
OpenFlow Communications and TLS Security in
Software-Defined Networks

Belema Agborubere 1st
Dept. of Computing and Technology

Anglia Ruskin University
Chelmsford, Essex

belema.agborubere@pgr.anglia.ac.uk

Erika Sanchez-Velazquez 2nd
Dept. of Computing and Technology

Anglia Ruskin University
Chelmsford, Essex

erika.sanchez@anglia.ac.uk

Abstract – The adoption of Software-Defined
Networking (SDN), a networking approach where data
traffic control and execution are made independent of each
other, is an ongoing process that some companies are
considering as an option but have not embraced yet due to
different factors. Incorporating this new paradigm into an
existing network defines a shift in networking technology
with different benefits expected to derive from this
implementation. These benefits include (1) the ability to
use customised business specific applications, (2) reduce
overhead costs on legacy network infrastructure, taking
full control of network, (3) reduce network application
update time, increase productivity, and (4) apply increased
security among others. However, the security of SDN itself
has been a subject of debate. This is mainly because, the
communication standard used by SDN, known as
OpenFlow, and developed by the Open Network
Foundation, does not enforce the implementation of the
Transport Layer Security (TLS) but defines it only as
optional. This could then make the network infrastructure
vulnerable and therefore affect the overall security of a
company. Security plays a significant part in an
organisation and it is one of the determinants of the
success of SDN. OpenFlow security relies on the
implementation of TLS, which has been proven
vulnerable, and therefore bringing to mind the question on
how secure organisation’s data is when the
implementation of secure data transfer is treated with
laxity. This paper focuses on securing OpenFlow
communication in SDN by summarising TLS security
flaws and recommending ways of improving TLS security
thereby securing OpenFlow communication.

Keywords – Software Defined Network; OpenFlow;
Network Security; SSL/TLS

1. INTRODUCTION
Software-Defined Networking (SDN) is a new networking

paradigm that enables the separation of the intelligence
(control) and packet forwarding (data) planes within a single
network infrastructure. This approach differs from the
traditional network infrastructure setup where both,
intelligence and data forwarding functionalities, are placed
together in network devices such as switches and routers.
SDN’s separation made it necessary to introduce a new
communication protocol known as OpenFlow, which enables
communication between the network devices and its
controller. The acceptance of this paradigm is gradually
increasing. Different factors contribute to this such as
network flexibility, centralised management, reduced
administrative costs and network control and among others
[1]. Organisations such as Google and Amazon have
implemented SDN as part of their cloud based infrastructure
and academic institutions, such as Stanford University, have
implemented it within their existing networks. However, an
embrace of the new paradigm is still not certain [2], [3].
Figure 1 shows the SDN system setup.

Figure 1: A sample SDN system setup with control and switching functions
separate [4].

Current research explores the pros and cons of the use of
SDN with a special focus on security, which remains an on-
going issue that affects every organisation. The cost of data
loss due to a security flaw has a heavy impact within an
organisation, causing closure of businesses and financial.

Transport Layer Security (TLS) is implemented in order to
provide security to data communication in OpenFlow between
the data and control plane. Of interest is that the Open
Network Foundation (ONF) does not recommend the
implementation of TLS as mandatory. The reason could be
that there are other network communication protocols such as
the Border Gateway Protocol (BGP), Multiprotocol Label
Switching (MPLS), NETCONF (IETF Network management
protocol) [5]. This, therefore, gives OpenFlow-enabled
infrastructure vendors the freedom to use what seems better
for them rather than particular protocols being imposed on
them.

As of 2014, and even with recent data breaches and
network exposures, the implementation of secure OpenFlow
communication using the Transport Layer Security (TLS) is
still optional [6] and only recommended as the default security
mechanism in 2015 [7]. On the other hand, the Open Network
Foundation also recommended TCP as an alternative transport
protocol despite the security challenges associated with it [8].

The functionality of SDN depends on the communication
between the controller(s) and the switches therefore making it
fundamental to secure OpenFlow. A flow is installed on the
switch through instruction it receives from the controller, and
also, data packets are forwarded, depending on instructions
from the controller through the OpenFlow link [9].

On the other hand, communication through OpenFlow is
secured using TLS, raising the question how secure is the
Transport Layer Security in the face of attacks? Secondly,
since the use of the TLS protocol is recommended rather than
mandatory, not all SDN vendors implement it. This
undermines the importance of security, which is the very focus
of this paper on how to provide an extension to TLS to
mitigate attacks against TLS such as Man in the Middle
(MiTM) attacks.

This paper is divided into six sections. The first section
gives an introductory discussion of the paper. Section two
gives a brief background to Software-defined network (SDN)
challenges while section three is on OpenFlow and
communication security. Section four is on the challenges of
the Transport Layer Security (TLS) and existing solutions to
TLS. Finally, section five talks about proposed TLS extension
while, section six highlights further studies.

2. SDN BACKGROUND AND CHALLENGES
SDN as a networking paradigm provides a programmable

interface for network administrators to use non-legacy
applications on their network, make changes on-demand and
not depending on vendor-specific hardware or protocols.
Customised business software can be implemented following
a company’s policy and bringing more control to the network

administrator, unlike the conventional network setup where
both the control and distribution functionalities are fused
together and can communicate freely.

In SDN, the logical (control) and distribution (data) planes
are different entities, one residing in the controller (control)
and the other on the switches (data). Therefore, for both planes
to communicate, an intermediary is needed, which the ONF
proposed to be OpenFlow.

To secure communication between the controller and the
switch, Transport Layer Security (TLS) should be enabled
within the OpenFlow protocol, which is the transport link.
However, as mentioned earlier, implementing TLS to secure
OpenFlow communication has been defined as optional by the
Open Network Foundation [10]. Network administrators have
the choice of choosing what security protocol they wish to use
depending on the type of programmable networks they want to
use [11], [12], [13], [14]. This is one of the benefits of
Software-Defined Networks as different organisations can
implement their customised applications. On the other hand,
if not considered properly, this flexibility comes with the risk
of affecting the confidentiality, integrity and availability of the
transmitted data.

It is possible to argue that, vulnerabilities were discovered
because of the underlying hardware infrastructure and semi-
independent setup of the technology, a great difference
between the traditional network setup and that of the SDN.
There is also the external programmable aspect [15] of it and
the communication pattern between network nodes (switch
and the controller). Table 1 is a list of the attack vectors and
solution given.

Table 1: List of SDN security challenges and solutions

S/N ATTACK
VECTOR

POSSIBLE
ATTACK
MEDIUM

SOLUTION

1 Third party
applications Controller

Authentication/
authorisation of
applications

2 Client
Client
programmable
interface

Resource isolation,
define privilege level

3 Network
deployment

Configuration
mistakes

Avoiding previous
known security
weaknesses

4 Controller
communication

Controller and
applications Define trust boundaries

5
Client
programmatic
access

Client Resource isolation and
limits

6 Multi-controller
environment

Inappropriate
configuration

Compatibility check
and boundary
definition

7 Use of legacy
protocols

Controller and
Switch Compatibility check

8

Inter-domain
connection with
different legacy
controllers

Inter-
communication
methods

Clear definition of
security dependencies

9 OpenFlow

Deployment
errors and
obsolete protocol
use

Use of recommended
TLS v1.2

Though there is more than one point to breach Software-
Defined Networks [16], most of the SDN security analysis
focuses on OpenFlow. In one research [17], the security
analysis of OpenFlow in SDN was looked at but not the
security protocol itself. To the best of our knowledge, this is
the first work focused primarily on the security of TLS
protocol used in SDN with emphasis on enhancing the
protocol for increased security.

With a decoupled controller, SDN technology presents a
single point of failure [18]. However, there is provision for
multiple controllers [19] with the requirement of a high level
of administrative know-how. The need for highly skilled
programming should be free of errors, which, if undiscovered,
would be a point of exploiting in the network. Most
organisations that have implemented the technology are cloud
based [20]. This could be viewed as one of the reasons smaller
organisations don’t feel confident to implement or accept it
yet [21]. There is a need for a holistic strategy for secure
deployment because of new security.

There are other challenging factors that could impact so
much on the technology. Table 2 highlights some of these
challenges.

Table 2: Other SDN challenges

S/N CHALLENGES
1 Controller placement
2 Scalability
3 Performance
4 Security
5 Interoperability
6 Reliability
7 Device authentication (making sure the right device is

configured and can communicate)
8 Trust issues
9 Lack of good policy framework
10 Addressing dynamic changes with new devices

Resolving the challenges in SDN places the technology in
a higher acceptance level. The right placement [22] of
controllers increases the chances of availability of resources to
users or access to the network, especially in a large network
environment such as data centres. Using a single controller
will not only impact negatively on the performance of the
network, it also risks network failure. Also, network
congestion will be experienced. This, therefore, demands
multi-controller implementation to provide network
availability and data packet flows.

However, the challenges are linked as one affects the
other. One of the best attributes of SDN is its flexibility to
expand and adapt to the different needs within the
organisation. Device authentication and trust within the
network devices is very important [22], [23]. Communication
should be only between trusted and authenticated devices to
avoid communication between untrusted devices. Also,
efficient and reliable flow management [24] is important for
SDN to achieve its purpose. There is a need for cost
effectiveness of which interoperability and security should be

guaranteed without which, the purpose of abstraction of the
network devices is defeated.

Though SDN presents different challenges, this research
focuses on securing the communication between the controller
and the switch as it represents one of the biggest security
flaws within SDN.

3. OPENFLOW AND COMMUNICATION SECURITY
OpenFlow version 1.0 was first introduced in 2009 and has

gone through changes to improve on the functionalities such
as running FlowVisor. As of January 2015, the current
version is 1.5 [25].

One of the changes to networking as enabled by Software-
Defined Networks is the communication link between the
Controller and Switch via OpenFlow. The Open Network
Foundation standardised the protocol as the communication
interface between the switch and the controller [10] however,
other communication and network configuration protocols
exist [26] such as NETCONF.

The importance of the protocol cannot be overlooked
because of its role as the medium of network configuration
and communication; hence, it is vital to appropriately and
adequately secure the protocol. This is not only for the
acceptance of the technology, but also to provide
confidentiality, integrity and authentication of every data
packet and avoid unnecessary data exposures.

In securing data traffic or communication within
OpenFlow, there is the need to look further to the base
protocol that provides the security, which is the Transport
Layer Security (TLS), the recommended data encryption
protocol currently is version 1.2 [8]. It is also the most used
protocol not only within OpenFlow but also throughout the
Internet [27], [28]. TLS version 1.3 is a working draft at the
moment.

The Transport Layer Security is divided into two layers
(Record and Handshake). Although the record layer
encapsulates the handshake layer, they perform different
functions such as data link encryption, device authentication
(client and server). One aspect has been silently overlooked
which is the authentication [29] of network elements while
more attention is given to the cryptographic part of the
protocol. Figure 2 below shows a client-server handshake
messages.

Figure 2: Client-Server handshake process [30]

4. CHALLENGES OF TLS
The challenges of the transport layer security dates back to

the first SSL implementation in the 90s and since then
subsequent versions have also been targeted of which TLS 1.2
is not an exception.

One of the requests from a server to client during an
SSL/TLS handshake is the request for client certificates.
Unfortunately, during the handshakes, client certificate
authentications most times never occur and have remained
optional.

The Transport Layer Security protocol has faced different
attacks, placing it under constant threat [31], [32], [33], [34],
[35]. Most of these attacks are not new [36] but rather are
modified to affect newer versions of the security protocols.

Also, the improper configuration [37], [38], [39] of TLS
results in the introduction of more vulnerabilities.

In an effort to provide countermeasures, several solutions
have been rolled out for the different versions of the protocol,
however, the attacks are modified to reveal new vulnerabilities
as the cases of DROWN [40] and Transcript Collision Attacks
[41].

These solutions include:

• Disabling older versions of the protocol,
• Providing no support for vulnerable versions
• Totally uninstalling such version from the server
• Use of alternate protocol

Unfortunately, these countermeasures are targeting specific
attacks [42], [43], which at times open other vulnerabilities
and become attack points.

5. PROPOSED TLS SUGGESTION AND EXTENSION
The Transport Layer Security is a standardized protocol.

However, and for different reasons, it is still open to attacks,
especially Man-in-The-Middle (MiTM). In order to secure the
OpenFlow communications in Software-Defined Networks, a
security extension is proposed. Figure 3 shows the steps
proposed for TLS extension to mitigate man-in-the-middle
attack. Table 3 shows the handshake message.

PROPOSED TLS EXTENSION

(1) Client hello

(2) Server hello

Client Hello, Random value, Cipher Suite supported,
compression method, extensions including Session
Ticket

Server Hello, Random value,
CipherSuite, Server certificate, Client
certificate request

(3) Server Cert ificate
Server Cert ificate, Server Key Exchange (chosen
encryption parameter, secure level and signature
hash algorithm, Server hello Done

(4) Client key exchange
Client Key Exchange, Chosen encryption parameter
(Encrypted value with server public key), Changer
cipher Spec (pre-master key)

(5) Send client certificate (compulsory)

(6) Verify client
certificate

(compulsory)

Provide Server
with requested

certificate
(compulsory)

(6a) Compulsory status request with random
number + timestamp to respond + initial client
hello ID

(6b) Reply to compulsory status request with
random number + timestamp to respond +
initial client hello ID

(7) Client finished

(8) Server finished

(9) Exchange messages
(Encrypted with shared secret key

Figure 3: Proposed change to TLS

CHANGE TO EXISTING TLS STRUCTURE

Table 3: Change to the existing TLS

The proposal seeks to enhance TLS through:

1. Making steps 5 and 6 of the handshake between a
client and server, which requests a client to present
its certificate to the server for authentication
compulsory.

2. Before sending a client and server finished messages,
a re-verification of client and server statuses should
occur. The server sends a randomised status re-
verification request with a time frame for the client to
reply.

3. The verification should include the client hello
message ID.

4. On a successful reply, the client and server Finished
messages should be transmitted.

5. In a failed instance, because of time expires, the
server should end the handshake.

These improvements will lock out an impersonator
because of the timestamp to reply. The time it takes an
attacker to decipher the randomized number will definitely
exceed the time frame for client response to server request.

6. CONCLUSION AND FUTURE WORK
In conclusion, TLS is still used almost in every computer

networks, however, considering the technique of DROWN
which, is a time based Man-in-the-Middle attack, the
enhancement of the TLS, would counter every of such attacks
and also increase the TLS security in every network in theory.

To achieve this aim and validate the proposed solution, a
virtual network will be setup and the enhanced TLS tested and
a formal method technique will be used. The test will compare
time difference with normal TLS, accuracy of attack
mitigation, and the effectiveness to stop DROWN attacks.
The formal method will be used to verify that the exchange of
messages remains error prone and optimal.

This specific formal method will verify the practical
security it provides in protecting against Man-in-The-Middle
attacks in OpenFlow and in general TLS applications. To the
best of our knowledge, there is no other OpenFlow
communication security that directly focuses on the root
communication security protocol.

ACKNOWLEDGMENT

I am grateful to my supervisor Dr Erika Sanchez-
Velazquez, for the untiring support and advice. I also thank
the VSIRG group for creating the platform for me to present
my findings. Finally, the Department of Computing and
Technology for providing me the place to carry out my
research work.

REFERENCES
[1] Vissicchio, S., Vanbever, L. and Bonaventure, O.,

2014. Opportunities and research challenges of hybrid
software defined networks. ACM SIGCOMM Computer
Communication Review, 44(2), pp.70-75.

[2] Sezer, S., Scott-Hayward, S., Chouhan, P.K., Fraser,
B., Lake, D., Finnegan, J., Viljoen, N., Miller, M. and
Rao, N., 2013. Are we ready for SDN? Implementation
challenges for software-defined networks. IEEE
Communications Magazine, 51(7), pp.36-43.

[3] Hubbard, P., 2015. The case against SDN
implementation. [online] Available at:
<http://searchsdn.techtarget.com/opinion/The-case-
against-SDN-implementation> [Accessed 13 October
2016].

[4] Sdxcentral, n.d. Understanding the SDN architecture.
[online] Available at:
<https://www.sdxcentral.com/sdn/definitions/inside-
sdn-architecture/> [Accessed 13 February 2017].

[5] McNickle, M., 2014. Five SDN protocols other than
OpenFlow. [online] Available at:
<http://searchsdn.techtarget.com/news/2240227714/Fiv
e-SDN-protocols-other-than-OpenFlow> [Accessed 13
October 2016].

[6] ONF, 2014. OpenFlow Switch Specification. Version
1.5.0 (Protocol version 0x06). [pdf] Available at:
<https://www.opennetworking.org/images/stories/down
loads/sdn-resources/onf-
specifications/openflow/openflow-switch-v1.5.0.pdf>
[Accessed 3 May 2016].

[7] ONF, 2015. Openflow Switch Specification. Version
1.5.1 (Protocol version 0x06). [pdf] Available at:
<https://www.opennetworking.org/images/stories/down
loads/sdn-resources/onf-
specifications/openflow/openflow-switch-v1.5.1.pdf>
[Accessed 10 October 2016].

[8] Wasserman, M., Hartman, S., and Zhang, D., 2012.
Security analysis of the open networking foundation
(ONF) openflow switch specification. [online]
Available at: <https://tools.ietf.org/id/draft-mrw-
sdnsec-openflow-analysis-00.html> [Accessed 15 June
2016].

[9] Sdxcentral, n.d., What is an OpenFlow Controller?
[online] Available at:
<https://www.sdxcentral.com/sdn/definitions/sdn-
controllers/openflow-controller/> [Accessed 14
December 2016].

[10] ONF, 2015. OpenFlow. [online] Available at:
<https://www.opennetworking.org/sdn-
resources/openflow> [Accessed 12 June 2015].

[11] TechTarget (n.d). Vendors take alternatives to
OpenFlow SDN. [pdf] Available at:
<http://media.techtarget.com/digitalguide/images/Misc/
EA-
Marketing/Eguides/Vendors_Take_Alternatives_to_Op
enFlow_SDN.pdf> [Accessed 10 February 2017].

[12] McGillicuddy, S., 2012. Why Nicira abandoned
OpenFlow hardware control. [online] Available at:
<http://searchnetworking.techtarget.com/news/2240174
517/Why-Nicira-abandoned-OpenFlow-hardware-
control> [Accessed 10 February 2017].

[13] Little, R., G., 2012. Software-defined networking is not
OpenFlow, companies proclaim. [online] Available at:
<http://searchsdn.techtarget.com/news/2240158633/Sof
tware-defined-networking-is-not-OpenFlow-
companies-proclaim> [Accessed 10 February 2017].

[14] Burt, J., 2014. Cisco unveils OpFlex as alternative to
OpenFlow. [pdf] Available at:
<http://www.eweek.com/print/networking/cisco-
unveils-opflex-as-alternative-to-openflow.html>
[Accessed 10 February 2017].

[15] Porras, P., Shin, S., Yegneswaran, V., Fong, M.,
Tyson, M. and Gu, G., 2012, August. A security
enforcement kernel for OpenFlow networks. In
Proceedings of the first workshop on Hot topics in
software defined networks (pp. 121-126). ACM.

[16] ONF, 2015. Principles and practices for securing
software-defined networks. [pdf] Available at:
<https://www.opennetworking.org/images/stories/down
loads/sdn-resources/technical-
reports/Principles_and_Practices_for_Securing_Softwa
re-Defined_Networks_applied_to_OFv1.3.4_V1.0.pdf>
[Accessed 15 December 2016].

[17] Kloti, R., Kotronis, V. and Smith, P., 2013, October.
Openflow: A security analysis. In Network Protocols
(ICNP), 2013 21st IEEE International Conference on
(pp. 1-6). IEEE.

[18] Dabbagh, M., Hamdaoui, B., Guizani, M. and Rayes,
A., 2015. Software-defined networking security: pros
and cons. IEEE Communications Magazine, 53(6),
pp.73-79.

[19] Phemius, K., Bouet, M. and Leguay, J., 2014, May.
Disco: Distributed multi-domain sdn controllers. In
Network Operations and Management Symposium
(NOMS), 2014 IEEE (pp. 1-4). IEEE.

[20] Müller, L.F., Oliveira, R.R., Luizelli, M.C., Gaspary,
L.P. and Barcellos, M.P., 2014, December. Survivor:
an enhanced controller placement strategy for
improving SDN survivability. In Global
Communications Conference (GLOBECOM), 2014
IEEE (pp. 1909-1915). IEEE.

[21] Kobayashi, M., Seetharaman, S., Parulkar, G.,
Appenzeller, G., Little, J., Van Reijendam, J.,
Weissmann, P. and McKeown, N., 2014. Maturing of
OpenFlow and software-defined networking through
deployments. Computer Networks, 61, pp.151-175.

[22] Shamugam, V., Murray, I., Leong, J.A. and Sidhu,
A.S., 2016, March. Software Defined Networking
challenges and future direction: A case study of
implementing SDN features on OpenStack private
cloud. In IOP Conference Series: Materials Science
and Engineering (Vol. 121, No. 1, p. 012003). IOP
Publishing.

[23] Sdxcentral, n.d. SDN security challenges in SDN
environment. [online] Available at:
<https://www.sdxcentral.com/security/definitions/secur
ity-challenges-sdn-software-defined-networks/>
[Accessed 14 February 2017].

[24] Bakalov, V., 2015. Opportunities and challenges with
SDN: performance monitoring approach must evolve to
avoid visibility gaps. [online] Available at:
<http://www.networkworld.com/article/2973610/softw
are-defined-networking/opportunities-and-challenges-
with-sdn.html> [Accessed 13 February 2017].

[25] Sadasivarao, A., Syed, S., Pan, P., Liou, C., Lake, A.,
Guok, C. and Monga, I., 2013. Open transport switch -
a software defined networking architecture for
transport networks. [pdf] Available at:
<http://conferences.sigcomm.org/sigcomm/2013/papers
/hotsdn/p115.pdf> [Accessed 19 May 2015].

[26] Scott-Hayward, S., O'Callaghan, G. and Sezer, S.,
2013, November. SDN security: A survey. In Future
Networks and Services (SDN4FNS), 2013 IEEE SDN
For (pp. 1-7). IEEE.

[27] Ching-Hao, C. and Lin, Y.D., 2015. OpenFlow Version
Roadmap. [pdf] Available at:
<https://pdfs.semanticscholar.org/b3cf/5442420eeadeb
6bfc5558456223a69d5f5eb.pdf> [Accessed 25 October
2016].

[28] Rouse, M. and Cobb, M., 2016. Transport Layer
Security (TLS). [online] Available at:
<http://searchsecurity.techtarget.com/definition/Transp
ort-Layer-Security-TLS> [Accessed 19 November
2016].

[29] Blake-Wilson, S., Nystrom, M., Hopwood, D.,
Mikkelsen, J. and Wright, T., 2006. Transport layer
security (TLS) extensions (No. RFC 4366).

[30] IBM Knowledge Center, 2017. An overview of the SSL
or TLS handshake. [online] Available at:
<http://www.ibm.com/support/knowledgecenter/en/SS
FKSJ_7.1.0/com.ibm.mq.doc/sy10660_.htm>
[Accessed 7 February 2017].

[31] Thomas, S., 2000. SSL and TLS essentials. Securing
the web [e-book] New York: Wiley Computer
Publishing: Available through
<https://cdn.preterhuman.net/texts/computing/security/
SSL%20And%20TLS%20Essentials%20-
%20Securing%20The%20Web%202000.pdf>
[Accessed].

[32] Meyer, C. and Schwenk, J., 2013. Lessons Learned
From Previous SSL/TLS Attacks-A Brief Chronology
Of Attacks And Weaknesses. IACR Cryptology ePrint
Archive, 2013, p.49.

[33] Sarkar, P.G. and Fitzgerald, S., 2013. Attacks on ssl a
comprehensive study of beast, crime, time, breach,
lucky 13 & rc4 biases. Internet: https://www.
isecpartners. com/media/106031/ssl_attacks_survey.
pdf [June, 2014].

[34] Aviram, N., Schinzel, S., Somorovsky, J., Heninger,
N., Dankel, M., Steube, J., Valenta, L., Adrian, D.,
Halderman, J.A., Dukhovni, V. and Käsper, E., 2016.
DROWN: Breaking TLS using SSLv2. In Proceedings
of the 25th USENIX Security Symposium, August 2016.

[35] Bhargavan, K. and Leurent, G., 2016. Transcript
collision attacks: Breaking authentication in TLS, IKE,
and SSH. NDSS (Feb. 2016).

[36] Goodin, D., 2016. More than 11 million HTTPS
websites imperilled by new decryption attack. [online]
Available at:
<http://arstechnica.com/security/2016/03/more-than-
13-million-https-websites-imperiled-by-new-
decryption-attack/> [Accessed 25 November 2016].

[37] Bock, H., 2016. TLS – the most important crypto
protocol. [video online] Available at:
<https://www.youtube.com/watch?v=o_kOJgvypKY>
[Accessed 11 January 2017].

[38] ICO, 2014. Protecting personal data in online services:
learning from the mistakes of others. [pdf] Available
at: <https://ico.org.uk/media/for-
organisations/documents/1042221/protecting-personal-
data-in-online-services-learning-from-the-mistakes-of-
others.pdf> [Accessed 9 January 2017].

[39] Schum, C., 2014. Correctly implementing forward
secrecy. [pdf] Available at:
<https://www.sans.org/reading-
room/whitepapers/bestprac/correctly-implementing-
secrecy-35842> [Accessed 9 February 2017].

[40] Seltzer, L., 2014. Best practices and applications of
TLS/SSL. [pdf] Available at:
<http://resources.idgenterprise.com/original/AST-
0036092_Best_Practices_and_Applications_of_TLS_S
SL.pdf> [Accessed 9 February 2017].

[41] Levillain, O., Gourdin, B. and Debar, H., 2015, April.
TLS Record Protocol: Security Analysis and Defense-
in-depth Countermeasures for HTTPS. In Proceedings
of the 10th ACM Symposium on Information, Computer
and Communications Security (pp. 225-236). ACM.

[42] Han, S.W., Kwon, H., Hahn, C., Koo, D. and Hur, J.,
2016, July. A survey on MITM and its
countermeasures in the TLS handshake protocol. In
Ubiquitous and Future Networks (ICUFN), 2016
Eighth International Conference on (pp. 724-729).
IEEE.

[43] Bleichenbacher, D., 1998, August. Chosen ciphertext
attacks against protocols based on the RSA encryption
standard PKCS# 1. In Annual International Cryptology
Conference (pp. 1-12). Springer Berlin Heidelberg.

