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Abstract—The exploration of biomedical data which involves
heterogeneous sources coming from different spatial scales and
medical domains is a challenging topic in current research. In
this work, we combine efforts regarding multi-scale visualiza-
tion, multimodal interaction and knowledge formalization for
the exploration of multi-scale biomedical data. The knowledge
formalization stores and organizes the information sources, the
integrated visualization captures all relevant information for
the domain expertise of the user and the multimodal interaction
provides a natural exploration. We present a concrete example
of use of the proposed exploratory system designed for a
biologist investigating multi-scale pathologies.

Keywords-Multi-scale biomedical exploration; knowledge for-
malization; ontology; natural exploration

I. INTRODUCTION

Pathologies which simultaneously involve information re-
lating diverse spatial scales and medical domains, such as
cardiovascular, neurological or musculoskeletal diseases are
often difficult to investigate. Osteoarthritis is an example,
where cartilage degradation [1], [2] starts with changes
evidenced at molecular and cellular scale, leads to alterations
in mechanical tissue properties at the organ scale, and finally
affects the range of motion of the knee at behavioral scale
[3]. The expertise and data regarding this pathology is
distributed among a diverse range of medical practitioners
and researchers, who work on individual features involving
a concrete domain and spatial scale but typically lack access
to an overall picture.

Biomedical data has multiple properties that demonstrate
its heterogeneity. In particular, data sets are acquired from a
large variety of acquisition modalities, have numerous data
formats and span several spatial scales, e.g. micro-CT scan
of meniscus or cartilage, associated graphs and histological
images (tissue scale), magnetic resonance imaging - MRI
(organ scale) and gait motion analysis (behavioral scale).

The presentation of this plethora of information is difficult
due to the massive amount of data and the diversity of
its visualization properties [4], [5]. Multi-scale biomedical
visualization aims at the combination of such heterogeneous
biomedical data in order to provide an appropriate presen-
tation for exploration.

Moreover, finding the relevant factors for the charac-
terization of potential pathologies generally requires not
only data but also knowledge belonging to the involved
medical domains, such as radiology, biology, biomechanics
and tissue engineering. Biomedical ontologies, whose role is
to define the concepts and relationships between information
sources that are relevant for modeling a medical domain,
facilitate the organization of heterogeneous and multi-scale
information sources.

This work is an extension of the exploratory system
described previously in [6], augmenting it by incorporating
elements of the framework proposed in [7], which introduced
the combination of knowledge formalization and an inte-
grated visualization environment in order to 1) encode multi-
scale biomedical information with the help of an underlying
ontology and 2) capture all data, independently of its hetero-
geneity, into a single view. In this work we combine efforts
regarding multi-scale visualization, multimodal interaction
and knowledge formalization for the exploration of multi-
scale biomedical data. The proposed system tackles aspects
regarding the exploration of multi-scale biomedical data,
which has been addressed by several EU funded projects,
such as VPH [8], MSV [9] and MSH [10]. A main focus
is on the introduction of adaptive features to the environ-
ment in order to allow the specialist to explore the data
according to his interest, presenting the relevant data sets
and depicting the established knowledge about them. This is
technically performed by customizing the underlying queries
of the system to the knowledge database. The organization,
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presentation and interaction facilitate the task of evaluating
scientific hypotheses for the specialist.

Outline. First, in Sec. II, we introduce related work for
biomedical exploration on multi-scale visualization, multi-
modal interaction and knowledge formalization. In Sec. III
we present an example scenario of the investigation of multi-
scale pathologies, describing the traditional exploration
methodology, and presenting the benefits of introducing our
approach. In Sec. IV, we present our methodology, explain-
ing how to organize and filter heterogeneous data based on
knowledge formalization. In Sec. V we finally describe our
integrated environment that captures all information relevant
for the domain expertise of the user and provides a natural
presentation and exploration.

II. RELATED WORK

The interplay of domains of science is beneficial for
a complete analysis of biological phenomena [8]. In the
last years, researchers called for efforts to improve the
exploration of biological data, emphasizing the advantage
of integrated frameworks to gain insight into the biological
processes [11]. In this context, multi-scale biomedical vi-
sualization, knowledge formalization and natural interaction
play significant roles for the presentation, organization and
exploration of multi-scale biomedical data.

Multi-scale biomedical visualization pursues the coupling
of biomedical data coming from different spatio-temporal
scales for a simultaneous presentation [12]. Authors pro-
moted visualization techniques able to deal with a complete
range of possible biological data types [13] and the forma-
tion of alliances across biomedical domains and visualization
communities [14], [15], [16].

Recent works followed those premises. For instance, the
MSV Project addresses interactive visualization paradigms
for biomedical multi-scale data [9]. The Multimod Applica-
tion Framework provides support of biomedical time-varying
data [17]. Moreover, the traditional distinction between
InfoVis and SciVis, and therefore the utilization of their
respective techniques has begun to merge, leading to new
trends of combined visualizations [18], [19].

However, the aforementioned works reveal that further
improvements in terms of visualization are needed in order
to substantially facilitate scientists’ tasks during multi-scale
biomedical exploration. For instance, standard graphical
user interfaces (GUI) do not provide a simple method for
transition between scales [17] and traditional approaches
which conserve spatial dimensions often prevent important
small scale data to have an adequate visibility in large scale
views [9].

The multi-scale exploration of data sets becomes even
more difficult because it does not provide per se semantic
means to understand relations between data, such as the
pathological relation between two data sets. Relationships
generally refer to knowledge spread over several medical

domains. Knowledge formalization can provide the formal
tools to support the storage of knowledge and the extraction
of relationships among multi-scale biomedical data for a
subsequent presentation.

Knowledge formalization’s goal is to represent knowledge
about a certain domain in such a way that a computer
can perform the process of reasoning on objects of that
domain in a way that a human would [20]. When dealing
with data management issues, however, knowledge has to
be expressed in a way that makes it applicable and useful
in computational contexts. As defined in the semantic web
community [21], ontologies are a means to identify relevant
items in a given domain and formally define the properties
or attributes that are necessary to document them in a
machine-interpretable way. Using ontologies to structure and
organize heterogeneous data and knowledge opens up new
perspectives to medical investigation. Ontologies provide a
standard way of representing terms and concepts, thereby
supporting easy transmission and interpretation of data for
various applications [22].

Applications of ontologies in the biomedical domain range
from definitions and classifications of common medical
terms (e.g. SNOMED CT [23], Gene Ontology [24], FMA
[25], or GALEN [26]), to explicit specifications for a focused
domain such as radiology, e.g in Radlex [27]. These ontolo-
gies have been developed in order to enable interoperability
across multiple medical information systems. A detailed
survey of biomedical ontologies may be found in [28].

Most of the biomedical ontologies have available imple-
mentations in the Web Ontology Language (OWL) [29].
The OWL data model is given by the Resource Description
Framework (RDF) [30], consisting of so-called RDF triples
⟨subject, predicate, object⟩, which may be represented as
a directed graph. Usually ontologies are queried through the
standard querying mechanism SPARQL [31], which relies
on RDF graph pattern matching.

However, ontologies alone are not enough to provide
interactive exploration of multi-scale biomedical data and
medical background knowledge [7]. Smart visualization
means are needed for the interactive visualization of the
ontology, supporting users to direct themselves easily to the
focus of their interests, both at the conceptual level (ontology
browsing) at the data level (scientific visualization of patient
specific data).

Natural interaction aims at providing a human–machine
interface that is not perceived by the user to be disruptive.
Before computers became popular in the medical domain,
clinicians, radiologists and researchers were accustomed to
interact with patient specific data on physical, tangible media
(e.g. photographic plates or film for x-ray radiography). The
introduction of digital processing and storage of patient files
lead to a clash between this traditional interaction and a
digital exploration through keyboard and mouse control that
is often perceived as artificial and limiting. Progress made



during recent years has made hand gesture interaction a more
intuitive, flexible and robust alternative [32], [6]. Direct hand
manipulation and exploration avoids the discrepancy be-
tween traditional and digital data exploration, freeing users
from necessity to learn how to interact with data, supported
by easily understandable feedback. Several previous works
are focused on bringing more intuitive and more natural
biomedical exploration through multimodal interaction. For
a survey we refer to [33].

III. APPLICATION SCENARIO

We present an example scenario for the investigation
of multi-scale pathologies, focusing on osteoarthritis (OA).
After overviewing essential features of OA in Sec. III-A,
we summarize the traditional methodology of investigation
applied by biologists in Sec. III-B. Based on established
knowledge, biologists formulate and validate hypotheses
using the evidences found in the data obtained in their ex-
periments. However, the traditional exploration methodology
does not facilitate this task. This motivates our proposal
for an integrated exploratory system for automatising the
organization and exploration of experimental data, which we
outline in Sec. III-C and Sec. III-D, respectively.

A. Osteoarthritis as multi-scale pathology

Osteoarthritis is an example for a multi-scale pathology.
It firstly and mostly affects the articular cartilage, causing its
complete degeneration [1], [2]. Changes in cellular behavior
and the death of chondrocytes is a common feature of an
osteoarthritic cartilage and can be evidenced through cell
viability assays [34].

The altered cellular behavior consequently causes the
disruption of the macromolecular tissue network at the scale
of organ, which results in increased compressive stiffness
and eventually in the softening of the cartilage, evidenced
by variations in the mechanical properties. In more advanced
phases the cartilage degradation can also be observed on
MRI as thinning and progressive loss of the tissue. Finally,
at the behavioral scale, the failure of cartilage will lead to
joint stiffness and ultimately affect the gait pattern [3].

This model is graphically summarized in Fig. 1, where
each of the large oval boxes denotes a so–called degra-
dation process feature (DPF). Each DPF such as loss of
biomechanical function is evidenced by several sources of
evidence (SOE), e.g. swelling. Moreover each DPF is typi-
cally placed on a specific spatio–temporal scale (indicated
with orange font). The arrows indicate how SOEs affect each
other. Finally, some SOE are associated with corresponding
measurement techniques, e.g. nanoindentation of cartilage.

B. Traditional exploration methodology of biomedical data
In the following, we describe the current methodology of

a biologist when dealing with multi-scale data.
1) The biologist comes up with a hypothesis H of

cartilage degradation, e.g. referring to Fig. 1:
H: The cytokine induced cell death and shift in
metabolic activity will result in the disruption of

extracellular matrix (ECM) integrity and
inappropriate mechanical function of the cartilage.

This hypothesis requires investigation on several scales
e.g. the cell death has to be investigated on both
cellular (live/dead assay) and tissue scale (histology),
while the degeneration of cartilage can be seen on
tissue scale (histology) as well as on the organ scale
(scan analysis of the knee). For further background
on the underlying biological mechanisms, we refer to
[35].

2) To support or refute this hypothesis, various measure-
ments are performed, which produce a large amount of
multi-scale and multimodal data. For example, numer-
ous acquisition sessions are performed on individual
specimens, during which several data sets (e.g. PET-
CT scans) are acquired. The collected data refers to
anatomical entities (e.g. femur, tibia, patella, menisci
or articular cartilage).

3) During analysis, some data is processed for diagnosis
or simulation purposes (e.g. understanding the struc-
tural geometry of cartilage in 3D from sections in 2D
by using [36], [37] otherwise not being visible). This
processing allows relevant parameters (e.g. cartilage
thickness) to be calculated and evaluated.

4) The studies of the biologists are manually registered
in a log book including the protocols, the steps of their
optimization and also the results. To interpret the data
the biologist first performs a statistical analysis and
then evaluates whether the acquired data supports or
refutes the assumption.

After assessment of all data, the hypothesis of cartilage
degradation during osteoarthritis across biological scales
may either be supported by the data that satisfies the
causality assumptions of the hypothesis, or may be refuted.
In either case, both types of data, supporting and refuting,
are equally important.

However, the traditional process outline above suffers
from several drawbacks:

• The process of data collection and analysis is typically
executed manually involving several steps, which is
very time-consuming. Moreover, the manual usage of
log books makes it difficult to communicate the data
and the steps of the experimental investigation to the
collaborator colleagues who would like to repeat the
experiment following the same or a modified protocol.
Furthermore, as a consequence of heterogeneous data



Figure 1. Model for the degradation of articular cartilage during osteoarthritis.

sets, which are often treated separately from each other,
the results may be misinterpreted or treated without
taking all the aspects into consideration.

• The visualization systems used for such analyses are
isolated and allow only the exploration of features
involving a concrete data type, but not the complete
picture. Moreover, the interaction with the visualization
systems is typically limited to conventional approaches,
e.g. through standard mouse and keyboard interfaces,
making the data hard to navigate.

C. Organization of multi-scale data by knowledge formal-
ization

Addressing the shortcomings of the traditional approach,
our work aims to automatize the organization of relevant
data sets and provide a filtering service to select the data that
satisfies or refutes the hypothesis. Since the aforementioned
data is heterogeneous there is a need for an integrated
system, which presents relevant data in a unified view. Our
approach decomposes naturally into several steps:

1) Medical background knowledge formalization en-
coded in an ontology, implemented in OWL, con-
sisting of i) conceptual hierarchies: human anatomy,
patient information, acquisition protocols, data repre-
sentations, degradation process features and sources
of evidence, and ii) relations between these concepts:
patients undergoing acquisitions sessions, causal rela-
tionships between degradation process features.

2) Management of knowledge base (KB), in order to sys-
tematically store: i) available data sets (MRI, histology
etc.), independently of the spatial scale or visualization
technique to which they belong, ii) information on the
acquisition protocol which was used to obtain data
(e.g., protocols for obtaining the cartilage slices for
histology analysis), and iii) relation of data sets to
possible sources of evidence which they may hint to.
This information can be uploaded manually, which
was the case for the current work, however more in-
teractive means of input collection and KB population
supporting multi-scale and multimodal data should be
envisaged as in [38].

3) Once the data sets are structurally stored in the KB,
formalised relations between the concepts may be used
to infer connections between data items, and thereby
to generate relations, which were not explicitly stored
in the KB before.

D. Presentation and exploration of data

The visualization of the multi-scale biomedical data stored
in the knowledge base is performed by means of a three-
dimensional multi-layered environment. By making use of
a 3D stereographic visualization, data sets and derived
information are spatially distributed over the visualization
scene, allowing a direct exploration of all related data of
interest for the user. Data sets are rendered in independent
entities, called nodes, allowing a consistent representation
for heterogeneous data. Our 3D multi-layered visualization
environment presents the data sets as a network of spa-



Figure 2. Example for an integrated visualization of patient-specific data
set and the cartilage degradation process.

tially distributed and interconnected nodes. The nodes are
equipped with several visual properties (e.g. spatial depth,
geometric shape) in order to provide semantic means to
identify relevant items during the exploration.

Data sets are rendered by employing suitable visualization
techniques and settings, as identified in the knowledge base.
They are positioned in distinguished layers, according to
their spatial scale and the interest of the biologist. An
example is shown Fig. 2, where the nodes belonging to
the cellular scale appear to be nearer. These data sets
are interconnected by arrows, highlighting the well-known
relationships about them.

Our visualization scene provides semantic means to iden-
tify all related and relevant items during the exploration. This
allows the simultaneous access, proper visualization and

Figure 3. Interaction with data (involving a stereoscopic display and the
Leap Motion hand gesture device). Photo taken during the MultiScaleHu-
man [10] consortium meeting.

natural exploration of heterogeneous data across domains
of medical knowledge, facilitating the task of the specialist
to interpret and analyze the hypothesis.

Moreover, the user interaction (Fig. 3) is adapted to
our multilayered visualization environment. Therefore, it is
designed to enhance natural user instincts through hand
gestures and haptic feedback. The navigation is coherent in
space and time, thanks to three dimensional data organiza-
tion and introduction of interaction based on simulation of
physical forces. The user can manipulate data nodes through
simple and intuitive gestures like grasping and dragging.
Force directed organization of data graph is managed thanks
to an accurate haptic [39] interface, that passes and receives
forces.

IV. KNOWLEDGE BASE

In our application, the ontology (developed within the
EU FP7 MultiScaleHuman Project [10]) for multi-scale
biomedical data management and visualization, referred to
as Multi-Scale Ontology in the following, acts as a driver for
data management. The queries it supports reflect the type and
breadth of reasoning that medical practitioners may exploit.
We augment the Multi-Scale Ontology for our use-case in
such a way that:

• We model causality between DPF and SOE as OWL
axioms, which allows us to interconnect concepts. In
order to model hierarchical propagation of degradation
process features we use the existentially quantified
restriction axiom [40]. For instance, the relation be-
tween disruption of macromolecule content and tissue
softening indicated in Fig. 1 is formalized as:

Disruption of macromolecule content

⊑ ∃causesTissue softening

• Data sets are also classified with respect to their
spatio–temporal dimensions, accordingly in micro-scale
(encompassing data whose dimension ranges in mi-
crometer size and below, e.g. nano-scale), medium-
scale (PET, MRI, CT) and macro-scale. An additional
abstract scale encompasses all the non-spatio-temporal
knowledge that cannot be assigned to one of the pre-
vious scales, e.g. the anatomical entity which refers to
a data set or the relations between DPF. This classi-
fication is encoded with the attribute spatio-temporal
scale, which is going to be relevant for visualization
purposes.

Fig. 4 represents the high-level representation of our aug-
mented ontology.

Population of the KB. The knowledge base instantiates the
corresponding classes of the Multi-Scale Ontology in order
to record systematically the knowledge and data about a
given patient, the acquisition sessions she or he underwent,
the acquisitions protocols indicating which acquisition ses-
sions were performed, the data sets which were acquired



Anatomical entity

Patient

Acquisition session

undergoes

Acquisition protocol

performed with
Acquired data acquires

Degradation process feature

Source of evidence

evidenced by

Spatiotemporal scale

Data
represents

may evidence

has spatiotemporal scale

Data representation

has representation

is a

Processed data

belongs to

is a

Calculated parameter

calculated from

Figure 4. Ontology: big picture.

and the anatomical entities they represent. The resulting
instantiation is schematically represented in Fig. 5.
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Figure 5. Instantiated KB with patient-specific data.

Querying the KB. Semantic queries, formulated according
to the expressivity offered by the ontology, are essential but
alone not sufficient to guarantee an intuitive exploration of
the data and information stored in the knowledge base, espe-
cially if the user is not familiar with querying languages such
as SPARQL or the internal data model of the KB. To present
to the user the result of his query as well as extracted context
information, we first transform the populated OWL ontology
into a directed graph and then extract context information
by using graph traversal techniques starting from the seed
node provided by the user. The latter represents the focus
entity of the user’s query, e.g. all data related to Femur.

OWL to graph transformation. The ontology is converted
into a directed graph by the following steps: i) The OWL
ontology is loaded in one of the usual formats (RDF/XML,

Disruption of macromolecular content Tissue softening
R-succesor

OWL class

rdf:type

OWL restriction
rdfs:subClassOf

rdf:type

causes
OWL Object property

rdf:type

owl:someValuesFrom

owl:onProperty

Figure 6. OWL existential restriction (R-successor).

Turtle) [29], ii) The RDF graph model is used in order to
identify nodes (i.e. classes, individuals) and edges of the
final graph representation (i.e. rdf : type relations between
classes and individuals, owl : subClassOf relations be-
tween classes, owl : objectProperties between instances,
and rdfs : domain, rdfsw : range between classes).

During the transformation process, special treatment is
done to more complex OWL axioms such as existential
restriction axioms (e.g. Fig. 6), which we use to model
propagation of DPFs or parthood relationships between
anatomical entities (e.g. Femur− partof− Lowerlimb).
We analyze the RDF data model of these OWL axioms in
order to connect concepts in our final graph transformation.
We also interconnect data instances if they refer to sources
of evidence which inter-cause each other. For example Fig. 7
shows how data1 is related to data2 due to an existent
path in the causal chain between soe1 to soe3 through soe2
(transitive relation).

soe 1

soe 2

causes

soe 3
causes

data 1

may evidence data 2related

may evidence

Figure 7. Interconnection of datasets based on inference of facts in the
KB.

Inference. Finally, the graph representation of the KB
contains nodes representing concepts and instances as well
as inferred relations between them. This allows us to identify
semantic links between data nodes. For instance Fig 5 shows
that Video sequence 1 and Segmented femur are directly
associated to the concept Femur through the represents
relation, and would be extracted from the KB if the query
contains the focus entity Femur. The MRI 1 data instance
is not directly connected to Femur, however its relation to
Femur is inferred due to the fact that Femur is part of Lower



limb. Ultimately, all three data instances, Video sequence 1,
Segmented femur and MRI 1, are going to be included in
the context information of the focus entity Femur.

Answers to queries are then represented as subgraphs
extracted from the graph representation of the KB, which
are encoded as JSON documents [41] and served over the
secured HTTPS protocol to the exploratory system (more
details in Sec. V).

Figure 8. JSON representation of answer to the query.

V. ARCHITECTURE OF THE EXPLORATORY SYSTEM

The exploratory system is specifically designed to be used
by several users working remotely with large amounts of
biomedical data. Its underlying architecture addresses porta-
bility and scalability requirements as well as network data
transfer (streaming and caching) [6]. The visualization scene
is realized by means of a thin-client based on the multi-
platform Unity3D software framework [42], which accesses
network resources, such as the the rendering system, the data
repository and the knowledge base. The architecture of the
exploratory system is roughly sketched in Fig. 9.

Since the rendering system employs a distributed scheme,
which composites the visualization scene from several data
sets rendered on separate rendering worker entities, it is able
to deal effectively with massive data sets. The visualization
system connects to a rendering worker entity, which acts as
an active proxy between the client and the data repository.
An appropriate rendering worker according to the type of
data set finally renders it and sends it for the composition
of the visualization scene.

Requests to the knowledge base yield all relevant multi-
scale biomedical information of a biomedical case to present
to the user, according to the specialist, and patient properties
encoded in the ontology. Therefore, information regarding
the multi-scale biomedical data (e.g. location of resources)
is collected from the knowledge base and processed in order
to create the visualization scene.

Our exploratory system connects with the knowledge base
back-end through encrypted HTTPS protocol to ensure the
security of the connection. The server accepts two path
arguments for each request: modality and focus entity. Each
request is identified by a session identifier. Sessions store

information on the configured user profile and recently re-
quested entities. As a result of each query a JSON document
is returned consisting of the list of nodes and the list of
relations between the nodes, as indicated in Fig. 8.

Figure 9. Architecture of the exploratory system.

In the following paragraphs we describe how the informa-
tion obtained from the ontology is processed for the creation
of the visualization scene, which is schematically depicted
in Fig. 10.

Appearance of multi-scale data sets. The collected in-
formation is visually displayed either as an independent
visual entity, called node, or by means of visual cues,
according to the ontology attribute spatio-temporal scale.
Data sets from micro-scale, medium-scale, macro-scale have
a representation as nodes. These nodes encapsulate 2D, 3D
or InfoVis data for a consistent simultaneous exploration of
heterogeneous data. In the JSON document, each node has
an associated URL leading to a related data set, which will
be retrieved and cached from the data repository in order for
the visualization tasks to run smoothly. The caching process
will happen as soon as the exploratory system requests
a rendering worker to render a data set. Each node has
a 3D cube as a node representation figure, following the
results obtained in the user study performed in [6] regarding
visualization preferences. Moreover, information from the
abstract scale can have a node representation (e.g. the
anatomical entity which refers to a data set) or could be
used for the creation of visual cues in nodes and between
them in order to represent semantic relations across data sets
(SOEs and DPFs).

Positioning of data sets. Data nodes are positioned on
the multi-layered environment. The layers, distinguished by

Figure 10. Process for the visualization composition.



their z-order to indicate grade of importance, are denom-
inated focus, context and background. Each layer encom-
passes the nodes with the same spatial scale. The allocation
of a node to a layer depends on the spatio-temporal scale
of the data set and the interest of the user in that scale
(attributes spatio-temporal scale and specialist). Focus con-
stitutes the main scale of interest of the user. Data sets with
InfoVis and SciVis suitabilities are linked and visualized on
the foreground. Context is placed behind, aiming to provide
context to the data on the focus layer with data coming from
a contiguous spatial scale. Background is the last layer, and
completes the general view across all the spatial ranges.
Its nodes are presented by using the call-out technique,
alleviating the differences in the order of magnitude of data.

Selection of the rendering technique. Data nodes are
rendered by a suitable rendering entity according to their
data type (3D data from VTK, STL, DICOM format files,
or InfoVis, e.g. area or bar charts [43]. The visualization
system identifies the visualization technique and settings
to be used from the description of the data as inferred
from the ontology. Concretely, the selection of visualization
properties is defined by the mapping:

(AP,PD,CP,DR) &→ (V T, S),

where the entries in the tuple on the left denote the ac-
quisition protocol, the processed data, the calculated pa-
rameter values and the data representation, respectively.
Similarly, the tuple on the right hand side denotes the
visualization technique and settings. For instance, in Fig. 11,
the femoral cartilage thickness is visualized as a manifold
surface mesh obtained after processing a MRI scan. Here
DR=ManifoldSurfaceMesh and PD=CartilageThickness
leads to V T=VTKViewer and S=Colormap. Therefore, a
rendering worker based on VTK is employed with visual
settings for using a color map to indicate thickness in the
cartilage.

Figure 11. Extended view of the resulting visualization.

Determination of appearance of abstract information.
Abstract information can be used for representing nodes or
for the creation of perceptual cues in the relations between
such nodes in order to enrich the understanding of the
complete collection of data. For example, nodes with a
neutral representation and a label are used to represent
anatomical entities. Examples for visual cues include:

• Colored arrows between nodes indicate relations be-
tween the nodes, e.g. SOE for the cartilage degradation
process.

• Tooltips provide information on the acquisition proto-
col, such as the number of days the specimen prepara-
tion takes for a histological analysis.

Adaptability is a key factor for a seamless user experience,
where the system not only combines data but also assists
in filtering out and emphasizing core medical concepts.
Different profiles of experts characterize themselves with a
focus on different data sets. Adaptability allows the system
to score concepts and data sets based on the frequency of
user interactions. Frequency scores are stored locally along
with a user profile. Every time a concept or data node is
loaded, associated scores are recalculated. Similarly, every
time the user interacts with a node i, the corresponding time
of interaction ti is recorded and an associated score Si is
updated according to the rule:

Snew
i = a · ti

T
+ b · ki

N
+ c · Sold

i .

Here ki denotes the number of nodes that share similar
properties with node i, N is the total number of nodes and
T represents the total duration of the session. Finally a, b, c
are fixed weights. For comparison purposes, all scores are
scaled to fit in the range [0, 1]. The next time the node i
is loaded, its score is compared with a threshold coefficient
d. If Si < d, the node will not appear. It is also possible
to bypass completely this feature and access all elements
irrespective to their score.

Regarding interaction with the exploratory system, previ-
ous work [6] was focused on two modes: i) gesture based
management of nodes and ii) fine grained haptic interaction
with node details. The resulting user experience was based
on physical interaction between user virtual fingers and
node objects. In our current approach, the line of physical
immersion is pushed further. Nodes do not only interact with
user’s finger but their organization is driven by a simulation
of physical bonds between them. Therefore, the user can
reorganize the view through manual manipulation of single
nodes, leading to automatic reorganization of the complete
node set. Nodes can be pinned to fixed locations, which adds
new boundary conditions to our force directed system [44].
This method used for the organization of the workspace also
associates an inertia value to each node. Subsequently this
allows to pass information about importance (or interconnec-
tivity) of a single node through a haptic interaction device.
As important nodes will have higher interconnectivity and
higher intertia, they will be much more difficult to move
with a haptic instrument.

VI. CONCLUSION AND FUTURE WORK

The proposed approach aims to assist specialists in the
medical exploration of multi-scale biomedical data. The



knowledge formalization organizes and filters the hetero-
geneous data in the system. Its inference (exemplified in
Sec. IV) has been proved to identify new semantic links
among biomedical data which were not explicitly stored.
The integrated environment (Sec. V) captures all relevant
information for the domain expertise of the user and provides
a natural exploration.

The exploratory system allows the use of data proper-
ties stored in the knowledge base in order to automatize
the process of selection of suitable visual properties for
the exploration of each subset of multi-scale biomedical
information. Furthermore, the system remains scalable for
the visualization of other data-types in biomedical data. For
extending the system in this regard, it suffices to insert new
rendering worker types and to include information about its
use in the knowledge base.

The designed system is intended to be used by biomedical
researchers, and experts of the medical field for research or
analytic/diagnostic purposes. The scenario discussed from
the point of view of a molecular biologist can be considered
to be applicable for other specialists that are working on the
exploration of multi-scale biomedical data. Supplementing
previous user studies on visualization and interaction [6],
the discussion of the use-case described in this paper indi-
cates the utility of our approach for biomedical specialists
confronted with massive amounts of multi-scale data on a
daily basis.

Integrated visualization can open up new possibilities
for collaboration between medical practitioners, who un-
der normal circumstances work on their specific data sets
without communicating too much with other specialists.
By complementing each others’ analysis with exchange of
expertise and opinion, together, medical practitioners are
better equipped to study and analyze multi-scale pathologies.

The realization of the exploratory system of this mag-
nitude certainly opens up paths for further investigation
regarding system adaptiveness. We would like to investigate
new ideas like integration of scoring techniques on the
knowledge base level or influence positioning of nodes based
on user interests. This would allow different users to share
experiences with each other and to collaborate. This can
also lead to a whole set of collaborative scenarios, e.g.
involving the optimization of protocols or the exploration
of past studies, that should be investigated.
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