
ar
X

iv
:1

10
2.

14
66

v1
 [

cs
.IT

]
7

F
eb

 2
01

1

Distributed Throughput-optimal Scheduling in
Ad Hoc Wireless Networks

Qiao Li
qiaoli@cmu.edu

Department of Electrical and Computer Engineering
Carnegie Mellon University

5000 Forbes Ave., Pittsburgh, PA 15213

Rohit Negi
negi@ece.cmu.edu

Department of Electrical and Computer Engineering
Carnegie Mellon University

5000 Forbes Ave., Pittsburgh, PA 15213

Abstract—In this paper, we propose a distributed throughput-
optimal ad hoc wireless network scheduling algorithm, which is
motivated by the celebrated simplex algorithm for solving linear
programming (LP) problems. The scheduler stores a sparse set
of basic schedules, and chooses the max-weight basic schedule for
transmission in each time slot. At the same time, the scheduler
tries to update the set of basic schedules by searching for a new
basic schedule in a throughput increasing direction. We show that
both of the above procedures can be achieved in a distributed
manner. Specifically, we propose an average consensus basedlink
contending algorithm to implement the distributed max weight
scheduling. Further, we show that the basic schedule updatecan
be implemented using CSMA mechanisms, which is similar to
the one proposed by Jianget al. [1]. Compared to the optimal
distributed scheduler in [1], where schedules change in a random
walk fashion, our algorithm has a better delay performance by
achieving faster schedule transitions in the steady state.The
performance of the algorithm is finally confirmed by simulation
results.

I. I NTRODUCTION

Scheduling in ad hoc wireless networks is, in general, an
NP-complete problem. In order to achieve throughput opti-
mality, one either needs to solve a problem with exponential
complexity in each time slot (e.g., the max-weight scheduler in
[2]), or by amortizing the complexity among an exponential
number of time slots (e.g., the random “pick-and-compare”
scheduler in [3]), so that the number of operations requiredin
each time slot is constant, at the expense of large (exponential
in the network size) queue lengths in the worst case [4].

In addition, the requirement that the scheduler be imple-
mented in a distributed manner makes the scheduling problem
more difficult to solve. In the literature, distributed scheduling
algorithms are often designed to be sub-optimal (e.g., the
greedy schedulers in [5], [6], [7]), so that minimal coordi-
nations among links are needed during scheduling. Recently,
Jiang et al. [1] showed a surprising result that, distributed
throughput-optimal scheduling can be achieved by cleverly
adjusting the CSMA contending parameters, which is based
on the theory of Markov Chain Monte Carlo (MCMC). A
throughput optimal scheduler is one that can achieve the
rate stability for any arrival process whose average rate can
be stabilized bysome scheduler. This result has spurred
interest among researchers in searching for other distributed
throughput-optimal scheduling algorithms [8], [9], [10].How-

ever, since these current scheduling algorithms are all based
on the MCMC, they may suffer from large delays, even if they
could begin in steady state (i.e., with optimal CSMA parame-
ters chosen initially). This is due to the random walk behavior
of the embedded time reversible Markov chain, which requires
a long time, in general, for the schedule to change significantly.
To illustrate this point, consider the star-shaped interference
graph in Fig. 1 (a), where each node represents a link in
the wireless network, and each edge represents a transmission
conflict. Thus, the transmission schedules must be independent
sets of the graph, e.g.,{0}, and {1, 2, 3, 4, 5, 6}. Due to the
star-shaped topology, these two independent sets can also
be viewed as the two “modes” of this network. Now, the
distributed CSMA scheduling implies that the scheduled inde-
pendent sets form a random walk on the family of independent
sets, where transitions are only allowed between independent
sets which differ by one link. For example, the schedule can
change from{1} to {1, 2}, but not from{1} to {0}, since
that requires two simultaneous changes: shutting down link1
and activating link 0. Suppose the current schedule is at mode
{1, 2, 3, 4, 5, 6}. In order to switch to the other mode{0}, all
of the links{1, 2, 3, 4, 5, 6} need to stop transmission first, so
that link 0 is able to contend for transmission. Intuitively, this
takes a long time, in particular, if the other links are unwilling
to stop transmission, due to their own traffic demands. Thus,
the distributed CSMA scheduling may incur a large delay by
spending a long time in each mode before transition, since the
random walk based design requires the scheduler to go through
the intermediate (sub-optimal) schedules before switching to
another mode, which happens with low probability. For more
details about the steady state delay, please see the queueing
simulation result in Fig. 3, which is explained in detail in
Section IV.

Realizing the limitations of these distributed CSMA
scheduling algorithms, we try to improve the delay perfor-
mance by avoiding the random-walk based transitions between
schedules. Instead of allocating positive probabilities to all
the schedules, as required by MCMC, we require that the
scheduler choose the transmitting schedules amonga sparse
set of explicitly enumerated “modes” (basic schedules), so
that the schedule transitions are faster, since there is no need
for the scheduler to enter the sub-optimal “transition modes”.

http://arxiv.org/abs/1102.1466v1

0

1

2

3

45

6

1 2

3

45

6

(a) (b)

Fig. 1. (a) is a star-shaped interference graph of 7 links, and (b) is a ring-
shaped interference graph of 6 links.

Further, since the number of basic schedules is small, optimal
scheduling,from among these schedules, can be achieved
efficiently in a distributed fashion. This is done by solving
a simple max-weight independent set problem, which can be
achieved by a certain consensus algorithm.

The existence of such a sparse optimal solution is guar-
anteed by the well-known Carathéodory theorem [12], which
states that, at mostn + 1 schedules are needed to achieve
the optimal scheduling in a network withn links. Further,
such a solution can be efficiently computed by the celebrated
simplex algorithm [11], which can be viewed as a steepest
descent algorithm along the edges of the feasible region (a
polytope for LP). Inspired by the simplex algorithm, we
propose a distributed algorithm to search for the optimal basic
schedules, which can be implemented using distributed CSMA
mechanisms similar to [1]. Thus, by combining the consensus
based scheduling and CSMA based basic schedule updates, we
show that throughput optimal scheduling can be achieved in a
distributed fashion. Finally, the delay improvement is verified
in the simulation section.

The organization of the rest of the paper is as follows: In
Section II we introduce the system model, and in Section III
we propose and analyze the scheduling algorithm. Section IV
shows the simulation results, and finally Section V concludes
this paper.

II. SYSTEM MODEL

In this section we introduce the system model, which is
standard in the literature. We first introduce the network model.

A. Network Model

We are interested in the scheduling problem at the MAC
layer of a wireless network, where the topology of the network
is described by an interference graphGI = (VI , EI), whereVI

is the set ofn links, andEI is the set of pairwise interference
constraints, i.e., linki and link j are not allowed to transmit
together if(i, j) ∈ EI , due to the strong interference that one
link causes upon the other. We assume a slotted time system,
and in each time slott, the scheduled transmitting linksσsch(t)
must form an independent set inGI . With an abuse of notation,
we also denoteσsch(t) as ann × 1 vector, whereσsch,i(t) =
1 if link i belongs to the transmitting independent set, and
σsch,i(t) = 0 otherwise.

The queueing dynamics of the network is as follows:

Q(t) = Q(0) +A(t)−D(t) (1)

whereQ(t) is the queue length vector at time slott, andA(t)
andD(t) are the number of cumulative arrived and departed
packets during the firstt time slots, respectively. We assume
that the packet arrival process is subject to the Strong Law of
Large Numbers (SLLN), i.e., with probability 1 (w.p.1), we
have limt→∞ A(t)/t = a wherea is the arrival rate vector.
Further, we also assume that the number of arrived packets in
each time slot is uniformly bounded by a large constant. Note
that this assumption is quite mild, since the packet arrivals are
allowed to be correlated both across time slots, and different
links. Thus, our model is well suited in analyzing typical
wireless networks, and can be readily generalized to multi-
hop scenarios.

A basic requirement on the scheduler is therate stability,
i.e., for each linki, we havelimt→∞ Di(t)/t = ai, w.p.1,
so that an average throughput ofa can be achieved by
the scheduler. Thus, athroughput optimalscheduler should
achieve rate stability for anya which can be stabilized by
some scheduler. In the seminal paper [2], Tassiulaset al.
showed that the optimal stability region isA = Co(M),
whereCo(·) denotes the convex hull, andM is the family
of all independent sets. Further, they propose the following
optimal max-weight scheduling algorithm:

σsch(t) = arg max
σ∈M

σTQ(t) (2)

However, such an algorithm requires solving an NP-complete
problem in every time slot, and is very difficult to implement
in a distributed manner. In the next subsection we introduce
the recently developed throughput optimal distributed CSMA
scheduling algorithm.

B. Throughput Optimal Distributed Scheduling

Before introducing the distributed CSMA scheduling algo-
rithm, we need to have an optimization interpretation of the
scheduling problem. We can formulate the scheduling problem
as the following feasibility problem:

SCH: minimizex 0 (3)

subject to Mx = a (4)

1Tx = 1,x � 0 (5)

where a is the arrival rate vector,M is the matrix whose
columns are all the independent sets, andx is the scheduling
variable, such thatxσ represents the asymptotic time fraction
that independent setσ (which is a column of the matrixM) is
chosen by the scheduler. Thus,x naturally lives in the simplex,
as described by (5), and (4) is essentially the rate stability
constraint.

Note thatSCH has many solutions, due to the key structure
in the highly under-determined system in (5) that, any subset
of an independent set is also an independent set. Thus, based
on a solution for any strictly feasible arrival rate vectora,
one can easily construct a set of feasible solutions. However,

distributed implementation of any solution is a very challeng-
ing problem. In [1], Jianget al. obtains a solution in the
exponential family by transformingSCH into the following
max-entropy problemME:

ME: maximizex H(x) = −
∑

σ∈M

xσ log xσ

subject to (4) and (5)

It can be shown that the solutionx⋆ has the following form:

x⋆
σ
= exp(θ⋆Tσ −A(θ⋆)) (6)

whereθ⋆ corresponds to the Lagrange multiplier associated
with the rate constraints in (4), and

A(θ⋆) = log
∑

σ∈M

exp(θ⋆Tσ) (7)

is the standard log-partition function. Following the literature
of Gibbs sampling (an example of MCMC), it was shown in
[1] that the optimal allocationsx⋆ can be implemented by
a time-reversible Markov chain, using CSMA mechanisms.
Further, the optimal parameters (Lagrange multipliers)θ⋆ can
be obtained using a stochastic gradient algorithm. In belowwe
describe a discrete-time version of the distributed scheduling
algorithm, which is also closely related to the algorithm in[8].

Algorithm 1 CSMA(θ)
In each time slott, do the following:
Randomly generate an independent setσ(t) from a certain
distribution, independently across time slots.
for eachi ∈ σ(t) do
pi = exp(θi)/(1 + exp(θi));
if no neighbor ofi is in σcsma(t− 1) then

σcsma,i(t) =

{

1 with probability pi
0 else

end if
end for
Any other link i not in σ(t) setσcsma,i(t) = σcsma,i(t− 1).

In the above algorithm, carrier sensing is used in two phases:
1) generation of the independent setσ(t) (according to certain
protocol [8]) and 2) detection of whether there is a transmitting
neighbor of a link i ∈ σ(t) at time slot t − 1. Further,
note that the key part of the algorithm, phase 2, is fully
distributed, with no explicit message exchange among links.
The following proposition shows that the above algorithm
achieves the distribution in (6) asymptotically.

Proposition 1: σcsma(t) in CSMA(θ⋆) form a time-
reversible Markov chain, with the steady state distribution in
the form of (6).

Proof: The claim is proved by checking balance equa-
tions. The proof is essentially the same as the one in [8],
which we omit due to space limitation.

As discussed in Section I, however, the above scheduling
algorithm suffers from long delay, due to the random walk

behavior associated with the time-reversible Markov chain.
In the following section we try to solve this problem by
introducing the simplex scheduling algorithm.

III. S IMPLEX SCHEDULING

In this section we propose optimal distributed scheduling,
which is based on the simplex algorithm. For a detailed
description of the simplex algorithm for general LP problems,
please see, for example, [11]. Since the simplex algorithm
requires a feasible starting point, we next transform the prob-
lem SCH into a relaxed problemREL, where a feasible initial
vertex is easy to obtain:

REL: minimizex,γ γ (8)

subject to Mx = (1− γ)a (9)

1Tx = 1,x � 0, 0 ≤ γ ≤ 1 (10)

In above, the relaxation variableγ can be interpreted as the
“throughput gap”, so thatγ⋆ = 0 if and only if the arrival
ratea can be stabilized by the scheduler. In order to illustrate
the main ideas of the distributed scheduling algorithm, we
first introduce a hypothesized centralized simplex algorithm
to solveREL.

A. Centralized Simplex Scheduling

The centralized simplex algorithmSIM is shown in Algo-
rithm 2, which is essentially an application of the general
simplex algorithm to the specific scheduling problemREL.

Algorithm 2 SIM
Initialization :
B = I,x⋆

B = min(1
1Ta

, 1)a, γ⋆ = max(1 − 1
1Ta

, 0).
while γ⋆ > 0 do
1) Simplex Search: Compute the moving direction

σnew = arg max
σ∈M

1TB−1σ (11)

2) Scheduling: Compute the new vertex(x⋆
B, x

⋆
new) and

the throughput gapγ⋆ by solving

MOV: min
xB ,xnew,γ

γ

subject to BxB + σnewxnew = (1− γ)a

1TxB + xnew = 1

xB � 0, xnew ≥ 0, 0 ≤ γ ≤ 1

3) Update: Let beσ be a column inB such thatx⋆
σ
= 0.

Replaceσ with σnew, and relabel the variables.
end while
return (B,x⋆

B,γ
⋆)

The above simplex algorithm solves the problemREL by
moving along adjacent vertices of the feasible region in a cost
reducing direction. In order to understand its behavior, wefirst
need to identify a vertex. According to the equality constraints
in REL, a vertex (or abasic solutionin the simplex algorithm

terminology)(xB, γ) can be uniquely determined by a basis
matrix as follows:

(

B a

1T 0

)(

xB

γ

)

=

(

a

1

)

(12)

whereB is an n × n (invertible) sub-matrix ofM , which
representsn independent sets, andxB is ann× 1 sub-vector
of x, which are the allocated time fractions of the independent
sets inB. It is easy to verify that the initial vertex as specified
in the initialization phase ofSIM is feasible.

We next show thatSIM successfully moves to an adjacent
vertex following a cost reducing direction. An edge is repre-
sented by a new column vector

(

σ

1

)

, whereσ is an independent
set, and moving along the edge is equivalent to increasing
the coefficient associated with

(

σ

1

)

, with the constraint that
the equalities inREL still hold. Thus, the changes of the
optimization variables must stay in the null space of the matrix
(

M a

1T 0

)

, i.e., we increase the coefficient of
(

σ

1

)

by a unit,

the changes in the existing variables are
(

B a

1T 0

)(

∆xB

∆γ

)

+

(

σ

1

)

= 0 (13)

Using the block matrix inversion formula, we obtain the rate
of change in the cost:

∆γ = (1 − γ)(1− 1TB−1σ) (14)

Thus, we need to find a proper independent setσ, so that the
cost change∆γ ≤ 0. We next show that theσ⋆ obtained in
(11) is a proper cost-reducing direction.

Proposition 2: The cost change for the independent setσ⋆

in (11) satisfies∆γ ≤ 0, and the inequality is strict ifγ > 0.
Proof: From (12) we havexB = (1 − γ)B−1a. After

multiplying both sides with1T and noting that1TxB = 1,
we have

(1− γ)(1TB−1a) = 1 (15)

Noting thata ∈ Co(M) and (11), we have

1TB−1σ⋆ ≥ 1TB−1a (16)

and therefore

∆γ = (1− γ)(1− 1TB−1σ⋆)

≤ (1− γ)(1− 1TB−1a) = −γ

from which the claim follows.
Given the new direction specified byσ⋆, according to the

standard simplex algorithm,SIM then moves along the edge
as specified by

(

σ
⋆

1

)

, until it reaches a new vertex, where
some coefficient of the independent set inB first becomes
zero. ThenSIM replaces that column withσ⋆, and relabel the
variables if necessary. We next show that, this movement to a
better vertex is achieved by solving the problemMOV.

Proposition 3: For the solution(x⋆
B, x

⋆
new, γ

⋆) to the prob-
lem MOV, we havex⋆

new > 0, and there is one columnσ in
B such thatx⋆

σ = 0.
Proof: Due to space limitation, we only describe the

intuition behind the proof. Supposex⋆
new = 0, then the solution

to MOV is at the same vertex associated with the old matrix
B, which contradicts the fact thatσnew is a cost-reducing
direction, according to Proposition 2. The claim that someσ

in B hasx⋆
σ = 0 follows from the fact thatMOV has bounded

optimum.
Having shown that the centralized algorithmSIM is the

same as the general simplex algorithm for LP problems, we
have the following conclusion:

Theorem 1:If a ∈ Co(M), SIM will return a solution
(B,x⋆

B, γ
⋆) such thatγ⋆ = 0, and(x⋆

B, γ
⋆) solvesREL.

In the next subsection we show that this algorithm can be
efficiently implemented in a distributed manner, using CSMA
and average consensus algorithms.

B. Distributed Simplex Scheduling

In this subsection we propose the distributed scheduling
problem, and prove its throughput optimality, by showing that
it is a distributed implementation of the centralized simplex
scheduling algorithm in the last subsection. We first illustrate
the full scheduling algorithmDIS-SCH in Algorithm 3.

Algorithm 3 DIS-SCH
Initialization : Set the initial parameters asB(0) = I,
θ(0) = 0, γ(0) = 1, σcsma(0) = 0, andσnew(0) = 0.
In each time slott, do the following:

1) CSMA: updateσcsma(t) by running CSMA(αθ(t)),
whereα is a sufficiently large constant.

2) Scheduling: for each linki, compute

σsch,i(t) = arg max
σ∈B∪{σnew}

w(i)
σ (t) (17)

Link i transmits ifσsch,i(t) = 1. In above,wσ(t) =
θ(t)Tσ is the weight of independent setσ, and
w

(i)
σ (t) is link i’s local copy, which is updated by the

consensus algorithm.
3) Consensus: update the parameters

θ(t) = θ(t) + ǫ((1− γ(t))a(t)− σsch(t))(18)

γ(t) = [γ(t) + ǫ(θ(t)Ta(t)− 1)][0,1] (19)

a(t) = A(t)/t (20)

where[·][0,1] means projecting onto the interval[0, 1],
andǫ is a constant step size. Run an average consensus
algorithm over the quantities{wσ(t)}σ∈B∪{σnew} and
γ(t).

4) Update: If certain convergence conditions are satis-
fied, replace the column inB with the smallest weight
by σnew(t), and load the CSMA independent set by
letting σnew(t) = σcsma(t).

OverallDIS-SCH is very similar toSIM, with the following
two important changes: 1) the simplex search phase inSIM
is replaced with the CSMA phase, and that 2) the centralized
moving procedureMOV is replaced with asimple max-weight
scheduling in (17), which is then followed by parameter
updates and average consensus algorithm. It may appear that

(17) is similar to the max-weight scheduler in (2), with
the difference that the queue lengthsQ(t) are replaced by
the “virtual queue lengths”θ(t). However, the max-weight
independent set in (17) is chosen fromn + 1 independent
sets, instead of the family of all independent sets, which
has exponential size. Thus, (17) can be solved efficiently
(in linear time), whereas the max-weight scheduler in (2) is
NP-complete, in general. In the following we elaborate on
the change in Step 2, by showing that the scheduling and
consensus phases inDIS-SCH is equivalent to solving the
problemMOV.

Proposition 4: If there is no change in the matrixB, the
parametersθ updated in (18) will converge to the optimal
dual variable forMOV, γ will converge to the optimal cost
γ⋆, and the average time fractions(xB, xnew) will converge to
the optimal primal variables(x⋆

B, x
⋆
new) for MOV.

Proof: Due to space limits, we only describe the intuition
behind the proof. We first form the Lagrangian ofMOV

minimizexB ,xnew,γ γ + θT ((1− γ)a−BxB − σnewxnew)

subject to 1TxB + xnew = 1,xB � 0, xnew ≥ 0

Note that this is a LP over a simplex, and therefore, the
solution is obtained at a vertex. Specifically, we can choose
the vertex xσsch = 1 (which is equivalent to scheduling
independent setσsch), whereσsch satisfies

σsch∈ arg max
σ∈B∪{σnew}

θTσ (21)

Further, under mild assumptions about the consensus algo-
rithm, it can be shown that the two schedules in (17) and (21)
are the same with high probability. Finally, it can be shown that
the updates in (18) and (19) correspond to the standard primal-
dual algorithms for solving convex optimization problems.
Thus, the variables will converge to the optimal.

We next elaborate on the change in Step 1, by showing
the equivalence between the CSMA phase inDIS-SCH and
the simplex search phase inSIM. We have the following
proposition.

Proposition 5: With sufficiently largeα and sufficiently
long time,σcsma(t) is the max-weight independent set in (11),
with high probability.

Proof: Due to space limits, we only describe the intuition
behind the proof. From the complementary slackness property,
from the Lagrangian ofMOV we have

θ⋆TB = (1− γ⋆)(θ⋆a)1T (22)

Note that for notation simplicity,B has already been up-
dated by replacing one sub-optimal column withσnew, i.e.,
B = Bnew. Thus, the optimal dual variablesθ⋆ satisfies
θ⋆ ∝ 1TB−1, and therefore, ifσcsma(t) satisfies

σcsma(t) ∈ arg max
σ∈M

θ⋆Tσ (23)

then it is essentially the same max-weight solution of (11).
Further, note that the CSMA based sampling phase converges
slowly (exponential time, in general), whereas solvingMOV
are relatively fast. Thus, we can assume that the parameters

θ(t) have converged to the optimal, and finally, the claim
follows from the steady state distribution in (6), and the well
known approximation that

exp(αθ⋆Tσ −A(αθ⋆)) ≈ 1{σ∈argmaxσ∈M θ⋆Tσ} (24)

for large enoughα, where1{·} is the indicator function, i.e.,
1{true} = 1 and1{false} = 0.

Having shown that the distributed algorithmDIS-SCH is
essentially the same as the centralized simplex algorithmSIM,
we have the following conclusion:

Theorem 2:If a ∈ A, DIS-SCH will return a solution
(B,x⋆

B, γ
⋆) such thatγ⋆ = 0, and(x⋆

B, γ
⋆) solvesREL.

In the next section we will demonstrate the performance of
DIS-SCH by simulation results.

IV. SIMULATION RESULTS

We next compare the performance of the distributed simplex
scheduling algorithmDIS-SCH with the distributed CSMA
scheduling algorithm in Algorithm 1 using MATLAB simula-
tion. During the simulation, we assume that the packet arrivals
are i.i.d, with 95% of the maximum uniform arrival rate.
The average consensus algorithm for the distributed simplex
scheduling is implemented as follows: We assume that the
communication graph for the average consensus is the same
as the interference graph. In each time slot, a random maximal
matching is first formed, and each matched pair update their
variables by taking the average of their local copies. We also
allow a certain time period for the average consensus algorithm
to converge, before it is used for distributed scheduling.

A. Star Network

We fist consider the 7-link star-shaped interference graph
in Fig 1 (a), with the simulation result shown in Fig. 2.
In the figure, the sample queue lengths are plotted over a
simulation period of2× 105 time slots. From the figure, one
can observe that the network is rate stable in both cases, but
distributed CSMA scheduling has much larger queue lengths
(around104) than simplex scheduling (several hundreds) in
the steady state. Further, one can observe that link 0 is the
bottle neck link for CSMA scheduling, since its queue length
is most often the largest. This is because, as discussed in
Section I, in the steady state, distributed CSMA scheduling
spends a considerable amount of time around each mode
before transiting to the intermediate (suboptimal) independent
sets. Thus, the transitions of CSMA scheduling is very slow,
and the queue lengths are consequently large. On the other
hand, simplex scheduling can quickly switch between the two
optimal modes, and therefore, have smaller queue lengths in
the steady state.

B. Ring Network

We next consider the 6-link ring-shaped interference graph
in Fig 1 (b). The simulation result is shown in Fig. 3.
Similar to the star network, one can observe that both al-
gorithm result in rate stability, but the simplex scheduling
achieves much smaller queue lengths than the distributed

0 0.5 1 1.5 2

x 10
5

0

5000

10000

15000

Time Slot

Q
ue

ue
 L

en
gt

h
CSMA Scheduling

0 0.5 1 1.5 2

x 10
5

0

200

400

600

800

1000

Time Slot

Q
ue

ue
 L

en
gt

h

Simplex Scheduling

link 0
link 1
max

link 0
link 1
max

Fig. 2. The simulation result of a 7-star network with distributed CSMA
scheduling and simplex scheduling.

0 0.5 1 1.5 2

x 10
5

0

1000

2000

3000

4000

Time Slot

Q
ue

ue
 L

en
gt

h

CSMA Scheduling

0 0.5 1 1.5 2

x 10
5

0

200

400

600

800

1000

Time Slot

Q
ue

ue
 L

en
gt

h

Simplex Scheduling

link 1
link 2
max

link 1
link 2
max

Fig. 3. The simulation result of a 6-ring network with different distributed
CSMA scheduling and simplex scheduling.

CSMA scheduling. In fact, for the ring shaped network, it is
easy to see that the optimal modes areσ1 = (1, 0, 1, 0, 1, 0)T

and σ2 = (0, 1, 0, 1, 0, 1)T . In the steady state, the simplex
scheduler can achieve low delay by quickly switching between
these two modes, using the simple max-weight scheduler
implemented by average consensus. On the other hand, the
switching is much more time-consuming for the distributed
CSMA scheduling, due to the random walk based design.
Finally, note that the transition time and queue lengths for
distributed CSMA scheduling in the 6-ring network is smaller
than that for the 7-star network (both have the same arrival
rates), due to the fact that, it is easier to switch between the
modes in a ring-shaped topology.

V. CONCLUSION

In this paper, we proposed a distributed throughput-optimal
scheduling algorithm for ad hoc wireless networks, which is
motivated by the simplex algorithm for solving LP problems.
The scheduler maintains a sparse set of basic schedules, and
during scheduling, the basic schedule with the maximum
weight is selected for transmission in each time slot. The set
of basic schedules are updated according to the simplex algo-
rithm, which can be implemented using CSMA mechanisms
in a distributed fashion. Compared to the distributed CSMA
based scheduling in [1], our algorithm achieves better delay
performance in the steady state by allowing faster transitions
among the optimal independent sets.

ACKNOWLEDGEMENT

The authors would like to thank the anonymous re-
viewers for their constructive suggestions and comments.
This work was supported in part by the US NSF awards
CNS-0831973 and ECCS-0931978, and by US ARO award
W911NF0710287.

REFERENCES

[1] L. Jiang and J. Walrand, “A Distributed CSMA Algorithm for Through-
put and Utility Maximization in Wireless Networks,”IEEE/ACM Trans.
Networking. Vol. 18, No.3, pp. 960 - 972, Jun. 2010.

[2] L. Tassiulas and A. Ephremides, “Stability properties of constrained
queueing systems and scheduling policies for maximum throughput in
multihop radio networks,”IEEE Trans. Automatic Control, Vol. 37, No.
12, pp. 1936-1949, Dec. 1992

[3] L. Tassiulas, “Linear Complexity Algorithms for Maximum Througput
in Radio Networks and Input Queued Switches,”Proc. IEEE INFOCOM,
533-539, 1998

[4] D. Shah, D. N. C. Tse and J. N. Tsitsiklis, “Hardness of LowDelay
Network Scheduling,”Under Submission.

[5] P. Chaporkar, K. Kar, X. Luo, and S. Sarkar, “Throughput and Fairness
Guarantees Through Maximal Scheduling in Wireless Networks”, IEEE
Trans. Info. Theory, Vol. 54, No. 2, pp. 572-594, Feb. 2008.

[6] Q. Li and R. Negi, “Prioritized Maximal Scheduling in Wireless Net-
works”, Proc. IEEE Globecom, 2008

[7] Q. Li and R. Negi, “Greedy Maximal Scheduling in WirelessNetworks”,
Proc. IEEE Globecom, Dec. 2010.

[8] J. Ni, B. Tan and R. Srikant, “Q-CSMA: Queue length-basedCSMA/CA
algorithms for achieving maximum throughput and low delay in wireless
networks”,Tech Report, available at http://arxiv.org/abs/0901.2333.

[9] J. Shin and D. Shah, “Randomized Scheduling Algorithm for Queueing
Networks,” Under Submission, 2009.

[10] Libin Jiang, Devavrat Shah, Jinwoo Shin, and Jean Walrand, “Distributed
Random Access Algorithm: Scheduling and Congestion Control,” IEEE
Trans. on Info. Theory.

[11] D. Bertsimas and J. N. Tsitsiklis, “Introduction to Linear Optimization”,
Dynamic Ideas and Athena Scientific,March 2008.

[12] D. P. Bertsekas, A. Nedic and A. E. Ozdaglar “Convex Analysis and
Optimization”, Athena Scientific,2003.

http://arxiv.org/abs/0901.2333

0.3 0.35 0.4 0.45 0.5 0.55 0.6

10
1

10
2

10
3

10
4

Arrival Rate

M
ax

 Q
ue

ue
 L

en
gt

h

priority−1
priority−2
longest queue
max weight

	I Introduction
	II System Model
	II-A Network Model
	II-B Throughput Optimal Distributed Scheduling

	III Simplex Scheduling
	III-A Centralized Simplex Scheduling
	III-B Distributed Simplex Scheduling

	IV Simulation Results
	IV-A Star Network
	IV-B Ring Network

	V Conclusion
	References

