces two variants (partial lockout

and full lockout) of DLockout architecture. Even though it is

possible for an attacker to find this regular structural pattern

(MUX with XOR) inside an obfuscated RTL netlist, it is not

possible to use this pattern to reveal the key. Moreover, attackers

cannot bypass the correct key enforcement as the existing

obfuscation logic is used during both regular operation and key

propagation for maximum flexibility and key interference during

datapath synthesis.

Fig. 2 shows the proposed modifications to Glushkovian

model of an obfuscated RTL design. Each obfuscation logic in

the datapath is annotated with a 2-input XOR. The output (=0)

of XOR determines the correctness of key bit to a multiplexer

selector input. The checker FSM would check all available

XORs’ output and increment the counter for any annotated XOR

output signal being equal to ‘1’. When such number of ‘1’s reach

the threshold for incorrect attempts, DLockout will be active in

place. Partial lockout is active when a wrong key is applied to the

obfuscation logic for the first time. Design_lockout determines

all allowed trials have been made. In both cases, an exception

will be raised and datapath will send out the output of the

checker FSM (dp_comp) to the controller.

B. Design Lockout in RTL Controller

We integrate DLockout architecture into the RTL controller

as shown in Fig. 3. We modify parts of state transitions to

make it difficult for the attacker to correctly reconstruct the

state transitions. The next state of the current state will change

dynamically depending on the key bit and dp_comp signal

from the obfuscated RTL datapath. So, the period in which

the modified controller is the same as the original controller

is during when the design starts execution (i.e. Reset is high).

After the primary input being latched into available registers and

key checking at the first control step (S1), the next state could

be the truly original state (S2) for correct key or it would revert

to initial state (S0) for partial lockout. In the design lockout

Primary Inputs

R
0

R
m

R
p

R
x

0

0

1

Checker

FSM
Next-state

logic

S
ta

te

R
e

g
iste

r

M
U

X
0

M
U

X
m

M
U

X
x

k0

km

kx

XOR0

XORm

XORx

Start

Finish
Clock

Reset

Datapath

Controller

Status Signals

Control Signals

A
LU

A
LU

constant allowed_attempts := <integer>

signal counter : std_logic_vector (2 downto 0);

signal dp_comp : std_logic_vector (2 downto 0);

process (Dlockout)

 for I in 0 to allowed_attempts loop

 if (XOR0 = ”1" or ….or XORx = ”1") then

 counter <= counter + 1;

 if (dp_comp = “100”) then

 continue; -- partial lockout

 elsif (dp_comp = “001”) then

 design lockout;

 exit;

 end if;

 end if;

 end loop;

end process;
Lockout Circuitry

dp_comp

Fig. 2: Glushkovian model of key obfuscated RTL design with design lockout circuitry

state enum (S0,S1,……,Sn);

process (curr_state, start)

begin

 case curr_state is

 when S0 =>

 next_state <= S1;

 when S1 =>

 if (dp_comp = “100”) then

next_state <= S0 ; -- partial lockout

 elseif (dp_comp = “001”):

next-state <= blackhole state; -- lockout

 else:

next_state <= S2;

…………………...

 when Sn =>

 next_state <= S0;

 end case;

end process;

Datapath

(ALU, Register, MUXs,

XOR, Comparator etc.)

Controller

Status Signals

Control Signals

Start

Finish

Reset

S0

S1

S2

Sn

Clock

dp_comp

Blackhole

state

Partial

lockout

dp_comp

dp_comp

dp_comp

Fig. 3: RTL Controller with DLockout Architecture

phase, any true valid state is stripped from becoming the next

state and the controller would enter into a permanent blackhole

state as introduced. This adds more confusion to the attacker.

V. SECURITY EVALUATIONS

Power Analysis (PA) Attack: We provide a methodology

to mount simulated Differential Power Analysis (DPA) attack

on DLockout as follows. If the total number of switching bit

is p in a given q bit MUX, we can measure the correlation

coefficient,ro, between input data and dynamic power consump-

tion of an obfuscation logic.

r0 ≃

√

p

q
; p ≤ q (1)

Similarly, the relation between MTD (Measurements to Dis-

closure) and ro is given by:

MTD ∝
1

r2
0

(2)

If there are N control steps and M obfuscation logic are non-

uniformly distributed across N, Eqn. 2 will become:

MTD1 ≃
MN

r2
1

∗MTD0 ≃
MN

r2
1

∗
C

r2
0

(3)

where C is the success rate dependent constant [12] and r1 is

the correlation coefficient of the dynamic power consumption

between MUX and other RTL components. To de-correlate

power traces with the applied key, a random mask bit is XORed

with the key bit to implement key-independent MUX output as

shown in Fig. 5. In other words, MUX output exhibits the same

probability distribution independent of key and mask bit. The

KnÅMaskn

IncorrectCorrect

XORn

Fig. 5: Masked Obfuscation

logic with comparator

TABLE I: Truth Table of

Masked Obfuscation logic

Kn Maskn MUXn XORn

0 0 Correct 0
0 1 Incorrect 1
1 0 Incorrect 1
1 1 Correct 0

TABLE II: Operation of Error Detection Unit (EDU)

SAF at Multiplexer XOR Expected EDU Comment
XOR Output Output Output

0 0 (Correct) 0 0 Ineffective fault & lockout-free
0 1 (Incorrect) 1 1 Fault detected & lockout-free
1 0 (Correct) 0 1 Fault detected & lockout
1 1 (Incorrect) 1 0 Ineffective fault & lockout

XOR output is also uncorrelated to individual key and mask bit

as shown in Table I.

Fault Attack (FA): In DLockout, the comparators’ output

exhibits the highest sensitivity to deliberate fault injection. To

detect stuck-at-fault (SAF), we propose to incorporate an Error

Detection Unit (EDU) in the datapath that checks the output of

MUXs and XORs in Table II. Even with the incorrect key, the

lockout architecture is susceptible to FA when the SAF at XOR

is 0. For example, if an attacker owns n copies of the device

where the number of attempts is X for each copy, he can try

out different keys on each one. If each device is locked with

key bit of size m, still an attacker has to try 2m/(n ∗ (X − 1))

Obfuscation Area Overhead (typical-case)

32
b

64
b
12

8b 32
b

64
b
12

8b 32
b

64
b
12

8b 32
b

64
b
12

8b 32
b

64
b
12

8b

0

5

10
Obfuscation (comparator-free)
Obfuscation (comparator)
Obfuscation (lockout)
Average Overhead

Ellip FFT FIR Latt Cam

Obfuscation Delay Overhead (typical-case)

32
b

64
b
12

8b 32
b

64
b
12

8b 32
b

64
b
12

8b 32
b

64
b
12

8b 32
b

64
b
12

8b

0

5

10

15
Obfuscation (comparator-free)
Obfuscation (comparator)
Obfuscation (lockout)
Average Overhead

Ellip CamLattFFT FIR

Obfuscation Power Overhead (typical-case)

32
b

64
b
12

8b 32
b

64
b
12

8b 32
b

64
b
12

8b 32
b

64
b
12

8b 32
b

64
b
12

8b

0

10

20

30

40

50
Obfuscation (comparator-free)
Obfuscation (comparator)
Obfuscation (lockout)
Average Overhead

Ellip FFT FIR Latt Cam

Total Number of Nets (typical-case)

32
b

64
b
12

8b 32
b

64
b
12

8b 32
b

64
b
12

8b 32
b

64
b
12

8b 32
b

64
b
12

8b

1

2

3
104

No Obfuscation
Obfuscation (comparator-free)
Obfuscation (comparator)
Obfuscation (lockout)

Ellip FFT FIR Latt Cam

(a) (b) (c) (d)

Fig. 4: Comparison of benchmark parameters for three key length in typical design corner

TABLE III: Number of traces to retrieve a single key in DPA

attack for key size(=32bit)

M N q p MTD0 r2
1

MTD1

32

4 32
8 4 0.060 8533
16 2 0.028 9142
32 1 0.011 12800

5 32
8 4 0.055 11636
16 2 0.022 14545
32 1 0.009 17777

6 32
8 4 0.051 15058
16 2 0.020 19200
32 1 0.007 27428

M : key size; N : number of control steps; q: bit width of a MUX input; p:
number of bits that switch in a MUX input; C = 1.

trials for all copies. Here, during (X-1)th attempt, an attacker

would apply fault technique as crossing Xth trial would lead to

permanent locking.

Key Extraction Probability: If n and m denote the total

number of obfuscation logic and the key size respectively, the

probability of mapping a key from 2m combinations to n!
permutations of MUXs is given by:

P (m,n) =
1

n! ∗ 2m
(4)

If the total number of allowed attempt is X , the probability of

guessing the correct key bit at Kth attempt (K≤ X):

f(K,X,P (m,n)) =

(

X

K

)

∗ P (m,n) ∗ (1 − P (m,n)) (5)

VI. EXPERIMENTAL RESULTS

We evaluate DLockout performance with the gate-level sim-

ulations for target clock period of 10ns and three different key

length on four datapath intensive benchmarks (Elliptic, FFT,

FIR, and Lattice) and one crypto core (Camellia) [13]. Table

III lists the number of traces required to leak a single key in

Elliptic design. As we increase the control steps of a design

to meet latency requirement, we see a decreasing correlation

coefficient (r2
1
) resulting in higher MTD1. As more number of

bits (p) switch, the value of MTD0 decreases. However, it would

also increase the switching power excessively and may damage

the IP core before an attacker can retrieve the key. We report

the key extraction probability in a design lockout architecture in

Table IV. For finite control steps and larger key size, DLockout

provides a negligible probability that a key bit can be leaked and

it is independent of any RTL obfuscation technique and key size.

Across all benchmarks, we see an average area overhead in Fig.

4 increase from 1.50% to 7.78%. The average delay overhead

ranges in between 0.1% to 9.59%. With the increase in key

length, the number of nets increases as well in Fig. 4 (d) which

makes the probability of finding the nets responsible for key

propagation small.

VII. CONCLUSIONS

In this paper, we propose DLockout, that can provide an add-

on to the existing obfuscated RTL IP to increase the difficulty in

TABLE IV: Key extraction probability for three key length and

five attempts

(m,n) P (m,n) X K f(K,X, P (m,n))

(32,32) 0.08e-44 5

1 0.4e-44
2 0.8e-44
3 0.8e-44
4 0.4e-44
5 0.08e-44

(64,64) 0.43e-108 5

1 2.15e-108
2 4.3e-108
3 4.3e-108
4 2.15e-108
5 0.43e-108

(128,128) 0.07e-253 5

1 0.35e-253
2 0.7e-253
3 0.7e-253
4 0.35e-253
5 0.07e-253

m: key size; n: number of obfuscation logic; X: Allowed attempts; K:
Attempt index

reverse engineering. Once the number of key recovery attempts

exceeds the preset threshold, the design is self-locked out to

provide strong security guarantee against brute force attacks. In

future, we plan to extend the work to provide technique for

genuine user to recover after circuit locking. The effects of

DLockout architecture on design parameters are minimal and

modifications on DLockout architecture are presented against

side channel attacks.

REFERENCES

[1] R. Kumar. Simply fabless! IEEE Solid-State Circuits Magazine, 3(4):8–14,
Fall 2011.

[2] R. S. Chakraborty and S. Bhunia. Hardware protection and authentication
through netlist level obfuscation. In 2008 IEEE/ACM ICCAD, pages 674–
677, Nov 2008.

[3] A. R. Desai et. al. Interlocking Obfuscation for Anti-tamper Hardware.
CSIIRW ’13, pages 8:1–8:4, New York, NY, USA, 2013. ACM.

[4] R. S. Chakraborty and S. Bhunia. RTL Hardware IP Protection Using Key-
Based Control and Data Flow Obfuscation. VLSID ’10, pages 405–410,
Washington, DC, USA, 2010.

[5] R. S. Chakraborty and S. Bhunia. Security through obscurity: An approach
for protecting Register Transfer Level hardware IP. In 2009 IEEE HOST,
pages 96–99, July 2009.

[6] Y. M. Alkabani and F. Koushanfar. Active Hardware Metering for
Intellectual Property Protection and Security. In 16th USENIX Security

07, Boston, MA, 2007. USENIX Association.
[7] S. A. Islam and S. Katkoori. High-level synthesis of key based obfuscated

RTL datapaths. In 2018 ISQED, pages 407–412, March 2018.
[8] H. Wang et. al. Probing attacks on integrated circuits: Challenges and

research opportunities. IEEE Design Test, 34(5):63–71, Oct 2017.
[9] J. Rajendran, Y. Pino, O. Sinanoglu, and R. Karri. Security analysis of

logic obfuscation. In DAC Design Automation Conference 2012, pages
83–89, June 2012.

[10] T. Meade, S. Zhang, and Y. Jin. Netlist reverse engineering for high-level
functionality reconstruction. In 2016 ASP-DAC, pages 655–660, Jan 2016.

[11] C. Pilato et. al. TaintHLS: High-Level Synthesis for Dynamic Information
Flow Tracking. IEEE TCAD, 38(5):798–808, May 2019.

[12] O. -. Standaert et. al. An Overview of Power Analysis Attacks Against
Field Programmable Gate Arrays. Proceedings of the IEEE, 94(2):383–
394, Feb 2006.

[13] OpenCores. https://opencores.org/.

https://opencores.org/

	I Introduction
	II Background and Related work
	III Threat Model
	IV Proposed DLockout Architecture
	IV-A Design Lockout in RTL Datapath
	IV-B Design Lockout in RTL Controller

	V Security Evaluations
	VI Experimental Results
	VII Conclusions
	References

