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Abstract

Dense stereo matching is one of the most extensively investigated topics in com-

puter vision, since it plays an important role in many applications such as 3D scene

reconstruction.

In this thesis, a novel dense stereo matching method is proposed based on edge-

aware truncated minimum spanning tree (T-MST). Instead of employing non-local

cost aggregation on traditional MST which is only generated from color differences

of neighbouring pixels, a new tree structure, “Edge-Aware T-MST”, is proposed to

aggregate the cost according to the image texture. Specifically, cost aggregations

are strongly enforced in large planar textureless regions due to the truncated edge

weights. Meanwhile, the “edge fatten” effect is suppressed by employing a novel hy-

brid edge-prior which combines edge-prior and superpixel-prior to locate the potential

disparity edges. Then a widely used Winner-Takes-All (WTA) strategy is performed

to establish initial disparity map. An adaptive non-local refinement is also performed

based on the stability of initial disparity estimation.

Given the stereo images from Middlebury benchmark, we estimate the disparity

maps by using our proposed method and other five state-of-the-art tree-based non-

local matching methods. The experimental results show that the proposed method

successfully produced reliable disparity values within large planar textureless regions

and around object disparity boundaries. Performance comparisons demonstrate that

our proposed non-local stereo matching method based on edge-aware T-MST outper-

forms current non-local tree-based state-of-the-art stereo matching methods in most

cases, especially in large textureless planar regions and around disparity bounaries.

ii



Acknowledgements

First and foremost, I would like to express my deep and sincere gratitude to

my thesis supervisor Professor Jiying Zhao for his patience, motivation, enthusiasm,

and immense knowledge, as well as the continuous support that he provided me

throughout this entire research endeavour.

I would also like to thank all my lab colleagues: Wenyi Wang, Lei Chen, Jun Hu,

Ya Luo, Mengdie Chu, for their generous help and support during the last two years.

My sincere thanks also goes to my boyfriend Xiaohong Liu, for his generosity,

patience, optimism and love.

Last but not least, my special thanks goes to my family, for their constant love,

encouragement and support.

iii



This thesis is dedicated to my family.

iv



Table of contents

List of tables viii

List of figures ix

Nomenclature xii

1 Introduction 1

1.1 Stereo vision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Stereo matching applications and methods . . . . . . . . . . . . . . . 4

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Thesis structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Fundamental concepts and techniques 10

2.1 Correspondence problem . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 The graph theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Evaluation of dense stereo matching methods . . . . . . . . . . . . . 20

2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

v



3 Literature review 25

3.1 Local and global methods . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1.1 Local algorithms . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1.2 Global algorithms . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2 Non-local methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2.1 Methods based on aggregation over MST . . . . . . . . . . . . 31

3.2.2 Methods based on aggregation over Segment-Tree . . . . . . . 35

3.2.3 Methods based on aggregation over cross-trees . . . . . . . . . 38

3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4 Proposed algorithm 45

4.1 Pixel cost computation . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.1.1 TAD cost computation . . . . . . . . . . . . . . . . . . . . . . 47

4.1.2 HOG cost computation . . . . . . . . . . . . . . . . . . . . . . 48

4.2 Cost aggregation on edge-aware T-MST . . . . . . . . . . . . . . . . . 53

4.3 Adaptive refinement . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5 Experimental results 65

5.1 Data set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.2 Parameter setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

vi



5.3 Performance evaluation and comparison . . . . . . . . . . . . . . . . 70

5.3.1 Standard Middlebury data sets . . . . . . . . . . . . . . . . . 70

5.3.2 Other Middlebury data sets . . . . . . . . . . . . . . . . . . . 72

5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6 Conclusions 81

References 83

vii



List of tables

4.1 Quantitative evaluation of the proposed algorithm (with or without

refinement) on standard Middlebury data set. . . . . . . . . . . . . . 63

5.1 Parameter settings for proposed algorithm. . . . . . . . . . . . . . . . 69

5.2 Numerical comparison of the our proposed method and other five non-

local tree-based stereo matching algorithms on four standard Middle-

bury data sets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.3 Performance evaluation of the stereo matching accuracy. . . . . . . . 73

viii



List of figures

1.1 Binocular vision. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Stereo vision. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Classification of depth cues. . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 The occlusion problem. . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1 Illustration of finding corresponding pixel of p. . . . . . . . . . . . . . 12

2.2 Illustration of CT function. . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Examples of graph. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4 Illustration of a 4-connected undirected graph generated from an image. 18

2.5 The MST generated from a 4-connected undirected graph. . . . . . . 21

2.6 Segmented region maps. . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1 Local aggregation within a support window. . . . . . . . . . . . . . . 27

3.2 Winner-Takes-All. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3 Illustration of non-local aggregation over tree structure. . . . . . . . . 31

3.4 Two-step non-local cost aggregation. . . . . . . . . . . . . . . . . . . 33

ix



3.5 Illustration of cross-trees structure. . . . . . . . . . . . . . . . . . . . 39

3.6 Illustration of non-local aggregation on cross-trees structure. . . . . . 40

3.7 Different priors incorporated into non-local framework. . . . . . . . . 41

3.8 Illustration of non-local aggregation on cross-trees structure with a prior. 43

4.1 The flowchart of the proposed stereo matching method. . . . . . . . . 46

4.2 Gradient direction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.3 Histogram of the gradient directions. . . . . . . . . . . . . . . . . . . 51

4.4 Raw disparity maps for Teddy with different matching cost (γ = 0.4,

window size = 5, searching range = 53 ). . . . . . . . . . . . . . . . . 52

4.5 Different graph structures. . . . . . . . . . . . . . . . . . . . . . . . . 54

4.6 Highly textured regions with smooth disparity changes. . . . . . . . . 55

4.7 Different priors for non-local framework. . . . . . . . . . . . . . . . . 57

4.8 Non-local cost aggregation over edge-aware T-MST. . . . . . . . . . . 58

4.9 Adaptive non-local refinement. . . . . . . . . . . . . . . . . . . . . . . 61

4.10 Performance of the proposed refinement. . . . . . . . . . . . . . . . . 62

5.1 Reference images of 30 Middlebury data sets. . . . . . . . . . . . . . 67

5.2 Ground truth disparity maps of 30 Middlebury data sets. . . . . . . . 68

5.3 Final disparity maps on standard Middlebury data sets. . . . . . . . . 72

5.4 The final disparity maps of Laundry. . . . . . . . . . . . . . . . . . . 76

5.5 The final disparity maps of Lampshade1. . . . . . . . . . . . . . . . . 77

x



5.6 The final disparity maps of Midd2. . . . . . . . . . . . . . . . . . . . 78

xi



Nomenclature

Abbreviations

AD Absolute Intensity Differences

BPP Bad Pixel Percentage

CC Cross-Correlation

CRF Conditional Random Field

CT Census Transform

DP Dynamic Programming

HOG Histogram of Oriented Gradient

MRF Markov Random Field

MST Minimum Spanning Tree

NCC Normalized Cross-Correlation

RMS Root-Mean-Squared

SAD Sum of Absolute Differences

SD Squared Intensity Differences

SGM Semi-Global Matching

SP Superpixel

xii



SSD Sum of Squared Differences

ST Segment-Tree

T-MST Truncated Minimum Spanning Tree

TAD Truncated Absolute Intensity Differences

WTA Winner-Takes-All

xiii



1

Chapter 1

Introduction

1.1 Stereo vision

Binocular vision [1], which uses two eyes with overlapping fields of views, allows

good perception of depth according to the difference between the two similar views

from left and right eyes (Figure 1.1). Intuitively, objects closer to viewer have larger

displacement between left-eye view and right-eye view than those that are further

away. This visual disparity provides guidance on how to understand, respond and

interact with our surroundings.

Stereo vision, which simulates the similar behaviour to binocular vision, is still

challenging after it has been extensively investigated for many years. In 1838, the

concept stereopsis was firstly proposed by Charles Wheatstone [2]. In Victoria time,

the invention of the prism stereoscope by David Brewster made stereoscopy popular

in public. In the 1960’s, scientists started their research on stereopsis to find its

limitations and its relationship to monocular vision.
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Figure 1.1: Binocular vision.

In the stereo vision system, the left-eye image and the right-eye image are obtained

by two cameras simultaneously. The displacement of the same object (disparity)

between the image pair can be transformed into the distance from the object to the

viewer (i.e., depth).

Figure 1.2: Stereo vision.

Figure 1.2 illustrates how to calculate depth d in the stereo vision system. L and
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R represent the imaging centres of the left camera and the right camera respectively.

The line connecting two camera imaging centres is referred as the baseline, and b

represents the length of the baseline in pixel. Assume a point A is being viewed by

both cameras, the projection of A in the left image plane is AL at location (x1, y1);

the projection of A in the right image plane is AR with location (x2, y2). If we assume

that the left image and the right image are rectified, corresponding points should lie

on the same epipolar line (y1 = y2). The disparity δ between AL and its corresponding

point AR can be calculated by δ = |x1 − x2|. The depth d of A in 3D space can be

calculated by Equ. (1.1):

d = f · b
δ
, (1.1)

where f represents the focal length of the cameras.

In the stereo matching system, a disparity map is an image with each pixel value

indicating the difference between the horizontal coordinate of a pair of corresponding

pixels from the stereo image pairs, while a depth map is an image containing infor-

mation relating to the distance between a viewpoint and the surface of scene objects.

In recent research, estimating the disparity map or depth map from stereo image pair

has attracted more interest than simulating 3D scene directly from stereo image pair.

The depth information can be obtained by some devices directly, such as laser

sensor, infra-red ray sensor and light pattern sensor, or by using the image processing

technologies. Image processing technologies for depth estimation are mainly based

on monocular extraction or binocular extraction. Figure 1.3 shows the classification

of depth cues.
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Figure 1.3: Classification of depth cues.

1.2 Stereo matching applications and methods

Stereo matching, which is one of the most compelling topics in computer vision, is

a process of finding corresponding pixels given a set of images taken from different

viewpoints.

Early applications of stereo matching was in photogrammetry [3, 4]. Given a

set of calibrated images, the aim is to measure the structure of an object surface.

For example, the topographic maps can be generated from satellite pictures. Before

the automatic image processing technologies were proposed, device known as stereo

plotter was used for manual stereo matching [5].

Nowadays, stereo matching can be widely applied in entertainment (e.g., ges-

ture capturing by Kinect through stereo cameras), information transfer (e.g., 3D

scene reconstruction [6], intermediate view creation [7]) and automated systems (e.g.,
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anonymous driving [8] and robotics [9]).

In recent years, a large variety of stereo matching algorithms have been developed

to determine the disparities indicating the horizontal difference of the correspond-

ing pixels. Ideally, we assume that the corresponding pixels have the same intensity

value when solving the stereo matching problem. In practice, however, stereo images

always suffer from several problems, such as image noise, illumination variation, spec-

ular reflection and object transparency. In order to make stereo matching problem

analysable and solvable, several general assumptions are made as follows [10]:

1. Lambertian surface: The apparent brightness of a Lambertian surface does not

vary regardless of the observer’s viewpoint.

2. Epipolar constraint: For each pixel in the image, the corresponding pixel in

the other image must lie on a known epipolar line. Particularly, when dealing

with calibrated stereo image pairs, we only search along the epipolar line, which

means a pair of corresponding pixels have the same y coordinate.

3. Continuity constraint: Disparity tends to change slowly and smoothly across a

surface. If two points locate closely in one image, their corresponding pixels in

the other image should also be close to each other.

4. Smoothness constraint: Disparity value in a given neighbourhood should be the

same (or similar), except for depth boundaries.

5. Ordering constraint: The relative position between two pixels in one image

should be preserved in the other image for their corresponding pixels.
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6. Uniqueness constraint: For each pixel in one image, there should be at most

one corresponding pixel in the other image.

7. Maximum disparity constraint: A probable maximum disparity is computed to

be used as searching range for every stereo image pair.

However, there are still some challenging problems for stereo matching algorithms

in practice:

Figure 1.4: The occlusion problem.

1. Occlusion problem: Occlusion problem is a very typical problem in stereo

matching since it is difficult to find corresponding pixels when one of them

is hidden or does not exist. An illustration of occlusion is shown in Figure 1.4,

where the areas marked as “half-occluded” can only be viewed with one camera

due to the block.
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2. Non-Lambertian surface: In real world, the Lambertian surface assumption is

not always true. A change of viewing angle may cause drastically different

intensities for a pair of corresponding pixels in different images.

3. Large textureless region: It is impossible to uniquely identify the corresponding

pixels in those regions due to the lack of texture information.

With these challenges, it is important for stereo matching algorithms to overcome

those problems and generate an accurate disparity map.

The goal of this thesis, in addition to overcome the aforemetioned general problems

and challenges, is to design a stereo matching scheme which balances the speed and

accuracy.

1.3 Contributions

In this thesis, we propose a novel edge-aware truncated minimum spanning tree (T-

MST) structure for performing non-local cost aggregation. Different from traditional

local window-based algorithms which only analyse the pixel within a fixed support

window, the pixels can receive weighted supports from the entire image in non-local

algorithms that generate a tree structure for all the pixels in the image. In our

algorithm, the cost aggregation in highly textured regions is promoted by assigning

truncated weights to edges in T-MST. Meanwhile, a hybrid edge prior which combines

the edge prior and the superpixel prior is also proposed to restrain the “edge fatten”

effect across disparity boundaries.

A novel matching cost function is also proposed in this thesis. This matching
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cost function is a convex combination of truncated absolute differences (TAD) of

both intensity information and gradient information, and an improved histogram of

oriented gradient (HOG) feature. This function is robust to outlier pixels, vertical

parallax and illumination variation.

In addition, a novel adaptive non-local refinement algorithm is proposed to make

full use of the stability information obtained from left-right consistency check. The

cost aggregations from unstable pixels to stable pixels are suppressed to improve the

accuracy of the refined disparity map.

The proposed method calculates the disparity maps of the stereo images in Mid-

dlebury benchmark. The experimental results show that our proposed algorithm

outperforms the current state-of-the-art non-local tree-based stereo matching algo-

rithms.

1.4 Thesis structure

In Chapter 2, related fundamental concepts and techniques behind stereo match-

ing are introduced. Different algorithms for solving correspondence problem are

presented, followed with introduction of basic matching cost functions. Moreover,

concepts of graph and minimum spanning tree in the field of image processing are

described. In addition, the evaluation scheme for dense stereo matching algorithms

proposed by Scharstein and Szeliski [10] is also presented.

Chapter 3 gives the literature review of existing dense stereo matching algorithms.

Local window-based algorithms and global energy minimization algorithms are two

broad categories in this field. Local algorithms are fast but less accurate than global
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algorithms while global algorithms produce accurate disparity maps at the cost of

much higher computational complexity. Several current state-of-the-art non-local

stereo matching algorithms, which balance the efficiency and accuracy, are then pre-

sented in this chapter.

Chapter 4 presents our proposed novel non-local cost aggregation algorithm over

an edge-aware T-MST. A hybrid edge prior which combines the edge prior and su-

perpixel prior is proposed for non-local cost aggregation on T-MST. In addition, a

matching cost function which is robust to illumination variation and a novel non-local

refinement method which takes advantage of pixel stabilities are also proposed in our

non-local stereo matching framework.

In Chapter 5, the experimental results of our proposed method are presented.

Comparisons of the computed disparity maps on 30 Middlebury data sets by our

algorithm and by the five state-of-the-art non-local tree-based algorithms show that

the proposed algorithm has the best overall accuracy and ranking.

Chapter 6 draws the conclusions of this thesis.
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Chapter 2

Fundamental concepts and

techniques

In this chapter, we introduce the fundamental concepts and techniques behind stereo

matching. First, we review the correspondence problem and the basic matching

cost functions that find the corresponding points between a pair of stereo images.

Second, we study the concepts and applications of the graph theory and the minimum

spanning tree (MST). Last but not least, we review the evaluation scheme of stereo

matching algorithms.

2.1 Correspondence problem

The correspondence problem refers to the task of matching a set of points with their

corresponding points given two or more images of the same 3D scene taken from

different viewpoints [11]. Numerous algorithms have been proposed to solve the cor-
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respondence problem over the years. These algorithms can be divided into two broad

categories: sparse correspondence and dense correspondence.

Sparse correspondence methods match the features of interest extracted from the

images such as edges and contours. These methods are fast since only a small subset

of pixels are used for matching. Interpolation techniques are needed to fill the sparse

disparity maps generated by this type of methods.

Dense correspondence methods, on the other hand, seek to find the correspon-

dence for each pixel in the image since a smooth and detailed disparity map is more

useful for subsequent 3D modelling and rendering. According to the review of dense

correspondence algorithms in [10], dense disparity maps can be computed and refined

by calculating and aggregating matching costs. Dense stereo matching algorithms

can be subdivided into two main categories: local algorithms and global algorithms.

In this thesis, the details of dense stereo matching algorithms will be introduced in

Chapter 3.

Regardless of the type of stereo matching algorithm being used, a proper means

to determine the similarity between pixels in stereo images is crucial for finding the

correct corresponding pixels. Given a pixel p in the left image Il with coordinate

(x, y), the corresponding pixel at disparity d in the right image Ir is denoted as pd

with coordinate (x− d, y).

Figure 2.1 illustrates how to find the corresponding pixel pd in the right image Ir

given a pixel p in the left image Il. The blue dots represent the pixels in the image

and the red dots represent two corresponding pixels p and pd with the disparity of 2.

Commonly-used pixel-based matching cost functions are the absolute intensity

differences (AD) and the squared intensity differences (SD), which are presented as
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Figure 2.1: Illustration of finding corresponding pixel of p.

follows:

CAD
d (p) = |Il(p)− Ir(pd)| , (2.1)

CSD
d (p) = [Il(p)− Ir(pd)]2 , (2.2)

It is obvious that AD and SD are not robust since they are very sensitive to

random image noise. Another pixel-based cost function is the truncated absolute

intensity differences (TAD), as shown in Equ. (4.2):

CTAD
d (p) = min(|Il(p)− Ir(pd)|, τ) , (2.3)

where τ is the truncation threshold that helps reduce the influence of outliers.

Compared with pixel-based matching cost functions, window-based cost functions

are more robust. A fixed-size support window centred at pixel p is used to measure the
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similarity of its corresponding pixel pd in the other image. A basic window-based cost

function is the sum-of-squared-differences (SSD) function, as shown in Equ. (2.4):

CSSD
d (p) =

∑
i∈W

[Il(p
i)− Ir(pid)]2 , (2.4)

where pi denotes a pixel within the support window W and pid denotes the corre-

sponding pixel at disparity d.

The SSD function implicitly assumes that the corresponding pixels in stereo im-

ages have the same intensity value. However, when the support window covers outliers

such as image noise, SSD cost grows rapidly. Another common-used window-based

matching cost function is the sum-of-absolute-differences (SAD) function, as shown

in Equ. (2.5):

CSAD
d (p) =

∑
i∈W

|Il(pi)− Ir(pid)| . (2.5)

The SAD function grows linearly with the residual error, thus the influence of

mismatches can be reduced during aggregation step. Truncated quadratics and con-

taminated Gaussians are also robust matching cost functions [10].

In practice, it is common that the two stereo images are taken at different expo-

sures. In this case, matching cost functions that are invariant to inter-image intensity

differences are needed. A simple model of linear intensity variation between a pair of

images is presented as follows:

Il(p) = (1 + α)Ir(pd) + β , (2.6)
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where α denotes the gain and β denotes the bias. Hence, matching cost functions can

be modified to take intensity variations into account at the cost of higher computa-

tional complexity. For instance, the SSD function can be rewritten by Equ. (2.7):

CSSD
d (p) =

∑
i∈W

[Il(p
i)− (1 + α)Ir(p

i
d)− β]2 . (2.7)

The Census Transform (CT) is another window-based matching cost function with

high robustness to exposure and illumination variation [12, 13]. Different from other

matching cost functions that directly rely on the intensity values, the CT relies on the

ordering of relative pixel intensities [14]. The CT function is defined by Equ. (2.8):

CCT
d (p) = hdist(v(p), v(pd)) , (2.8)

where hdist denotes the Hamming distance of the two vectors; v(p) and v(pd) de-

note the CT bit-vectors of the corresponding pixels within support windows using a

comparison function in Equ. (2.9):

ξ(p, pi) =


0 p 6 pi ,

1 p > pi .

(2.9)

The illustration of calculating CT cost of a given pixel p at disparity d is shown

in Figure 2.2. In Figure 2.2, the intensity of p is 110. A bit-vector is generated based

on the intensities of eight neighbouring pixels of p. If the intensity of p is larger than

the intensity of its neighbour, the corresponding bit is set to 1. Otherwise, the bit

is set to 0. The order of each bit in the CT bit-vector is shown in Figure 2.2 with
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arrows. The CT cost of p and pd is the Hamming distance of the two vectors.

Figure 2.2: Illustration of CT function.

Alternatively, matching cost functions using gradient values instead of intensity

values was proved to be robust to exposure variation and illumination variation [15,

16]. Another approach is to subtract the window average, which has also been shown

to be robust [17, 18].

Besides the aforementioned window-based matching cost functions that measure

the residual error, another commonly-used cost function is the cross-correlation (CC)

function, as shown in Equ. (2.10):

CCC
d (p) =

∑
i∈W

Il(p
i)Ir(p

i
d) . (2.10)
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Different from cost functions for which the most probable match among all possible

disparity levels is the one with minimum cost, the maximum CC cost corresponds to

the best match. However, the CC function can fail when the images have a large

dynamic range or the illumination condition changes across images. In order to avoid

those problems, the normalized cross-correlation (NCC) function can be employed,

as shown in Equ. (2.11):

CNCC
d (p) =

∑
i∈W [Il(p

i)− Il(pi)][Ir(pid)− Ir(pid)]√∑
i∈W [Il(pi)− Il(pi)]2[Ir(pid)− Ir(pid)]2

, (2.11)

where Il(pi) and Ir(pid) denote the mean intensities of the corresponding support

windows. A value of 1 in NCC cost indicates the perfect match.

2.2 The graph theory

In computer science, a graph is an abstract data type that implements the concepts

of undirected graph and directed graph.

A graph contains a finite set of vertices (also called nodes or points) and a set

of edges connecting pairs of these vertices. In an undirected graph, these edges are

also known as arcs or lines; in a directed graph, these edges can be called as arrows,

directed edges, directed arcs, or directed lines. In graph structure, weighted value

can be assigned to each edge, such as a symbolic label or a numeric attribute. Figure

2.3 (a) shows an example of an undirected graph; Figure 2.3 (b) shows an example

of a directed graph.

A large variety of problems in computer science can be modelled by graph model.
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(a) Undirected graph (b) Directed graph

Figure 2.3: Examples of graph.

For instance, the famous travelling salesman problem can be modelled as an undi-

rected weighted graph, in which the vertices are the cities; the edges are the paths

between cities and the each edge weight represents the path’s distance.

Graph can also be applied in image processing techniques since an image I can

be represented as a 4-connected undirected graph G(V,E) [19, 20]. The vertices V

are the pixels in the image I and the edges E are the connecting edges between

neighbouring pixel pairs. An edge weight function ω is defined to map edges E with

real-valued weights based on the pixel intensities.

A simple weight function is shown in Equ. (2.12) [19]:

ω(s, r) = ω(r, s) = |I(s)− I(r)| , (2.12)

where s and r denote a pair of neighbouring pixels in image I.

Figure 2.4 shows an illustration of a 4-connected undirected graph generated from

a 5 × 5 image. In this example, the blue circles represent pixels in the image; the
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Figure 2.4: Illustration of a 4-connected undirected graph generated from an image.



CHAPTER 2. FUNDAMENTAL CONCEPTS AND TECHNIQUES 19

white numbers inside the circles represent the corresponding pixel intensities; the

lines represent the edges connecting neighbouring pixels; the black numbers beside

the lines represent the corresponding edge weights.

Representing image in the form of graph structure allows neighbouring pixels to

share information iteratively or in sequence [21]. In the area of stereo matching,

a variety of algorithms have been proposed based on cost aggregation over graphs

generated from images. These algorithms include graph cuts [22–24], dynamic pro-

gramming (DP) [25, 26], belief propagation [27–29], tree-reweighted message passing

[30, 31], and semi-global matching (SGM) [32, 33].

In order to improve the cost aggregation effectively and efficiently, tree structure

spanning the whole image can be employed instead of 4-connected graph structure.

If we assign an edge weight to every edge in a connected, undirected graph, dif-

ferent spanning trees can be generated. The weight of a spanning tree is calculated

by summing all the edge weights in this spanning tree. A minimum spanning tree

(MST) is then a spanning tree with the minimum weight among all the spanning

trees generated from the same graph.

There are four classic greedy algorithms developed for finding MST:

1. Boruvka’s algorithm: This algorithm can only used for finding MST in a graph

in which all edge weights are distinct. The computational complexity of Boru-

vka’s algorithm is O(MlogN), where M and N denote the number of edges and

vertices in the graph respectively;

2. Prim’s algorithm: This algorithm starts with an arbitrary vertex and adds the

cheapest possible connection to another vertex repeatedly until all the vertices
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are in this MST. The computational complexity of Prim’s algorithm is either

O(MlogN) or O(M +NlogN), depending on the data-structure;

3. Kruskal’s algorithm: This algorithm builds the MST by iteratively removing the

edges with large weights. The computational complexity of Kruskal’s algorithm

is O(MlogN);

4. Reverse-delete algorithm: This algorithm is the reverse of Kruskal’s algorithm

with computational complexity O(MlogN(loglogN)3).

Figure 2.5 shows the MST generated from the graph shown in Figure 2.4 using

Kruskal’s algorithm. The red lines denote the edges in this MST.

MSTs can be used in many applications, such as the design of networks (computer

networks, transportation networks, telecommunication networks), cluster analysis,

taxonomy, image registration [34], image segmentation [35], and stereo matching [19].

In this thesis, we deal with the dense stereo matching problem by performing

efficient cost aggregation over MST.

2.3 Evaluation of dense stereo matching methods

With the development of a large variety of stereo matching algorithms, quantitative

evaluation method is needed for estimating the quality of the computed disparity

maps. There are two general approaches: calculating the error between the computed

disparity map and the ground truth [36] or evaluating the warped image generated

from the reference image and the computed disparity map [37].
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Figure 2.5: The MST generated from a 4-connected undirected graph.
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According to the taxonomy and evaluation scheme proposed by Scharstein and

Szeliski [10], two quality measurements can be used for stereo matching algorithm

evaluation based on known ground truth.

1. Root-mean-squared (RMS) error:

R =

 1

N

∑
(x,y)

|dC(x, y)− dGT (x, y)|2
 1

2

, (2.13)

where dC and dGT represent the computed disparity map and the ground truth

map respectively; N denotes the total number of pixels in the image.

2. Bad pixel percentage (BPP):

B =
1

N

∑
(x,y)

(|dC(x, y)− dGT (x, y)| > δd) , (2.14)

where δd is the tolerance of disparity error.

In order to statistically evaluate the stereo matching algorithms from different

aspects, three kinds of regions are considered [10]:

• Textureless regions T : regions with low average horizontal intensity gradient,

as shown in white regions in Figure 2.6 (c);

• Occluded regions O: regions that are occluded in the original stereo images, as

shown in black regions in Figure 2.6 (d). Occluded regions can be obtained by

performing left-right consistency check on both ground truth maps.
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• Depth discontinuity regions D: regions with pixels whose disparities differ from

neighbouring pixels greatly (each pixel is enlarged with a small window), as

shown in white regions in Figure 2.6 (d).

(a) Original image (b) Ground truth

(c) Textureless regions (white) (d) Occluded regions (black) and depth discontinuity
regions (white)

Figure 2.6: Segmented region maps.

By using corresponding range of pixels, the BPP in different regions can then be

calculated. For instance, the BPP in textureless regions T can be defined as below:

BT =
1

NT

∑
(x,y)∈T

(|dC(x, y)− dGT (x, y)| > δd) , (2.15)
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where NT denotes the total number of pixels in regions T .

2.4 Summary

In this chapter, the fundamental concepts and basic techniques about stereo matching

were introduced. The correspondence problem and common matching cost functions

for finding corresponding points between stereo image pairs were presented. Then

the concepts of the graph theory and MST were introduced. At last, the evaluation

techniques for stereo matching algorithms were reviewed.
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Chapter 3

Literature review

3.1 Local and global methods

Dense stereo matching is one of the most extensively investigated topics in com-

puter vision since it plays an important role in a large variety of applications such

as 3D scene reconstruction [6], intermediate view creation [7], anonymous driving

[8] and robotics [9]. According to the taxonomy and evaluation scheme proposed in

[10], stereo matching algorithms can be divided into two categories: local algorithms

(window-based algorithms) and global algorithms (energy minimization algorithms).

Stereo matching algorithms generally implement a subset of the following four steps:

1. Matching cost estimation;

2. Cost aggregation within support region;

3. Disparity computation/optimization;
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4. Disparity refinement.

Local algorithms generally employ steps 1, 2 and 3 while global algorithms perform

steps 1, 3 and 4. Matching cost (step 1) is computed firstly for both local and global

methods. In local algorithms, costs for each pixel in different disparity levels are

then aggregated (step 2) within its support region (usually a window). On the other

hand, global algorithms make explicit smoothness assumptions and minimize a global

energy function (step 3). In step 4, post-processing techniques are performed on the

disparity maps to achieve a better result. Global methods usually generate more

accurate results than the local methods do. However, the quality improvement is

achieved at the cost of expensive computation.

3.1.1 Local algorithms

For traditional local stereo matching algorithms, the matching costs for each pixel in

different disparity levels are aggregated within a support window as shown in Figure

3.1.

Since each pixel can only receive supports from pixels within the fixed support

window, it is crucial to select an appropriate window size so that the final disparity

map can be smooth and accurate. A proper support window should be large enough

to contain enough information for reliable matching. If the window size is too small,

it may be difficult to uniquely identify the correct matching pixel. Meanwhile, the

support window should also be small enough to avoid covering disparity discontinu-

ities. If the window size is too large, it may lead to inappropriate smoothing and

cause “edge fatten” effect around disparity boundaries. Therefore, researchers have
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Figure 3.1: Local aggregation within a support window.

been seeking better techniques to balance the trade-offs involved in window selection

rather than using a fixed window. In general, these algorithms employ adaptive sup-

port which dynamically changes according to the surroundings of each pixel. Such

methods include adaptive window (sizes and shapes) [17, 38, 39], shiftable window

[40, 41], and adaptive weights based on segmentation [42, 43].

After aggregating the matching costs, the most possible disparity for each pixel

can be chosen by applying the Winner-Takes-All (WTA) strategy. Figure 3.2 shows

an example of choosing the most possible disparity of pixel p given its matching costs

at each disparity levels.

A disparity map can be generated by repeating the WTA strategy for every pixel

in the image.
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Figure 3.2: Winner-Takes-All.

3.1.2 Global algorithms

Different from local stereo matching algorithms which compute disparity indepen-

dently for each pixel, global algorithms construct an energy function that contains

the information of the whole image and iteratively optimize this function [10, 44, 45].

For a global algorithm, the process of computing the disparity map is treated as

finding the solution of a pixel-labelling problem. The solution d can be obtained by

minimizing a global energy function as shown in Equ. (3.1):

E(d) = Edata(d) + λEsmooth(d) , (3.1)

where Edata(d) and Esmooth(d) denote the data term and smoothness term respectively;

λ is the scale factor which controls the influence of smoothness term [10]. The data

term Edata(d) measures the similarity between pixels in the left and the right images
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[30, 46]. A general expression for Edata is presented as follows:

Edata(d) =
∑
x,y

C(x, y, d(x, y)) , (3.2)

where C(x, y, d(x, y)) is the matching cost between the pixel located at (x, y) and its

corresponding pixel at disparity d(x, y). The smoothness term Esmooth(d) indicates

the smoothness assumption made by the algorithm. In order to model the smoothness

assumption mathematically, only the disparity changes between neighbouring pixels

are taken into account, as shown in Equ. (3.3):

Esmooth(d) =
∑
x,y

[ρ(d(x, y)− d(x+ 1, y)) + ρ(d(x, y)− d(x, y + 1))] , (3.3)

where ρ denotes a monotonically increasing function of the differences in disparity.

However, such smoothness term may lead to inappropriate smoothness at disparity

boundaries and in occlusion areas. Intuitively, disparity boundaries tend to be also

intensity edges. Hence, the smoothness term can be modified to take the intensity

differences into account as well, as shown in Equ. (3.4):

Esmooth(d) =
∑
x,y

ρd(d(x, y)− d(x+ 1, y)) · ρI(‖I(x, y)− I(x+ 1, y)‖) , (3.4)

where ρd denotes the monotonically increasing function of disparity differences; and

ρI denotes the monotonically decreasing function of intensity differences.

Once the global energy function is defined, different algorithms can be employed

to minimize the function. Since the stereo matching problem can be modelled as

Markov Random Field (MRF) optimization problem or Conditional Random Field
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(CRF) optimization problem, a variety of related algorithms have been proposed.

Dynamic programming [25, 47], graph cuts [22, 23], belief propagation [27–29] are all

popular global algorithms.

3.2 Non-local methods

Traditional local methods conduct cost aggregation by averaging the cost within a

support region since they implicitly assume that pixels in the same support region

have similar disparities. Due to the usage of local averaging techniques, window-based

local algorithms suffer from “edge fatten” effect when the support regions cover the

disparity boundaries, which is very similar to image filtering methods. Yoon and

Kweon proposed an adaptive support weights technique to filter the cost volume and

preserve the disparity boundaries effectively [42]. Their algorithm was reformulated

as the term of a joint bilateral filtering method in [48]. Based on the aforementioned

edge-aware filtering techniques, guided image filtering was proposed in [49] and further

applied to solve image labelling problems [50, 51]. However, the support regions

for those filtering-based local algorithms are still limited in a pre-defined fixed-size

window.

Recently, a non-local stereo matching algorithm based on cost aggregation over

MST was proposed by Yang [19, 20]. In this method, a pixel is able to receive

proper weighted supports from other pixels on MST through a unique shortest path.

Different from local algorithms, non-local methods have a better performance due to

the cost aggregation over the whole image. Mei et al. conducted non-local aggregation

over segment-tree (ST) instead of MST [52]. Cheng et al. proposed cross-trees with
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priors to optimize the non-local cost aggregation procedure. These works proved that

non-local algorithms outperform all the local methods in terms of matching accuracy.

Figure 3.3 shows the illustration of the non-local cost aggregation over a tree

structure generated from a 5 × 5 image, where the center pixel (shown as the red

circle) receives supports from other pixels of the image (represent in blue circles)

through a unique path (shown as arrows).

Figure 3.3: Illustration of non-local aggregation over tree structure.

3.2.1 Methods based on aggregation over MST

In Yang’s non-local stereo matching framework, the reference image I is treated as

a 4-connected, undirected graph G = (V,E), where V and E represent the vertices

and edges in the graph [19, 20]. Specifically, V are all the pixels in the reference
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image and E are edges connecting neighbouring pixels. The edge weight w between

neighbouring pixels s and r is computed by Equ. (3.5) [19] or Equ. (3.6) [20]:

w(s, r) = w(r, s) = |Is − Ir| , (3.5)

w(s, r) = w(r, s) = |Is − Ir|2 , (3.6)

where Is and Ir represent the intensity values of s and r respectively.

Yang’s method assumes that the intensity edges can be regarded as the depth

edges. Therefore a minimum spanning tree (MST) can be generated from G by using

Kruskal’s algorithm to remove edges with large weights iteratively [53].

After the MST is constructed for image I, the similarity between two pixels can

be defined using MST. The closer the two pixels are in this MST, the more similar

they are in the image. The distance between two pixels p and q, denoted as D(p, q) =

D(q, p), is defined as the sum of edge weights along the shortest path between the

two corresponding nodes on the MST. The similarity between pixel p and pixel q can

then be defined by Equ. (3.7):

S(p, q) = S(q, p) = exp

(
−D(p, q)

σ

)
, (3.7)

where σ is an constant used to adjust the similarity between p and q.

The final aggregated cost for pixel p over MST can be calculated by Equ. (3.8):

CA
d (p) =

∑
q∈I

S(p, q) · Cd(q) . (3.8)
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Non-local cost aggregation on tree structure makes every pixel can receive proper

weighted supports from all other pixels in image I, which outperforms window-based

local algorithms. Using Equ. (3.8) to compute cost aggregation iteratively is feasible

but time-consuming. Yang proposed a non-local cost aggregation method with linear

time complexity by computing leaf-to-root and root-to-leaf cost aggregation succes-

sively [19, 20]. Figure 3.4 illustrates the two-step non-local aggregation on MST.

(a) Leaf-to-root aggregation (b) Root-to-leaf aggregation

Figure 3.4: Two-step non-local cost aggregation.

In leaf-to-root step (Figure 3.4 (a)), the intermediate aggregated cost CA↑
d for pixel

p is computed by Equ. (3.9):

CA↑
d (p) = Cd(p) +

∑
Par(pc)=p

S(p, pc) · CA↑
d (pc) , (3.9)

where Par(pc) denotes the parent node of pc. After the first step, the root node (V4

in Figure 3.4 (a)) receives proper weighted supports from all the other nodes while

the rest of the nodes receive supports from their subtrees. Note that if node p has no

child (leaf node), then CA↑
d (p) = Cd(p).

In root-to-leaf step (Figure 3.4 (b)), the final aggregated cost CA
d for pixel p is
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computed by Equ. (3.10):

CA
d (p) =CA↑

d (p) + S(Par(p), p) · [CA
d (Par(p))− S(Par(p), p) · CA↑

d (p)]

=S(Par(p), p) · CA
d (Par(p)) + [1− S2(Par(p), p)] · CA↑

d (p) .
(3.10)

If p is the root node of the MST, CA
d (p) = CA↑

d (p). Then the aggregated cost

for each node can be obtained by Equ. (3.10) tracing from root node towards corre-

sponding leaf nodes iteratively.

The computational complexity of this two-step aggregation algorithm is extremely

low. For each pixel at each disparity level, only two addition/subtraction operations

and three multiplication operations are required [19]. The computational complexity

is O(N · L), where N is the number of pixels of the image and L is the number of

disparity range.

After the non-local cost aggregation, the WTA strategy is conducted to obtain

the disparity map.

A new disparity refinement algorithm was also proposed by Yang based on the

non-local cost aggregation [19, 20].

After achieving the disparity maps for both left image and right image, a left-right

cross check (also called consistency check) is conducted for each pixel to determine

if it is stable or not. A stable pixel should have the same disparity value with the

corresponding pixel in the other image. A new cost value is assigned for each pixel

at each disparity level based on the result of cross check. The new cost for pixel p at
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disparity level d is computed by Equ. (3.11):

Cnew
d (p) =


|d−D(p)| if p is stable and D(p) > 0 ,

0 otherwise ,

(3.11)

where D denotes the computed left disparity map.

The aforementioned non-local cost aggregation method is then employed to ag-

gregate the new costs on the same MST. Since the new cost for all unstable pixels at

each disparity level is 0, the disparity values of unstable pixels will only depend on

the stable pixels.

3.2.2 Methods based on aggregation over Segment-Tree

Instead of employing MST, Mei et al. conducted non-local cost aggregation on a

graph-based Segment-Tree (ST) [52]. Different from MST in which the graph con-

nectivity is determined only with intensity differences between neighbouring pixels,

ST further introduces a non-local rule: pixels in the same segment are more likely

to share the same disparity value, thus the connectivity of pixels within the same

segment should be enforced first [52]. ST can be constructed with three steps:

1. Divide the image pixels into several segments.

2. Build the subtree for each segment.

3. Link all subtrees to generate the final tree.

Step 1 is a typical segmentation problem which can be solved with any robust

segmentation algorithms, such as normalized cuts [54, 55] and mean-shift clustering
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[56, 57]. In Mei’s algorithm, the graph-based segmentation method proposed by

Felzenszwalb and Huttenlocher [35] is employed and further extended to handle the

three-step ST construction. Step 2 enforces the connectivity within a segment while

step 3 enforces the connectivity around each segment.

The reference image (left image) is treated as a 4-connected, undirected graph

G = (V,E). Similar to MST, V and E denote the pixels in the image and edges

connecting neighbouring pixels respectively. For each edge e ∈ E, an associated

weight we connecting pixels s and r is computed by Equ. (3.12):

we = w(s, r) = w(r, s) = |Is − Ir| , (3.12)

The required ST is defined as T = (V,E ′), where E ′ is a subset of E. The

construction of ST, which can also be regarded as selecting the proper subset E ′ from

E, proceeds in three stages [52]:

• Initialization: According to the edge weights, the edges in E are sorted in a

non-decreasing order. For each node vi in V , a subtree Ti is created which only

contains one node. At this stage, E ′ is an empty set.

• Grouping: At this stage, subtrees are merged into several bigger groups (seg-

ments) with a full scan of E. Suppose ej ∈ E is the edge connecting nodes vp

and vq, the corresponding edge weight is wej . If vp and vq belong to different

subtrees Tp and Tq, and wej satisfies the criterion proposed in [35], Tp and Tq

will be merged into a new subtree Tp,q. Once two subtrees merge into a new

subtree, the connecting edge ej is included in E ′. The aforementioned criterion
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considers the similarity between two subtrees, as shown in Equ. (3.13):

wej ≤ min(Int(Tp) +
k

|Tp|
, Int(Tq) +

k

|Tq|
) , (3.13)

where Int(Tp) and Int(Tq) denote the maximum edge weight in Tp and Tq

respectively; k denotes a constant parameter. After traversing all the edges in

E, visually consistent segments are generated as the form of subtrees. At this

time, the edges of the subtrees, which are already collected in E ′, are deleted

from E.

• Linking: At this stage, each segment is linked by selecting more edges from E.

All the edges left in E are scanned to search for the edges connecting different

segments. If an edge connects two different subtrees, this edge will be collected

in E ′ and these two subtrees will be merged together to generate a new subtree.

When all the subtrees are finally merged into one tree which contains all the

nodes in V , the search stops and ST T = (V,E ′) is constructed. Note that since

the edges in E are already sorted in a non-decreasing order, edges selected into

E ′ to connect each subtrees are those with small edge weight.

It can be proved that each subtree is an MST of the corresponding segment after

the grouping stage [35]. Since the edges selected in linking stage are those with small

edge weights, the final ST is also proved to be an MST of the graph G [52].

After the ST is constructed, the non-local cost aggregation algorithm proposed by

Yang [19, 20] is employed on ST. Then the commonly-used WTA strategy is employed

to estimate the disparity map.

An enhanced ST was also proposed by Mei et al. which employed both color
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information and initial disparity information [52].

The enhanced ST is based on the observation that neighbouring regions with

different colors may still have similar disparities. In order to obtain robust non-local

cost aggregation, those regions should be merged together. Using both color and

disparity cues is also proved to be helpful for improving scene segmentation [58, 59].

Suppose the disparity map computed from non-local cost aggregation over afore-

mentioned ST is denoted as D, all the edge weights are then updated using Equ.

(3.14) [52]:

we = λ
|I(s)− I(r)|

∆I

+ (1− λ)
|D(s)−D(r)|

∆D

, (3.14)

where we denotes the edge weight of edge e; e is the edge connecting pixel s and pixel

r; ∆I and ∆D represent two constant normalization parameters; λ ∈ [0, 1] represents

the scale parameter for controlling the contribution of color information.

By employing the same ST construction algorithm on the updated graph, an en-

hanced ST can be generated. Conducting non-local cost aggregation on this enhanced

ST, an improved disparity map can be achieved after WTA strategy.

3.2.3 Methods based on aggregation over cross-trees

Recently, Cheng et al. proposed a novel cross-trees structure to conduct non-local

cost aggregation algorithm [60, 61]. The cross-trees structure consists of two unique

crossed trees which are independent of any local or global property of the image: a

horizontal tree and a vertical tree. For convenience, cross-trees is used to denote the

two crossed trees in the rest of this thesis.
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An explicit smoothness assumption is made by employing truncated edge weights

during the construction of cross-trees, which may lead to “edge fatten” effect if directly

performing non-local cost aggregation on such tree. In order to restrict the false

cost aggregation across disparity boundaries, edge prior and superpixel prior are also

proposed.

Based on different priors being used, Cheng’s method contains two algorithms:

Cross-E and Cross-SP, which denote cross-trees with edge prior and cross-trees with

superpixel prior respectively.

The reference image I is treated as a 4-connected, undirected graph G = (V,E),

where V and E denote all the pixels in I and all the edges connecting neighbouring

pixels respectively [19, 20].

(a) Horizontal tree (b) Vertical tree

Figure 3.5: Illustration of cross-trees structure.

Figure 3.5 illustrates cross-trees structure of a 5 × 5 graph. Figure 3.5 (a) is

the horizontal tree and Figure 3.5 (b) is the vertical tree. Blue circles represent the
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nodes and the lines connecting pixels are the edges of the tree structure. Note that

the dash lines are extra edges used to connect different rows or columns so that the

tree structure can be constructed. In order to prevent the cost aggregation between

different rows or columns, the weights of the edges marked with dash lines are set to

be a very large number in practice.

Figure 3.6 shows the illustration of performing non-local cost aggregation strat-

egy on cross-trees structure. By performing non-local cost aggregation successively

on horizontal tree and vertical tree, a pixel (represented with red circle) is able to

receive weighted supports from other pixels of the image (represented with blue cir-

cles) through a unique path (shown as arrows). The green arrows represent the cost

aggregation on horizontal tree and the orange arrows represent the cost aggregation

on the vertical tree.

Figure 3.6: Illustration of non-local aggregation on cross-trees structure.
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Instead of generating a tree structure only based on local pixel similarity, cross-

trees structure aims to be independent of the image while maintains the spatial

smoothness of the disparity map. Each edge is assigned a truncated weight as shown

in Equ. (3.15), which corresponds to the global smoothness assumption:

w(s, r) = w(r, s) = min(|Is − Ir|, τ) , (3.15)

where w(s, r) is the weight of the edge connecting neighbouring pixels s and r; Is

and Ir are the intensity values of pixel s and pixel r respectively; τ is the truncation

threshold of the intensity differences of neighbouring pixels.

However, assuming disparity smoothness everywhere in the image may cause false

cost aggregation across disparity boundaries. Hence, two different edge priors, edge

prior and superpixel prior, are employed to locate the potential disparity boundaries

[60, 61].

(a) Edge prior (b) Superpixel prior

Figure 3.7: Different priors incorporated into non-local framework.

Edge prior is a common-used prior as shown in Figure 3.7 (a), where the edges



CHAPTER 3. LITERATURE REVIEW 42

(marked with white lines) are detected by Canny edge detector. Since Canny detector

is sensitive to intensity changes, many false edges in highly textured regions are

also detected. Assuming all the edges detected by edge detector to be potential

disparity boundaries will degrade the performance of non-local cost aggregation in

highly textured regions.

Figure 3.7 (b) shows the superpixel prior obtained by using SLIC algorithm [62].

Since superpixels are compact and regular, disparity boundaries are fully connected.

Meanwhile, many false edges in highly textured regions can also be removed.

Hence, the edge weight function (Equ. (3.15)) can be rewritten by Equ. (3.16):

w(s, r) = w(r, s) =


|Is − Ir| if e(s, r)∩ the prior ,

min(|Is − Ir|, τ) otherwise ,

(3.16)

where e(s, r)∩ the prior denotes that the edge connecting pixel s and pixel r crosses

the prior; τ is the truncation threshold of intensity differences if the edge connecting

pixels r and s does not cross the prior.

By employing the global smoothness assumption along with proper prior, costs

can be aggregated within planar surfaces and the disparity boundaries can also be

preserved [60, 61].

Figure 3.8 illustrates how to perform the non-local cost aggregation for pixel p

(represented with red circle) on cross-trees structure with a prior. In this example,

the curve represents the prior; the green arrows represent the cost aggregation flow on

horizontal tree and the orange arrows represent the cost aggregation flow on vertical

tree. When the cost of pixel q2 is aggregating to pixel p through path P (q2, p), the
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Figure 3.8: Illustration of non-local aggregation on cross-trees structure with a prior.

edge e(q2, q1) on this path crosses the prior, thus the edge weight is the intensity

difference of pixels q2 and q1. If the intensity difference between q2 and q1 is large,

the distance between pixel q2 and center pixel p is also large. Thus the contribution

of pixel q2 and contributions of pixels even farther to center pixel p will be much less.

For pixel p, the region within the prior is its support region. Since the prior can be

of any shape, the sizes and shapes of support regions can be arbitrary, which is very

difficult for traditional local window-based stereo matching algorithms.

Note that for superpixel prior, the cost aggregation in large non-texture regions

will not be terminated since the intensity differences in such regions are already very

low.

After performing the non-local cost aggregation on cross-trees structure with a

prior, the disparity map can be obtained by the WTA strategy.
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3.3 Summary

In recent decades, a large variety of algorithms have been proposed for solving dense

stereo matching problem. These algorithms can be broadly divide into two classes:

local algorithms and global algorithms. Global algorithms generally produce more

accurate disparity maps than local algorithms. However, they are much slower than

local algorithms. More recently, non-local algorithms are proposed to balance the

accuracy and efficiency. Several state-of-the-art non-local algorithms were presented

in this chapter. In the rest of this thesis, we will propose a novel non-local stereo

matching method that outperforms the current state-of-the-art non-local algorithms.



45

Chapter 4

Proposed algorithm

This chapter describes the principles and implementation of our proposed stereo

matching method, which is mainly based on the non-local cost aggregation over an

edge-aware truncated minimum spanning tree (T-MST). The flowchart of this method

is shown in Figure 4.1.

The proposed method consists of three steps to generate the final disparity map:

1. Matching cost computation: Combine the truncated absolute differences (TAD)

and the histogram of oriented gradient (HOG) to formulate an efficient and

robust cost function;

2. Non-local cost aggregation: Perform non-local cost aggregation over edge-aware

T-MST which is generated based on a novel hybrid prior;

3. Adaptive disparity refinement: Conduct adaptive non-local refinement based

on the pixel stability.
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Figure 4.1: The flowchart of the proposed stereo matching method.
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In this chapter, we use the stereo images from Middlebury benchmark [10] as

our test data sets, which are “Tsukuba” (288× 384), “Teddy” (375× 450), “Venus”

(383× 434) and “Cones” (375× 450) [10, 63].

4.1 Pixel cost computation

The matching cost for each pixel at each disparity level between the left image I l and

the right image Ir is computed. The matching cost function proposed in this thesis

is a convex combination of the truncated absolute differences (TAD) [50, 51] and the

norm of the differences between the vectors of histogram of oriented gradient (HOG)

[64, 65].

The pixel matching cost function is shown in Equ. (4.1):

Cd(p) = γCTAD
d (p) + (1− γ)CHOG

d (p) , (4.1)

where Cd(p) represents the matching cost of pixel p at disparity level d; CTAD
d (p) and

CHOG
d (p) represent TAD cost term and HOG cost term respectively, which will be

discussed in detail in the following subsections; γ is a scale factor used to control the

contribution of TAD cost term.

4.1.1 TAD cost computation

Compared with traditional matching cost function AD, TAD is more robust to random

image noise. In our proposed method, we employ the TAD of both intensity and

gradient, which has shown to be robust to outlier pixels and illumination variation
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[50, 51, 66–68], to be a part of the proposed matching cost function.

Similar to [69], the TAD matching cost of a pixel p and its corresponding pixel pd

at disparity level d is defined as a convex combination of the intensity differences ei

and the gradient dissimilarity eg, as shown in Equ. (4.2) [66]:

CTAD
d (p) = β · ei(p, pd) + (1− β) · eg(p, pd) , (4.2)

where ei and eg are given as follows:

ei(p, pd) = min(|I l(p)− Ir(pd)|, Ti) , (4.3)

eg(p, pd) = min(|I lg(p)− Irg (pd)|, Tg) , (4.4)

where I l(p) and Ir(pd) denote the intensity values of the corresponding pixels; I lg(p)

and Irg (pd) denote the horizontal gradients of the corresponding pixels; Ti and Tg are

two empirical truncation parameters for intensity and gradient respectively; β is a

weight factor which balances the color and gradient terms. In all the experiments of

this thesis, we follow the parameter setting in [50, 51], where β is set to 0.11; Ti and

Tg are set to 7 and 2 respectively.

4.1.2 HOG cost computation

HOG was firstly proposed to accurately describe object feature for image recognition

and object detection [64], thus it can also be used for computing matching cost [65].

An improved HOG, which is efficient and robust to linear radiometric variation, was
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proposed in [65] for stereo matching cost measurement.

Suppose the radiation distortion is linear within a very small window, for instance,

a 3× 3 window. The linear radiation distortion can be defined by Equ. (4.5) [65]:

I l(p) = c · Ir(pd) + t , (4.5)

where p and pd are corresponding pixels in the left and the right images at disparity

level d; I l(p) and Ir(pd) represent the intensity values of pixel p in the left image and

pixel pd in the right image respectively; c and t are the scale factor and the translation

factor of the linear radiation distortion model respectively.

By computing the gradient within a small window, the translation factor t can be

removed. In order to further eliminate the scale factor c, the Sobel operator is used

to calculate the gradient direction. Hence, Equ. (4.5) can be rewritten by Equ. (4.6)

[65]:

θl(p) = θr(pd) , (4.6)

where θl(p) and θr(pd) represent the gradient directions of pixel p and pixel pd re-

spectively.

The gradient direction, as a linear radiometric invariant metric, is defined by Equ.

(4.7):

θ(q) = arctan

(
Gy(q)

Gx(q)

)
, (4.7)

where θ(q) denotes the gradient direction of pixel q; Gy(q) and Gx(q) represent the
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vertical and horizontal gradient of q respectively. The range of gradient direction is

[0, 360◦).

For a pixel p, the basic description cell is defined as a W ×W window centred at

it. The gradient directions for all pixels within the window are computed. We divide

the gradient direction range into 12 bins with a step size of 30◦. Then a gradient

direction histogram is computed based on the counts of pixels in each bin.

Figure 4.2: Gradient direction.

Given a 5×5 window centred at pixel p, Figure 4.2 shows an example of computing

the gradient directions for all the pixels within this description cell. Each rectangle

represents a pixel. The angle of each arrow indicates the gradient direction of the

corresponding pixel. Different background colors of the rectangles indicate different

bins.
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Figure 4.3: Histogram of the gradient directions.

After the gradient directions of all the pixels in the description cell are computed,

the histogram of gradient directions can be generated. Figure 4.3 represents the

histogram generated from Figure 4.2. HOG feature descriptor of pixel p can then be

constructed with a vector as shown in Equ. (4.8):

VHOG(p) = (b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, b10, b11) , (4.8)

where VHOG(p) denotes the HOG feature descriptor of pixel p; bi(i = 0, 1, 2, . . . , 11)

represents the corresponding value in gradient direction histogram.

The HOG matching cost function is then defined as the distance between the HOG

feature descriptors of the corresponding pixels, as shown in Equ. (4.9):

CHOG
d (p) =

∥∥V l
HOG(p)− V r

HOG(pd)
∥∥ , (4.9)

where V l
HOG(p) and V r

HOG(pd) are HOG feature vectors of corresponding pixels.
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(a) Left image (b) Right image

(c) Raw disparity map with TAD cost (a) Raw disparity map with proposed matching cost

Figure 4.4: Raw disparity maps for Teddy with different matching cost (γ = 0.4, window
size = 5, searching range = 53 ).
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Figure 4.4 shows raw disparity maps for data set “Teddy” obtained from different

matching cost computation methods. Raw disparity map is obtained by employing

WTA strategy on computed matching costs. Figure 4.4 (a) and (b) are left image

and right image respectively. Figure 4.4 (c) is the raw disparity map computed with

TAD matching cost function. Figure 4.4 (d) is the raw disparity map computed

with our proposed matching cost function. Black regions in raw disparity maps

indicate inaccurate pixels with error threshold 1 in non-occluded regions (compared

with ground truth disparity maps). The percentages of inaccurate pixels of Figure

4.4 (c) and (d) are 73.40 and 63.74 respectively, which shows that the HOG cost term

improves the accuracy of computed matching costs. Note that all the following steps

(such as aggregation and post-processing) in stereo matching algorithms are actually

performing refinement on computed matching costs. Hence an accurate and robust

matching cost function will benefit the final disparity map.

4.2 Cost aggregation on edge-aware T-MST

Our work basically follows Yang’s non-local framework [20]. A significant difference

between our algorithm and Yangs’s algorithm is that we employ a different tree struc-

ture: edge-aware T-MST. Motivated by the recent non-local cost aggregation method

proposed by Cheng et al. [60, 61], explicit global smoothness assumption is made

in our algorithm by employing truncated edge weight between neighbouring pixels.

Since assuming smoothness everywhere may cause false cost aggregation across dis-

parity boundaries, a novel hybrid edge prior which combines edge prior and superpixel

prior is proposed to preserve the potential disparity boundaries.
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In our proposed stereo matching framework, the reference image I is treated as a

eight-connected, undirected graph G = (V,E), where V and E represent the vertices

and edges in the graph. Specifically, V are all the pixels in the reference image and

E are edges connecting neighbouring pixels. The edge weights assigned to edges in

E are defined according to pixel intensity similarities and the proposed hybrid edge

prior.

Note that, the eight-connected graph, which is different from the four-connected

graph where pixels are only connected horizontally and vertically, ensures pixels being

connected horizontally, vertically and diagonally. Performing non-local cost aggre-

gation over tree structure generated from an eight-connected graph allows message

passing through more directions. Figure 4.5 shows the examples of different graph

structures, where blue circles represent the pixels and lines represent the connecting

edges between neighbouring pixels.

(a) Four-connected graph (b) Eight-connected graph

Figure 4.5: Different graph structures.
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The basic prototype for calculating the edge weight w between neighbouring pixels

s and r is shown in Equ. (4.10) [20]:

w(s, r) = w(r, s) = |Is − Ir|2 , (4.10)

where Is and Ir represent the intensity value of s and r respectively. This function

assumes that intensity edges can be regarded as depth edges. However, in highly

textured regions, despite of large intensity difference, disparity maps are spatially

smooth in most cases.

(a) Reference image (b) Ground truth

Figure 4.6: Highly textured regions with smooth disparity changes.

Figure 4.6 shows examples of textured regions with smooth disparity changes

(marked with red and yellow rectangles). Figure 4.6 (a) is the original left image of

data set “Teddy”; Figure 4.6 (b) is the corresponding ground truth disparity map.

In order to be consistent with the fact that disparities are mostly spatially smooth,

explicit smoothness assumption is made in our proposed algorithm. Similar to tradi-

tional global methods, the explicit smoothness assumption can be made by assigning
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trucated weight to each edge as shown in Equ. (4.11):

w(s, r) = w(r, s) = min(|Is − Ir|2, τ) , (4.11)

where τ is a truncation threshold of two neighbouring pixels s and r. However, the

aggregation over a tree structure generated from truncated edge weight will suffer

from “edge fatten” effect since it assumes disparity smoothness at every point. Hence

proper prior is needed to indicate potential disparity boundaries.

A commonly used prior is the edge prior as shown in Figure 4.7 (a). Common

edge detector, such as Canny edge detector, is sensitive to intensity changes so that

many false edges are also detected. If all the color edges are considered to be disparity

edges, the cost aggregation in highly textured regions will be degraded [60, 61].

Another recent popular prior is superpixel prior proposed by Cheng et al. [60, 61].

Since superpixels are regular and compact even in highly textured regions, many false

edges can be avoided. Meanwhile, the disparity boundaries are fully connected in

superpixel prior. Figure 4.7 (b) shows the superpixel prior computed for Teddy with

superpixel size = 300.

In order to make full use of the advantages of both edge proir and superpixel prior,

a novel hybrid edge prior is proposed. We assume that only edges detected by both

edge detector and superpixel are considered to be disparity boundaries, as shown in

Figure 4.7 (c). This hybrid edge is able to remove most false edges in textured regions

and keep true depth boundaries to a great extend. Examples can be seen in Figure

4.7 marked with yellow and blue rectangles. Hence, Equ. (4.11) can be rewritten by
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(a) Edge prior (b) Superpixel prior

(c) Hybrid edge prior

Figure 4.7: Different priors for non-local framework.
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Equ. (4.12):

w(s, r) =


|Is − Ir|2 if e(s, r)∩ the prior ,

min(|Is − Ir|2, τ) otherwise ,

(4.12)

where e(s, r) ∩ the prior means the edge between s and r crosses the hybrid edge

prior; τ is a truncation threshold.

After assigning edge weight to each edge in E with Equ. (4.12), the proposed

edge-aware T-MST can be generated by applying Kruskal’s algorithm [53].

Once the edge-aware T-MST is constructed, computed matching costs can be

aggregated for each pixel. Non-local cost aggregation scheme as presented in Chapter

3 is then performed on edge-aware T-MST.

Figure 4.8: Non-local cost aggregation over edge-aware T-MST.
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Figure 4.8 shows an illustration of non-local cost aggregation for pixel p (the

red circle) on the edge-aware T-MST. Blue circles and lines represent pixels and

connecting edges in the tree structure respectively. Green arrows represent the cost

aggregation flow from other pixels to pixel p. During the non-local cost aggregation,

the prior (represented with the red curve line) selects optimal support region for pixel

p. The weights of the edges that cross the prior will be raised sharply if the intensity

differences are large. For instance, the distance between q2 and p is much larger than

the distance between q1 and p if the color dissimilarity between q1 and q2 is large,

which suppresses the cost aggregation across the proposed prior.

Finally, the WTA strategy is employed to obtain the initial disparity map.

4.3 Adaptive refinement

After obtaining the initial disparity map for both left image and right image, a con-

sistency check (also called cross check or left right check) is used to divide all the

pixels into stable or unstable pixels. A stable pixel means that the corresponding

pixel in the other image has the exact same disparity value. In order to achieve a

better performance, all the unstable pixels should be interpolated in a proper way.

An adaptive non-local refinement scheme is proposed in this thesis to make full

use of the stabilities of all the pixels. Let D denote the initial disparity map of left

image, a new truncated cost is computed for each pixel [65]:

Cnew
d (p) =


min(|d−D(p)|, τcc) if p is stable ,

0 otherwise ,

(4.13)
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where Cnew
d (p) denotes the new cost value for pixel p at disparity level d; τcc represents

the truncated threshold.

Since the new matching costs for unstable pixels at all disparity levels are set to

be 0, the disparity of unstable pixels will completely depend on stable pixels.

Based on Yang’s non-local refinement, which re-implements the cost aggregation

method described in Chapter 3, we further update the edge-aware T-MST to a di-

rected tree structure. In order to impose restrictions on cost aggregation based on

pixel stabilities, we redefine the similarity calculation function between neighbouring

pixels.

The distance D(p, q) = D(q, p) between pixel p and pixel q is defined as the sum

of edge weights along the path connecting p and q. When the cost is aggregated from

pixel p to its neighbouring pixel q, similarity between p and q is redefined by Equ.

(4.14):

Sn(p, q) =


ϕ · exp

(
−D(p,q)

σ

)
if p is unstable and q is stable ,

exp
(
−D(p,q)

σ

)
otherwise ,

(4.14)

where Sn(p, q) is the updated similarity between p and q; σ is a constant used to adjust

the similarity between p and q; ϕ is a constant with range [0,1) used for suppressing

the cost aggregation from unstable pixel to stable pixel.

Figure 4.9 illustrates the adaptive non-local refinement. In Figure 4.9, the green

circles and red circles indicate stable pixels and unstable pixels respectively; the lines

connecting pixels represent the aggregation paths; the arrows represent the directions

of aggregation; green arrows represent higher aggregation weight compared with red
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Figure 4.9: Adaptive non-local refinement.

arrows.

After the adaptive non-local refinement, the final disparity map is generated by

implementing the WTA strategy again.

Figure 4.10 shows the performance of our proposed adaptive refinement scheme

on standard Middlebury data sets [10, 63]. Starting from the first row, the test image

sets are: “Tsukuba”, “Teddy”, “Venus” and “Cones”. The images in the left column

are initial disparity maps generated without refinement. The images in the right

column are final disparity maps after adaptive refinement. Red regions represent

the inaccurate pixesl with error threshold 1 in non-occluded regions. It can be seen

that a noticeable portion of inaccurate pixels have been refined after the adaptive

refinement.

Additionally, relative quantitative evaluations of proposed algorithm with or with-

out refinement on standard Middlebury data sets are also presented in Table 4.1. For
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(a) Proposed method without adaptive
refinement

(b) Proposed method with adaptive refinemen

Figure 4.10: Performance of the proposed refinement.
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each data set, the percentage of inaccurate pixels with threshold 1 in three different

kinds of regions (“non-occ”, “all” and “disc” denote non-occluded regions, all regions

and discontinuous regions respectively) are calculated. The average errors on different

data sets are presents in the last column.

As can be seen from Table 4.1, the proposed adaptive refinement scheme improves

the performance of our stereo matching algorithm in terms of accuracy in all kinds of

regions being evaluated.

Table 4.1: Quantitative evaluation of the proposed algorithm (with or without refinement)
on standard Middlebury data set.

Method
Tsubuka Teddy Venus Cones Avg-

errornon-occ all disc non-occ all disc non-occ all disc non-occ all disc

No refine 1.61 2.93 7.93 6.52 12.84 15.36 0.97 1.93 7.26 4.14 13.48 11.13 7.18

Refine 1.59 2.18 7.25 5.42 10.47 12.74 0.18 0.48 1.87 2.61 9.25 7.78 5.15

4.4 Summary

In this chapter, our proposed non-local stereo matching algorithm is presented in

three steps: matching cost computation, non-local cost aggregation on edge-aware

T-MST and adaptive non-local refinement.

For matching cost computation, a novel cost function which combines TAD term

and HOG term is proposed in this chapter. This new matching cost function is

efficient and robust to outlier pixels and illumination variation. A novel tree structure,

edge-aware T-MST, is also proposed for performing non-local cost aggregation. The

proposed edge-aware T-MST promotes the aggregation in highly textured regions and

in large textureless planar regions by employing truncation threshold. Meanwhile, the
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“edge fatten” effect is suppressed by employing a novel hybrid edge prior to indicate

potential disparity boundaries. Additionally, an adaptive non-local refinement scheme

is proposed to make full use of pixel stabilities for more accurate final disparity maps.
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Chapter 5

Experimental results

In this chapter, we evaluate and compare the performance of our proposed algorithm

(denoted as T-MST) and other five non-local algorithms, which are: Yang’s aggrega-

tion on MST (denoted as MST) [19, 20]; aggregation on ST (including two methods,

denoted as ST1 and ST2) [52]; aggregation on cross-trees with priors (including two

methods, denoted as Cross-E and Cross-SP) [60, 61].

All the algorithms are performed and tested on Middlebury data sets [10], details

of the data sets being used in this thesis are presented in Section 5.1. The parameters

used in the proposed algorithm are presented in Section 5.2. For other non-local stereo

matching algorithms, the parameters are the same as they are in the corresponding

papers. The quantitative evaluations and the visual qualities of the experimental

results are presented in Section 5.3.
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5.1 Data set

In our experiments, we employ 30 Middlebury data sets [10, 63, 70–72], including

common-used standard Middlebury data sets (Tsukuba, Venus, Teddy and Cones),

to reliably evaluate the performance of our proposed method and five non-local stereo

matching methods in terms of accuracy.

Figure 5.1 presents the Middlebury data sets used in this thesis. Only the reference

image (the left image) of each data set is presented due to space limitations. Note

that, all the images listed in Figure 5.1 are rescaled to the same size for aesthetic

considerations. The actual size of each data set is presented under the image along

with the image name.

Figure 5.2 presents the ground truth disparity maps of the corresponding Middle-

bury data sets in the same order as in Figure 5.1. The images are also rescaled to

the same size for better visual experience. The accurate ground truth disparity maps

can be obtained with sensors or structured light [63]. Note that the black regions are

uncertain pixels which are not taken into account in accuracy evaluation.

These 30 Middlebury data sets include different challenging structures, such as

large textureless regions (Bowling1, Bowling2, Midd1, Midd2, Plastic), repeated pat-

terns (Aloe, Cloth1, Cloth2, Cloth4 ), small occluded regions (Art, Cones, Laundry).

Employing these data sets to test and compare the performance of stereo matching

algorithms can give us comprehensive and reliable evaluation results.
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Tsukuba (288× 384) Venus (383× 434) Teddy (375× 450) Cones (375× 450) Flowerpots
(370× 437)

Baby1 (370× 413) Baby2 (370× 413) Baby3 (370× 437) Art (463× 370) Aloe (370× 427)

Books (370× 463) Cloth1 (370× 417) Cloth2 (370× 433) Cloth3 (370× 417) Cloth4 (370× 433)

Dolls (370× 463) Lampshade1
(370× 433)

Lampshade2
(370× 433)

Laundry (370× 447) Moebius (370× 463)

Wood1 (370× 457) Wood2 (370× 435) Bowling1 (370× 417) Bowling2 (370× 443) Rocks1 (370× 425)

Rocks2 (370× 425) Reindeer (370× 447) Midd1 (370× 465) Midd2 (370× 455) Plastic (370× 423)

Figure 5.1: Reference images of 30 Middlebury data sets.
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Tsukuba (288× 384) Venus (383× 434) Teddy (375× 450) Cones (375× 450) Flowerpots
(370× 437)

Baby1 (370× 413) Baby2 (370× 413) Baby3 (370× 437) Art (463× 370) Aloe (370× 427)

Books (370× 463) Cloth1 (370× 417) Cloth2 (370× 433) Cloth3 (370× 417) Cloth4 (370× 433)

Dolls (370× 463) Lampshade1
(370× 433)

Lampshade2
(370× 433)

Laundry (370× 447) Moebius (370× 463)

Wood1 (370× 457) Wood2 (370× 435) Bowling1 (370× 417) Bowling2 (370× 443) Rocks1 (370× 425)

Rocks2 (370× 425) Reindeer (370× 447) Midd1 (370× 465) Midd2 (370× 455) Plastic (370× 423)

Figure 5.2: Ground truth disparity maps of 30 Middlebury data sets.
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5.2 Parameter setting

The parameters for our proposed method are set empirically. Table 5.1 presents the

parameter settings of our proposed non-local dense stereo matching algorithm in all

the experiments. Note that the maximum disparity level dmax varies with the stereo

image pairs, which is a part of given information of each data set.

Table 5.1: Parameter settings for proposed algorithm.

Step Parameter Value

Cost

Computation

Weighting coefficient γ 0.3

Weighting coefficient β 0.11

Color truncation threshold Ti 7

Gradient truncation threshold Tg 2

HOG feature window size W 5

Minimum disparity level dmin 1

Maximum disparity level dmax Depends on image

Non-local Cost

Aggregation on

Edge-aware T-MST

Edge weight truncation threshold τ 36

Superpixel size S 300

Smooth term σ 0.1

Adaptive Non-local

Refinement

Truncation threshold τcc 0.5 · dmax
Weighting coefficient ϕ 0.1

Smooth term σ 0.1

For the other five non-local stereo matching algorithms being compared in this

chapter (MST, ST1, ST2, Cross-E, Cross-Sp), the parameters follow the settings of

the corresponding papers [19, 20, 52, 60, 61].
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5.3 Performance evaluation and comparison

In our experiments, we test the performance of our proposed method and other five

non-local stereo matching algorithms on 30 Middlebury data sets. These 30 data sets

consist of four standard Middlebury data sets which are commonly used for evaluation

in almost all recent stereo matching algorithms, and other 26 newer Middlebury data

sets. We will evaluate and compare the performance of the six non-local algorithms

on standard Middlebury data sets first. Then more experimental results from the six

methods will be presented.

5.3.1 Standard Middlebury data sets

Table 5.2 presents the numerical comparison of the our proposed method and other

five non-local tree-based stereo matching algorithms on four standard Middlebury

data sets (Tsukuba, Venus, Teddy and Cones). The numbers are the percentage of

inaccurate pixels with error threshold 1 on different data sets. The bold number in

each column indicates that the corresponding method has the most accurate result

among all the methods for corresponding data set.

Table 5.2: Numerical comparison of the our proposed method and other five non-local
tree-based stereo matching algorithms on four standard Middlebury data sets.

Method
Tsukuba Teddy Venus Cones Avg-

errornon-occ all disc non-occ all disc non-occ all disc non-occ all disc

MST 2.26 2.92 7.33 6.39 12.98 14.82 0.50 1.05 4.51 2.77 10.97 7.81 6.19

ST1 1.85 2.61 7.55 7.67 15.01 17.66 0.64 1.43 6.16 3.55 12.04 10.04 7.18

ST2 2.44 3.38 7.69 7.76 15.75 17.37 0.74 1.76 7.66 3.31 12.25 9.40 7.46

Cross-E 2.27 3.58 7.82 7.84 15.40 17.05 0.72 1.90 7.08 3.77 13.20 10.34 7.58

Cross-SP 2.30 3.55 9.31 7.88 15.34 18.18 0.61 1.74 7.26 3.18 12.28 9.21 7.57

Proposed 1.59 2.18 7.25 5.42 10.47 12.74 0.18 0.48 1.87 2.61 9.25 7.78 5.15
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As we can see from Table 5.2, our proposed algorithm outperforms all other non-

local tree-based stereo matching algorithms on all standard Middlebury data sets. The

proposed algorithm shows outstanding robustness in three kinds of regions,which are

non-occluded regions, all regions and discontinuous regions. Note that, the accuracy

in non-occluded regions usually draws more attention than in other kinds of regions

since only pixels in non-occluded regions actually have corresponding pixels exist in

other image. The percentage of inaccurate pixels in discontinuous regions indicates

how robust an algorithm is when dealing with the sharp disparity changes across

depth boundaries. The percentage of inaccurate pixels in all regions shows the overall

performance in terms of accuracy.

For Tsukuba, Venus and Cones, since the accuracy differences among six methods

are not large enough to reliably distinguish the characteristics of each method, we

only present the computed disparity maps of Teddy, as shown in Figure 5.3. Red

pixels represent the inaccurate pixels in non-occluded regions with error threshold 1.

As we can see from Figure 5.3, computing accurate disparity values of pixels

around the toy bear is a problem for all non-local tree based stereo matching algo-

rithms, as shown in yellow rectangle. Although the proposed method still has some

inaccurate pixels above and on the left side of the toy bear, the disparity values of

pixels on the right side of the bear are accurately computed. MST and the proposed

method have better performance in discontinuous regions as shown in blue rectangles,

which can also be seen in Table 5.2. Green rectangle marks an occluded region where

only exist in left image due to the shift of camera. The proposed algorithm performs

well in this region, which shows that the proposed edge-aware T-MST is reliable for

message passing.
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Left image Ground truth

MST ST1 ST2

Cross-E Cross-SP Proposed T-MST

Figure 5.3: Final disparity maps on standard Middlebury data sets.

5.3.2 Other Middlebury data sets

Table 5.3 shows the quantitative accuracy evaluation of our proposed method and

other five non-local methods on 30 image pairs in Middlebury. For each algorithm,

the disparity maps are computed with the same framework and parameter settings

as presented in the corresponding papers. Only the pixels in non-occluded regions
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Table 5.3: Performance evaluation of the stereo matching accuracy.

Data MST ST1 ST2 Cross-E Cross-SP T-MST

Tsukuba 2.263 1.852 2.446 2.274 2.305 1.591

Venus 0.502 0.644 0.746 0.725 0.613 0.181

Teddy 6.392 7.673 7.764 7.845 7.886 5.421

Cones 2.772 3.555 3.314 3.776 3.183 2.611

Flowerpots 18.766 14.915 12.622 14.393 14.524 12.211

Baby1 7.425 4.522 4.071 4.683 4.694 9.546

Baby2 28.556 15.204 12.233 6.331 6.382 15.745

Baby3 5.596 5.073 4.982 5.315 5.294 4.311

Art 10.846 10.525 9.124 8.581 8.803 8.642

Aloe 4.516 4.405 3.671 4.023 3.682 4.294

Books 11.356 9.415 8.171 8.262 8.353 8.374

Cloth1 0.355 0.416 0.314 0.263 0.141 0.232

Cloth2 3.145 3.366 2.023 1.801 1.872 2.204

Cloth3 1.534 1.575 1.393 1.676 1.262 1.001

Cloth4 1.195 1.276 0.984 0.923 0.772 0.721

Dolls 4.332 5.176 4.474 4.453 4.715 3.561

Lampshade1 12.596 10.313 9.902 10.474 10.675 8.791

Lampshade2 16.604 21.656 19.365 14.702 15.033 8.441

Laundry 11.322 13.834 13.303 14.305 14.376 10.571

Moebius 8.836 8.195 7.531 8.163 8.012 8.174

Wood1 13.576 5.084 3.581 3.722 3.823 12.725

Wood2 3.216 3.065 2.134 0.881 0.982 1.713

Bowling1 27.166 18.884 16.433 15.532 15.521 21.385

Bowling2 13.536 11.135 7.831 8.802 8.853 11.024

Rocks1 1.885 2.346 1.854 1.602 1.763 1.361

Rocks2 1.353 1.616 1.374 1.272 1.445 1.161

Reindeer 8.345 7.734 5.682 5.733 5.601 10.236

Midd1 20.742 31.373 33.934 35.746 35.555 7.091

Midd2 48.136 28.672 34.275 31.763 31.874 6.871

Plastic 54.366 40.825 33.952 36.814 36.593 30.041

Avg. error 11.726 9.815 8.984 8.822 8.822 7.341

Avg. rank 4.676 4.475 3.104 3.172 3.233 2.371
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are taken into consideration during the calculation of quantitative accuracy evalua-

tion. For more comprehensive comparison, the evaluation results of four standard

Middlebury data sets are also included in Table 5.3 (row 2 to row 5).

In Table 5.3, the normal numbers in row 2 to row 31 are the percentages of

inaccurate pixels in non-occluded regions with error threshold 1 for each data set.

The subscript numbers are the relative rank for each data set. The last two rows

show the average error rates and average ranks of the six methods. Table 5.3 reveals

some important characteristics of the six non-local stereo matching algorithms about

their performances.

First, MST outperforms ST1, ST2, Cross-E and Cross-SP in standard Middlebury

data sets in almost all cases. However, when more data sets are included in evaluation,

MST is less accurate. ST1 outperforms MST in 17 data sets; ST2 outperforms MST

in 21 data sets; Cross-E outperforms MST in 22 data sets; Cross-SP outperforms

MST in 22 data sets. It can be proved that performing non-local cost aggregation

over segment-trees and cross-trees with prior does improve the accuracy of computed

disparity maps.

Second, conducting non-local cost aggregation over cross-trees with prior gener-

ally produces more accurate disparity maps than over segment-trees. Cross-E and

Cross-SP outperform ST1 in 19 and 22 data sets respectively; outperform ST2 in 14

and 15 data sets respectively. The differences between the performances of Cross-E

and Cross-SP are very narrow in most data sets, which shows that edge-prior and

superpixel-prior can both provide reliable depth boundary detection.

Third, the proposed algorithm consistently outperforms all other five non-local

tree-based stereo matching algorithms. T-MST outperforms MST in 28 data sets;
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outperforms ST1 in 25 data sets; outperforms ST2 in 20 data sets; outperforms

Cross-E in 18 data sets; outperforms Cross-Sp in 18 data sets. Among all the 30 data

sets, the proposed method achieves the most accurate results for 17 data sets.

Finally, comprehensive comparison and ranking of the six methods can be drawn

from the last two rows of Table 5.3: T-MST > Cross-SP ≈ Cross-E > ST2 > ST1 >

MST, where “>” means “outperform” and “≈” means “almost equivalent”. The pro-

posed method has the least average error and the highest average ranking among the

six methods, which demonstrates that the proposed method has better performance

in terms of accuracy in a comprehensive way.

Visual comparisons of our proposed method and five non-local tree-based stereo

matching methods for three Middlebury data sets, Laundry (Figure 5.4), Lampshade1

(Figure 5.5) and Midd2 (Figure 5.6), are presented. Regions marked in red show the

inaccurate pixels with error threshold 1 in non-occluded regions of final disparity

maps.

Figure 5.4 shows the final disparity maps computed with six non-local algorithms

on data set Laundry. The main scene objects in this data set are: big white laundry

basket (upper-middle); wooden box under the laundry basket (bottom-middle); red

detergent bottle (bottom-left); white spray bottle and green stripe pillow (bottom-

right); clothes (bottom).

As we can see from Figure 5.4, the proposed method performs well in the wooden

box (marked with yellow rectangle), even in the gaps between woods, while other

methods compute inaccurate disparity values in those gaps. In addition, the disparity

boundaries around the spray bottle are preserved well in final result of the proposed

method (marked with blue rectangle), while ST1, ST2, Cross-E and Cross-SP fail
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to preserve clear disparity boundaries. The performance in this data set shows that

our proposed algorithm is able to provide reliable disparity results around disparity

boundaries. There are two main reasons for the errors in the holes of the laundry

basket: prior is detected and the intensity differences are large, which all suppress

the aggregation flow in these regions.

Left image Ground truth

MST ST1 ST2

Cross-E Cross-SP Proposed

Figure 5.4: The final disparity maps of Laundry.

Figure 5.5 shows the final disparity maps computed with six non-local algorithms
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on data set Lampshade1. The main scene objects in this data set are: white lampshade

(bottom-middle); carton behind the lampshade (middle); wood brick and yellow mag-

azine file on the carton (upper-middle); wooden pole (left-middle); two round boxes

and a wood brick (left).

Left image Ground truth

MST ST1 ST2

Cross-E Cross-SP Proposed

Figure 5.5: The final disparity maps of Lampshade1.

As we can see from Figure 5.5, the proposed algorithm performs well in preserv-
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ing the disparity boundaries (marked with yellow and blue rectangles). Our proposed

method performs better than other five methods within large textureless planar sur-

faces because the cost aggregation in those regions are enforced due to the truncated

edge weight when the intensity differences are small and no hybrid edge prior is de-

tected.

Left image Ground truth

MST ST1 ST2

Cross-E Cross-SP Proposed

Figure 5.6: The final disparity maps of Midd2.

Figure 5.6 presents the final disparity maps of the six non-local algorithms on
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the data set Midd2. The main scene objects in this data set are: folded T-shirt

(bottom-left); blue pillow (middle); white lampshade on the pillow (middle); wood

and tennis ball (bottom); grey woollen hat (bottom); woven basket and toys (right).

Midd2 is a very challenging data set for local stereo matching algorithms due to large

repeated textures. In such case, several potential corresponding pixels in the other

image can be detected for each pixel in the reference image because local methods

find correspondences locally based on pixel similarities. The inaccurate pixel rate in

non-occluded regions for MST, ST1, ST2, Cross-E and Cross-SP are all above 28 on

this data set (row 30 in Table 5.3). The proposed algorithm reduces the error rate to

6.87, which is an incredible improvement.

As we can see from Figure 5.6, the proposed method performs the best among

all six non-local tree-based stereo matching algorithms in large textureless planar

background. Almost all disparities in background are accurate in disparity map com-

puted with our proposed method. In addition, disparity boundaries are preserved

with the proposed method since the false cost aggregation across depth boundaries

are suppressed by hybrid edge-prior (marked with yellow and blue rectangles).

5.4 Summary

In this chapter, we tested our proposed non-local stereo matching method based on

edge-aware T-MST and compared with five state-of-the-art non-local methods on

30 Middlebury data sets. The experiments are separated as two parts: in the first

part, we analysed and compared the performances of six non-local algorithms on four

standard Middlebury data sets in terms of accuracy. Quantitative evaluations in non-
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occluded regions, all regions and discontinuous regions were presented in this part,

which show that our proposed algorithm outperforms other five methods in all three

kinds of evaluation regions on standard Middlebury data sets.

In the second part, in order to obtain a more comprehensive understanding, we

further evaluated and compared our proposed method with other methods on 26

more Middlebury data sets. The experiments showed that our proposed algorithm

consistently outperforms other methods, especially in large textureless planar regions

and disparity boundaries due to the proposed edge-aware T-MST.

In conclusion, comparisons on quantitative evaluations and visual qualities of the

performances of our proposed method and other five non-local methods on 30 Mid-

dlebury data sets are presented in this chapter. The comparison demonstrates that

our proposed non-local stereo matching algorithm based on edge-aware T-MST out-

performs the current state-of-the-art non-local tree-based stereo matching methods.
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Chapter 6

Conclusions

Extracting accurate depth maps from stereo image pairs is an important requirement

for many applications such as 3D reconstruction. A large variety of algorithms have

been proposed to perform stereo matching. Some techniques generate a sparse depth

map by matching reliable features, while the more common algorithms seek dense

corresponding pairs between stereo images.

Typically, dense stereo matching algorithms can be further divided into two broad

categories: local methods and global methods. In this thesis, a novel dense non-local

tree-based stereo matching algorithm, which balances the accuracy of global methods

and the speed of local method, has been proposed.

One of the important challenges for aggregation-based stereo matching algorithm

is how to find optimal support regions. Traditional local methods only aggregate

within a fixed window, while the non-local algorithm generates a tree structure which

contains all pixels in the reference image so that the support region for each pixel is

the whole image. Performing aggregation on such tree structure allows each pixel to
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receive weighted supports from all other pixels. In our scheme, a novel edge-aware

T-MST is proposed for conducting non-local cost aggregation. In our proposed edge-

aware T-MST, truncated edge weights are employed to enforce strong cost aggrega-

tions. Meanwhile, a hybrid edge prior is proposed to suppress false cost aggregations

across disparity boundaries and preserve true depth boundaries.

In addition, a novel matching cost computation function, which is robust to outlier

pixels and illumination variation, is proposed in this thesis. We also present an

adaptive non-local refinement scheme based on pixel stabilities, so that a more reliable

final disparity map can be achieved.

The experimental results on Middlebury data sets show that the proposed algo-

rithm successfully produces reliable disparity values within large planar textureless

regions and around object disparity boundaries. Performance comparisons between

the proposed algorithm and the other five non-local algorithms demonstrate that

the proposed non-local stereo matching algorithm outperforms current state-of-the-

art non-local tree-based stereo matching methods in most cases, especially in large

textureless planar regions and around disparity bounaries.

However, limitations of our proposed scheme still exist: since the non-local cost

aggregation depends on intensity similarities, the proposed scheme may fail in large

homogeneous intensity regions with non-linear disparity changes. More work will be

done in our future research. We are trying to compute the maximum a posteriori

(MAP) disparity for each pixel using message-passing scheme on hidden Markov tree,

which deals with the existing drawback of our proposed method.



83

References

[1] Robert F van der Willigen, Wolf M Harmening, Sabine Vossen, and Hermann

Wagner. Disparity sensitivity in man and owl: Psychophysical evidence for

equivalent perception of shape-from-stereo. Journal of vision, 10(1):1–11, 2009.

[2] Charles Wheatstone. Contributions to the physiology of vision. –part the first.

on some remarkable, and hitherto unobserved, phenomena of binocular vision.

Philosophical transactions of the Royal Society of London, 128:371–394, 1838.

[3] Eisaku Katayama, Tomoko Shiraishi, Kenji Oosawa, Norio Baba, and Shin-

Ichi Aizawa. Geometry of the flagellar motor in the cytoplasmic membrane of-

salmonella typhimuriumas determined by stereo-photogrammetry of quick-freeze

deep-etch replica images. Journal of Molecular Biology, 255(3):458–475, 1996.

[4] O Taconet and V Ciarletti. Estimating soil roughness indices on a ridge-and-

furrow surface using stereo photogrammetry. Soil and Tillage Research, 93(1):64–

76, 2007.

[5] T Sarjakoski. Concept of a completely digital stereo plotter. The Photogram-

metric Journal of Finland, 8(2):95–100, 1981.



REFERENCES 84

[6] C Hernandez Esteban and Francis Schmitt. Multi-stereo 3d object reconstruc-

tion. In International Symposium on 3D Data Processing Visualization and

Transmission, pages 159–166, 2002.

[7] Liang Zhang. Fast stereo matching algorithm for intermediate view recon-

struction of stereoscopic television images. IEEE Transactions on Circuits and

Systems for Video Technology, 16(10):1259–1270, 2006.

[8] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we ready for autonomous

driving? the kitti vision benchmark suite. In IEEE Conference on Computer

Vision and Pattern Recognition, pages 3354–3361, 2012.

[9] Suresh B Marapane and Mohan M Trivedi. Region-based stereo analysis for

robotic applications. IEEE Transactions on Systems, Man, and Cybernetics,

19(6):1447–1464, 1989.

[10] Daniel Scharstein and Richard Szeliski. A taxonomy and evaluation of dense

two-frame stereo correspondence algorithms. International Journal of Computer

Vision, 47(1-3):7–42, 2002.
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