
ar
X

iv
:1

10
1.

52
57

v2
 [

cs
.IT

]
8

F
eb

 2
01

1
1

Cooperative Regenerating Codes for
Distributed Storage Systems

Kenneth W. Shum,Member, IEEE

Abstract— When there are multiple node failures in a dis-
tributed storage system, regenerating the failed storage nodes
individually in a one-by-one manner is suboptimal as far as
repair-bandwidth minimization is concerned. If data exchange
among the newcomers is enabled, we can get a better tradeoff
between repair bandwidth and the storage per node. An explicit
and optimal construction of cooperative regenerating codeis
illustrated.

Index Terms—Distributed Storage, Repair Bandwidth, Regen-
erating Codes, Erasure Codes, Network Coding.

I. I NTRODUCTION

Distributed storage system provides a scalable solution to
the ever-increasing demand of reliable storage. The storage
nodes are distributed in different geographical locations, and
in case some disastrous event happened to one of them, the
source data would remain intact. There are two common
strategies for preventing data loss against storage node failures.
The first one, employed by the current Google file system [1],
is data replication. Although replication-based scheme is easy
to manage, it has the drawback of low storage efficiency.
The second one is based onerasure coding, and is used in
Oceanstore [2] and Total Recall [3] for instance. With erasure
coding, The storage network can be regarded as an erasure
code which can correct anyn− k erasures; a file is encoded
into n pieces of data, and from anyk of them the original file
can be reconstructed.

When a storage node fails, an obvious way to repair it is
to rebuild the whole file from some otherk nodes, and then
re-encode the data. The disadvantage of this method is that,
when the file size is very large, excessive traffic is generated in
the network. The bandwidth required in the repairing process
seems to be wasted, because only a fraction of the downloaded
data is stored in the new node after regeneration. By viewing
the repair problem as a single-source multi-cast problem in
network coding theory, Dimakiset al. discovered a tradeoff
between the amount of storage in each node and the bandwidth
required in the repair process [4]. Erasure codes for distributed
storage system, aiming at minimizing the repair-bandwidth,
is calledregenerating code. The construction of regenerating
code is under active research. We refer the readers to [5] and
the references therein for the application of network coding in
distributed storage systems.

Most of the results in the literature on regenerating codes
are for repairing a single storage node. However, there are

K. Shum is with the Institute of Network Coding, the Chinese University
of Hong Kong, Shatin, Hong Kong. Email: wkshum at inc.cuhk.edu.hk.

This work was partially supported by a grant from the University Grants
Committee of the Hong Kong Special Administrative Region, China (Project
No. AoE/E-02/08).

several scenarios wheremultiple failures must be considered.
Firstly, in a system with high churn rate, the nodes may join
and leave the system very frequently. When two or more nodes
join the distributed storage system at the same time, the new
nodes can exploit the opportunity of exchange data among
themselves in the repair process. Secondly, node repair may
be done in batch. In systems like Total Recall, a recovery
is triggered when the fraction of available nodes is below a
certain threshold, and the failed nodes are then repaired asa
group. The new nodes which are going to be regenerated are
callednewcomers. There are two ways in regenerating a group
of newcomer: we may either repair them one by one, or repair
them jointly with cooperation among the newcomers. It is
shown in [6], [7] that further reduction of repair-bandwidth is
possible with cooperative repair. Let the number of newcomers
ber. In [6] each newcomer is required to connect to alln− r
surviving storage nodes during the repair process, and in [7],
this requirement is relaxed such that different newcomers may
have different number of connections. However, in both [6]
and [7], only the storage systems which minimize storage per
node are considered.

In this paper, an example of cooperatively regenerating
multiple newcomers is described in Section II. In Section III,
we define the information flow graph for cooperative repair,
and derive a lower bound on repair-bandwidth. This lower
bound is applicable tofunctional repair, where the content of
a newcomer may not be the same as the failed node to be
replaced, but the property that anyk nodes can reconstruct
the original file is retained. The lower bound is function
of the storage per node, and hence is an extension of the
results in [6]. A more practical and easier-to-manage mode
of operation is calledexact repair, in which the regenerated
node contains exactly the same encoded data as in the failed
node. In Section IV, we give a family of explicit code
constructions which meet the lower bound, and hence show
that the construction is optimal.

II. A N EXAMPLE OF COOPERATIVEREPAIR

Consider the following example taken from [8]. Four data
packetsA1, A2, B1 and B2, are distributed to four storage
nodes. Each of them stores two packets. The first one stores
A1 andA2, the second storesB1 andB2. The third and fourth
nodes are parity nodes. The third node contains two packets
A1 +B1 and2A2 +B2, and the last node contains2A1 +B1

andA2 + B2. Here, a packet is interpreted as an element in
a finite field, and addition and multiplication are finite field
operations. We can takeGF (5) as the underlying finite field
in this example. Any data collector, after downloading the

http://arxiv.org/abs/1101.5257v2

2

Fig. 1. Repairing a single node failure with minimum repair bandwidth

packets from any two storage nodes, can reconstruct the four
original packets by solving a system of linear equations. For
example, if we download from the third and fourth nodes, we
can recoverA1 andB1 from packetsA1 +B1 and2A1+B1,
and recoverA2 andB2 from packets2A2+B2 andA2 +B2.

Suppose that the first node fails. To repair the first node, we
can download four packets from any other two nodes, from
which we can recover the two required packetsA1 andA2.
For example, if we download the packets from the second and
third nodes, we haveB1, B2, A1 + B1 and 2A2 + B2. We
can then recoverA1 by subtractingB1 from A1 + B1, and
A2 by computing((2A2+B2)−B2)/2. It is illustrated in [8]
that we can reduce the repair-bandwidth from four packets
to three packets, by making three connections to the three
remaining nodes, and downloading one packet from each of
them (Fig. 1). Each of the three remaining nodes simply adds
the two packets and sends the sum to the newcomer, who can
then subtract offB1+B2 and obtainA1+2A2 and2A1+A2,
from whichA1 andA2 can be solved.

When two storage nodes fail simultaneously, the compu-
tational trick mentioned in the previous paragraph no longer
works. Suppose that the second and the fourth storage nodes
fail at the same time. To repair both of them separately, eachof
the newcomers can download four packets from the remaining
storage nodes, reconstruct packetsA1, A2, B1 and B2, and
re-encode the desired packets (Fig. 2). This is the best we
can do with separate repair. Using the result in [4], it can
be shown that any one-by-one repair process with repair-
bandwidth strictly less than four packets per newcomer is
infeasible.

If the two newcomers can exchange data during the regener-
ation process, the total repair-bandwidth can indeed be reduced
from eight packets to six packets (Fig. 3). The two newcomers
first make an agreement that one of them downloads the
packets with subscript 1, and the other one downloads the
packets with subscript 2. (They can compare, for instance,
their serial numbers in order to determine who downloads
the packets with smaller subscript.) The first newcomer gets
A1 andA1 + B1 from node 1 and 3 respectively, while the
second newcomer getsA2 and 2A2 + B2 from node 1 and
3 respectively. The first newcomer then computesB1 and
2A1 + B1 by taking the difference and the sum of the two
inputs. The packetB1 is stored in the first newcomer and

Fig. 2. Individual regeneration of multiple failures

Fig. 3. Cooperative regeneration of multiple failures

2A1+B1 is sent to the second newcomer. Similarly, the second
newcomer computesB2 and A2 + B2, storesA2 + B2 in
memory and sendsB2 to the first newcomer. Only six packet
transmissions are required in this joint regeneration process.

III. I NFORMATION FLOW GRAPH AND M IN-CUT BOUND

We formally define the cooperative repair problem as fol-
lows. There are two kinds of entities in a distributed storage
system,storage nodesand data collectors, and two kinds
of operations,file reconstructionand node repair. A file of
sizeB units is encoded and distributed among then storage
nodes, each of them storesα units of data. The file can be
reconstructed by a data collector connecting to anyk storage
nodes. Upon the failure ofr nodes, a two-phase repair process
is triggered. In the first phase, each of ther newcomers
connects tod remaining storage nodes, and downloadβ1

units of data from each of them. After processing the data
they have downloaded, ther newcomers exchange some data
among themselves, by sendingβ2 units of data to each of
the otherr − 1 newcomers. Each newcomer downloadsdβ1

units of data in the first phase and(r − 1)β2 units of data
in the second phase. The repair-bandwidth per node is thus
γ = dβ1 + (r − 1)β2.

In the remaining of this paper, we will assume thatd ≥ k.
We construct aninformation flow graphas follows. There

are three types of vertices in the information flow graph: one
for the source data, one for the storage nodes and one for data
collectors. The vertices are divided into stages. We proceed

3

Fig. 4. Information flow graph

from one stage to the next stage after a repair process is
completed. (Fig. 4).

There is one single vertex, called thesource vertex, in stage
−1, representing the original data file. Then storage nodes
are represented byn vertices in stage 0, calledOuti, for i =
1, 2, . . . , n. The source vertex is connected to each vertex in
stage 0 by a directed edge with capacityα. Fors = 1, 2, 3, . . .,
let Rs be the set ofr storage nodes which fail in stages− 1,
and are regenerated in stages. The setRs is a subset of
{1, 2, . . . , n} with cardinality r. For each storage nodep in
Rs, we construct three vertices in stages: Inp, Midp andOutp.
Vertex Inp hasd incoming edges with capacityβ1, emanated
from d “out” nodes in previous stages. We join vertexInp and
Midp with a directed edge of infinite capacity. Forp, q ∈ Rs,
p 6= q, there is a directed edge fromInp to Midq with capacity
β2. Newcomerp storesα units of data, and this is represented
by a directed edge fromMidp to Outp with capacityα.

For each data collector, we add a vertex, calledDC, in the
information flow graph. It is connected tok “out” nodes with
distinct indices, but not necessarily from the same stage, by k
infinite-capacity edges.

We call an information flow graph constructed in this way
G(n, k, d, r;α, β1, β2), or simply G if the parameters are
clear from the context. The number of stages is potentially
unlimited.

A cut in an information flow graph is a partition of the set
of vertices,(U , Ū), such that the source vertex is inU and a
designated data collector is in̄U . We associate with each cut a
value, called thecapacity, defined as the sum of the capacities
of the directed edges from vertices inU to vertices inŪ . An
example is shown in Fig. 5. The max-flow-min-cut bound in
network coding for single-source multi-cast network states that
if the minimum cut capacities between data collectors and the
source is at no larger thanC, then the amount of data we can
send to each data collector is no more thanC [9].

Theorem 1. Suppose thatd ≥ k. The minimum cut of an

Fig. 5. A sample cut in the information flow graph.

Fig. 6. Two different kinds of cuts within a stage.

information flow graphG is less than or equal to

k∑

i=1

ℓi min
{

α,
(

d−

i−1∑

j=1

ℓj

)

β1 + (r − ℓi)β2

}

(1)

where(ℓ1, ℓ2, . . . , ℓk) is anyk-tuple of integers satisfyingℓ1+
ℓ2 + . . .+ ℓk = k and 0 ≤ ℓi ≤ r for all i.

Proof: By relabeling the nodes if necessary, suppose that
a data collectorDC connects to storage node 1 to nodek. Let
s1 < s2 < . . . < sm be the stages in which nodes 1 tok are
most recently repaired, wherem is an integer. We note that
{1, 2, . . . , k} is contained in the union ofRs1 , Rs2 , . . . ,Rsm .
For i = 1, 2, . . . ,m, let

Si :=
(
{1, 2, . . . , k} ∩ Rsi

)
\ (Rsi+1

∪ · · · ∪ Rsm).

The physical meaning ofSi is that the storage nodes with
indices inSi are repaired in stagesi and remain intact until
the data collectorDC shows up. The index setsSi’s are disjoint
and their union is equal to{1, 2, . . . , k}. We let ℓi to be the
cardinality ofSi. Obviously we haveℓ1 + ℓ2 + . . .+ ℓm = k,
ℓi ≤ r for all i, andm ≤ k.

For i = 1, 2, . . . ,m, the ℓi “out” nodes in stagesi which
are connected directly toDC must be inŪ , otherwise, there
would be an infinite-capacity edge fromU to Ū . In stagesi,
we consider two different ways to construct a cut. We either
put all “in” and “mid” nodes associated to the storage nodes
in Si in Ū , or put all of them inU . In Fig. 6, we graphically
illustrate the two different cuttings. The shaded verticesare in
Ū and the edges fromU to Ū are shown.

Each “in” node in the first cut may connect to as small as
d −

∑i−1
j=1 ℓj “out” nodes inU in previous stages. The sum

of edge capacities fromU to Ū can be as small asℓi(d −
∑i−1

j=1 ℓj)β1 + (r − ℓi)ℓiβ2. In the second kind of cut, the
sum of edge capacities fromU to Ū is ℓiα. After taking the

4

20 30 40 50 60 70 80 90
10

20

30

40

50

60

Repair bandwidth per failed node, γ*(α)

S
to

ra
ge

 p
er

 n
od

e,
 α

Non−Cooperative
Cooperative

Fig. 7. Lower bound on repair-bandwidth (B = 84, d = 4, k = 4, r = 3)

minimum of these two cut values, we get

ℓimin
{

α,
(

d−

i−1∑

j=1

ℓj

)

β1 + (r − ℓi)β2

}

. (2)

We obtain the expression in (1) by summing (2) overi =
1, 2, . . . ,m.

A cut described in the proof of Theorem 1 is called a cut
of type (ℓ1, ℓ2, . . . , ℓk).

We illustrate Theorem 1 by the example in Section II. The
parameters aren = 4, d = k = r = 2, B = 4, and
α = B/k = 2. The are two pairs of integers(ℓ1, ℓ2), namely
(2, 0) and (1, 1), which satisfy the condition in Theorem 1.
The capacity of minimum cut, by Theorem 1, is no more than
2min{α, 2β1} andmin{α, 2β1+β2}+min{α, β1+β2}. The
first cut imposes the upper boundB ≤ 2min{α, 2β1) on the
file sizeB, which implies thatβ1 ≥ 1. The second cut imposes
another constraint onB,

4 ≤ min{2, 2β1 + β2}+min{2, β1 + β2},

from which we can deduce thatβ1 + β2 ≥ 2. After summing
β1 ≥ 1 andβ1 + β2 ≥ 2, we obtainγ = 2β1 + β2 ≥ 3. The
minimum possible repair-bandwidthγ = 3 matched by the
regenerating code presented in Section II. The regenerating
code in Section II is therefore optimal.

We can formulate the repair-bandwidth minimization prob-
lem as follows. Given the storage per node,α, we want
to minimize the objective functionγ = dβ1 + (r − 1)β2

over all non-negativeβ1 and β2 subject to the constraints
that the file sizeB is no more than the values in (1),
for all legitimate (ℓ1, ℓ2, . . . , ℓk). It can be shown that the
minimization problem can be reduced to a linear program, and
hence can be effectively solved. We let the resulting optimal
value be denoted byγ∗(α). This is a lower bound on repair-
bandwidth for a given value ofα.

In Fig. 7, we illustrate the lower boundγ∗(α) for B = 84,
d = 4, k = 4 and r = 3. For comparison, we plot the
storage-repair-bandwidth tradeoff for non-cooperative one-by-
one repair in Fig. 7. From [5, Theorem 1], the smallest

repair-bandwidth of a non-cooperative minimum-storage re-
generating code is given by the formulaBd/(k(d − k + 1)),
which is equal to 84 in this example. It can be shown that
γ∗(B/k) = B(d+ r− 1)/(k(d+ r− k)). In the next section,
we give a construction of cooperative regenerating code which
meets the lower boundγ∗(B/k) whend = k.

IV. A N EXPLICIT CONSTRUCTION FOREXACT REPAIR

Exact repair has the advantage that the encoding vectors
of the newcomers remain the same. This helps in reducing
maintenance overhead. For non-cooperative and one-by-one
repair, there are several exact constructions of regenerating
code available in the literature, for example the constructions
in [10] and [11]. In this section, we construct a family of
regenerating codes for cooperative repair with parametersd =
k ≤ n− r, which contains the example given in Section II as
special case.

The recipe of this construction needs an maximal-distance
separable (MDS) code of lengthn and dimensionk. Givenn,
let q be the smallest prime power larger than or equal ton.
We use the Reed-Solomon (RS) code overGF (q) generated
by the following generator matrix

G :=

1 1 1 1 . . . 1 1

a1 a2 a3 a4 . . . an−1 an

...
...

...
...

. . .
...

...
a
k−1

1
a
k−1

2
a
k−1

3
a
k−1

4
. . . a

k−1

n−1
a
k−1

n

wherea1, a2, . . . , an aren distinct elements inGF (q). Let gi

be theith column ofG. Givenk message symbols inGF (q),
we put them in a row vectormT = [m1 m2 . . . mk]. (The
superscript “T ” is the transpose operator.) We encodemT into
the codewordmTG. The MDS property of RS code follows
from the fact that everyk×k submatrix ofG is a non-singular
Vandermonde matrix.

We apply the technique called “striping” from coding for
disk arrays. The whole file of sizeB is divided into many
stripes, or chunks, and each chunk of data is encoded and
treated in the same way. In the following, we will only describe
the operations on each stripe of data.

We divide a stripe of data intokr packets, each of them
is considered as an element inGF (q). The kr packets are
laid out in anr × k matrix M, called themessage matrix.
To set up the distributed storage system, we first encode the
message matrixM intoMG, which is anr×n matrix. Forj =
1, 2, . . . , n, nodej stores ther packets in thejth column of
MG. Let ther rows ofM be denoted bymT

1 , mT
2 , . . . ,m

T
r .

The packets stored in nodej aremT
i gj , for i = 1, 2, . . . , r.

A data collector downloads fromk storage nodes, say nodes
c1, c2, . . . , ck ∈ {1, 2, . . . , n}. The kr received packets are
arranged in anr × k matrix. The(i, j)-entry of this matrix is
mT

i gcj . This matrix can be factorized asM·[gc1 gc2 · · · gck].
We can reconstruct the original file by inverting the Vander-
monde matrix[gc1 gc2 · · · gck].

Suppose that nodesf1, f2, . . . , fr fail. The r newcomers
first coordinate among themselves, and agree upon an order
of the newcomers, say by their serial numbers. For the ease of
notation, suppose that newcomerfj is the jth newcomer, for

5

j = 1, 2, . . . , r. The jth newcomerfj connects to any other
k remaining storage nodes, sayπj(1), πj(2), . . . , πj(k), and
downloads the packets encoded frommT

j , namely,mT
j gπj(1),

mT
j gπj(2), . . . ,m

T
j gπj(k). (Recall that we assumek = d

in this construction.) Since[gπj(1) gπj(2) . . .gπj(k)] is non-
singular, newcomerfj can recover the message vectormT

j

after the first phase. In the second phase, newcomerfj
computesmT

j gfi for i = 1, 2, . . . , r, and sends the packet
mT

j gfi to newcomerfi, i 6= j. A total of r − 1 packets
are sent from each newcomer in the second phase. After the
exchange of packets, newcomerfj then has ther required
packetsmT

i gfj , for i = 1, 2, . . . , r. The repair-bandwidth per
each newcomer isk + r − 1 = d+ r − 1.

In this construction, we can pick the smallest prime power
q larger than or equal ton as the size of the finite field. If
the number of storage nodesn increases, the finite field size
increases linearly withn.

Theorem 2. The cooperative regenerating code described
above is optimal, in the sense that ifB = kr, k = d, and each
node storesα = r packets, the minimal repair-bandwidth per
each failed node is equal tok + r − 1.

Proof: We use the notation as in Theorem 1. The capacity
of a cut of type(ℓ1, ℓ2, . . . , ℓk), as shown in (1), is an upper
bound onkr. If any summand(d−

∑i−1
j=1 ℓj)β1 + (r − ℓi)β2

in (1) is strictly less thanα = B/k = r for any i, then the
value in (1) is strictly less than

∑k

i=1 ℓir = kr. This would
violate the fact thatkr is upper bounded by (1). Hence we
have

(k −

i−1∑

j=1

ℓj)β1 + (r − ℓi)β2 ≥ B/k = r (3)

for any cut associated with(ℓ1, ℓ2, . . . , ℓk) and anyi.
Case 1:r ≤ k = d. From a cut of type(ℓ1, ℓ2, . . . , ℓk) =

(1, 1, . . . , 1), we have

β1 + (r − 1)β2 ≥ r (4)

from (3). From another cut of type(ℓ1, ℓ2, . . . , ℓk) =
(1, 1, . . . , 1
︸ ︷︷ ︸

k−r

, r, 0, . . .), from (3) again, we obtain the condition

(k − (k − r))β1 + (r − r)β2 = rβ1 ≥ r

which implies thatβ1 ≥ 1. We then add(k − 1)β1 ≥ k − 1
to (4), and getγ = kβ1 + (r − 1)β2 ≥ k + r − 1.

Case 2:r > k = d. Consider the two cuts associated with
(ℓ1, ℓ2, . . . , ℓk) equal to(k, 0, . . . , 0) and (k − 1, 1, 0, . . . , 0).
We obtain the following two inequalities from (3),

kβ1 + (r − k)β2 ≥ r (5)

β1 + (r − 1)β2 ≥ r. (6)

We multiply both sides of (5) by(r − 1), and multiply both
sides of (6) byk. After adding the two resulting inequalities,
we getγ = kβ1 + (r − 1)β2 ≥ k + r − 1.

The repair-bandwidth per failed node is therefore cannot
be less thank + r − 1. The repair-bandwidth of the code
constructed in this section matches this lower bound, and is
hence optimal.

The regenerating code constructed in this section has the
advantage that a storage node participating in a regeneration
process is required to read and exactly the same amount of
data to be sent out, without any arithmetical operations. This
is called theuncoded repairproperty [12].

We compare below the repair-bandwidth of three different
modes of repair, all with parametersn = 7, B = 84, k = 4 and
α = B/4 = 21. Suppose that three nodes fail simultaneously.

(i) Individual repair without newcomer cooperation. Each
newcomer connects to the four remaining storage nodes. As
calculated in the previous section, the repair-bandwidth per
newcomer is84.

(ii) One-by-one repair utilizing the newly regenerated node
as a helper. The average repair-bandwidth per newcomer is

1

3

(84(4)

4(4− 4 + 1)
+

84(4)

4(5− 4 + 1)
+

84(4)

4(6− 4 + 1)

)

= 51.333.

The first term in the parenthesis is the repair-bandwidth of
the first newcomer, which downloads from the four surviving
nodes, the second term is the repair-bandwidth of the second
newcomer, who connects to the four surviving nodes and the
newly regenerated newcomer, and so on.

(iii) Full cooperation among the three newcomers. The
repair-bandwidth per newcomer can be reduced to 42 using
the regenerating code given in this section. We thus see that
newcomer cooperation is able to reduce the repair-bandwidth
of a distributed storage system significantly.

REFERENCES

[1] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The Google filesystem,” in
Proc. of the 19th ACM SIGOPS Symp. on Operating Systems Principles
(SOSP’03), Oct. 2003.

[2] J. Kubiatowicz et al., “OceanStore: an architecture forglobal-scale
persistent storage,” inProc. 9th Int. Conf. on Architectural Support for
programming Languages and Operating Systems (ASPLOS), Cambridge,
MA, Nov. 2000, pp. 190–201.

[3] R. Bhagwan, K. Tati, Y. Cheng, S. Savage, and G. Voelker, “Total
recall: system support for automated availability management,” in Proc.
of the 1st Conf. on Networked Systems Design and Implementation, San
Francisco, Mar. 2004.

[4] A. G. Dimakis, P. B. Godfrey, Y. Wu, M. J. Wainwright, and K. Ram-
chandran, “Network coding for distributed storage system,” in Proc.
IEEE Int. Conf. on Computer Commun. (INFOCOM ’07), Anchorage,
Alaska, May 2007.

[5] ——, “Network coding for distributed storage systems,”IEEE Trans.
Inf. Theory, vol. 56, no. 9, pp. 4539–4551, Sep. 2010.

[6] Y. Hu, Y. Xu, X. Wang, C. Zhan, and P. Li, “Cooperative recovery of
distributed storage systems from multiple losses with network coding,”
IEEE J. on Selected Areas in Commun., vol. 28, no. 2, pp. 268–275,
Feb. 2010.

[7] X. Wang, Y. Xu, Y. Hu, and K. Ou, “MFR: Multi-loss flexible recovery
in distributed storage systems,” inProc. IEEE Int. Conf. on Comm.
(ICC), Capetown, South Africa, May 2010.

[8] Y. Wu and A. G. Dimakis, “Reducing repair traffic for erasure coding-
based storage via interference alignment,” inProc. IEEE Int. Symp. Inf.
Theory, Seoul, Jul. 2009.

[9] R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W. Yeung, “Networkinforma-
tion flow,” IEEE Trans. Inf. Theory, vol. 46, pp. 1204–1216, 2000.

[10] C. Suh and K. Ramchandran, “Exact-repair MDS codes for distributed
storage using interference alignment,” inProc. IEEE Int. Symp. Inf.
Theory, Austin, Jun. 2010, pp. 161–166.

[11] N. B. Shah, K. V. Rashmi, and P. V. Kumar, “A flexible classof
regenerating codes for distributed storage,” inProc. IEEE Int. Symp.
Inf. Theory, Austin, Jun. 2010, pp. 1943–1947.

[12] S. El Rouayheb and K. Ramchandran, “Fractional repetition codes for
repair in distributed storage systems,” inAllerton conference on commun.
control and computing, Monticello, Sep. 2010.

	I Introduction
	II An Example of Cooperative Repair
	III Information Flow Graph and Min-Cut Bound
	IV An Explicit Construction for Exact Repair
	References

