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Abstract—This paper studies a spectrum sharing scenario
between a cooperative relay network (CRN) and a nearby ad-hoc
network. In particular, we consider a dynamic spectrum access
and resource allocation problem of the CRN. Based on sensing
and predicting the ad-hoc transmission behaviors, the ergodic
traffic collision time between the CRN and ad-hoc network is
minimized subject to an ergodic uplink throughput requirement
for the CRN.

We focus on real-time implementation of spectrum sharing
policy under practical computation and signaling limitations. In
our spectrum sharing policy, most computation tasks are ac-
complished off-line. Hence, little real-time calculationis required
which fits the requirement of practical applications. Moreover,
the signaling procedure and computation process are designed
carefully to reduce the time delay between spectrum sensingand
data transmission, which is crucial for enhancing the accuracy of
traffic prediction and improving the performance of interfe rence
mitigation. The benefits of spectrum sensing and cooperative
relay techniques are demonstrated by our numerical experiments.

Index Terms—Ad-hoc Network; Cooperative Relay Network;
Spectrum Access; Traffic prediction; Resource Allocation;Real-
time Implementation.

I. I NTRODUCTION

In recent years, spectrum sharing between heterogeneous
wireless networks has been studied intensively as a crucial
technology for improving network spectrum efficiency [1]
and network capacity [2]. Traffic prediction based spectrum
access polices were proposed in [3]–[9], where the cogni-
tive transmitter detects and predicts the primary user’s (PU)
transmission behaviors and transmits signals opportunistically
to avoid collisions with the PU’s traffic. Joint optimization
of spectrum access and resource allocation based on traffic
prediction has been proposed in [10] for an open sharing model
[1] that considers spectrum sharing between an uplink system
and an ad-hoc network. In [11], cooperative relay technique
was utilized to improve the spectrum sharing performance.

However, some implementation issues were rarely consid-
ered in these studies. First, determining the resource allocation
policy in real-time can be computationally quite demanding
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for realistic wireless communication systems [12]. Second,
spectrum sensing and channel estimation are usually per-
formed at spatially separate nodes, which requires to exchange
their obtained information before solve the resource allocation
problem. The resultant signaling procedure and the computa-
tion of resource allocation solution would cause a large time
delay between spectrum sensing and data transmission, which
would degrade the accuracy of traffic prediction and cause
unexpected traffic collisions between the networks operating
in the same spectrum. Therefore, resource allocation policies
with little real-time calculation and small sensing-transmission
delay are of great interest for practical applications.

In this paper, we study spectrum sharing between a coopera-
tive relay network (CRN) and an ad-hoc network, as illustrated
in Fig. 1. The relay assists the transmissions from the mobile
terminal (MT) to the base station (BS) to achieve higher uplink
throughput. In order to communicate with the distant BS, the
MT and relay would transmit signals with peak powers, which
induce strong interference to nearby ad-hoc links. The ad-
hoc transmitters (e.g., wireless sensor nodes) have relative low
transmission powers due to their short communication ranges,
and thus their interference to the relay and BS can be treated
as noise. Such an asymmetrical interference scenario is known
as the “near-far effect” [2].

We consider a joint spectrum access and resource allocation
problem of the CRN, where the ergodic traffic collision time
between the CRN and ad-hoc network is minimized subject
to an ergodic uplink throughput constraint for the CRN. The
formulated design problem is a difficult nonconvex optimiza-
tion problem with no closed-form expression for the objective
function. By carefully analyzing the problem structure, we
show how this problem can be reformulated as a convex
problem. A low-complexity Lagrangian optimization method
is used to solve the considered design problem efficiently.
Then, a real-time implementation policy is proposed which
requires little real-time calculation and has small sensing-
transmission delay. Finally, numerical results are provided to
show the benefits of our spectrum sharing policy.

II. SYSTEM MODEL

The CRN operates in frames with durationTf . Each frame
comprisesN sub-channels in frequency domain, denoted by
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Fig. 1: System setup of the spectrum sharing between coop-
erative relay and ad-hoc networks.

the setN = {1, 2, · · · , N}. We assume that the wireless
channels of source-relay (S-R), source-destination (S-D), and
relay-destination (R-D) links are block-faded, which vary
across the frames in a stationary and ergodic manner. The
channel gain normalized by the interference plus noise power
of these links are denoted bygs,rn , gr,dn , gs,dn , respectively, for
the n-th sub-channel.

In practice, the relay node operates in a half-duplex mode.
Therefore, each frame consists of 2 phases: In Phase 1, the
source transmits signal to the relay and destination via a
broadcast channel; in Phase 2, the source transmits a new
information message, and, at the same time, the relay uses
the DF relaying strategy to forward its received information
message in Phase 1 to the destination, which forms a multiple-
access channel. These operations are illustrated in Fig. 1.The
time durations of Phase 1 and Phase 2 are set toαTf and
(1− α)Tf , respectively, whereα ∈ (0, 1).

The ad-hoc links operate inM non-overlapping frequency
bands denoted by the setM = {1, 2, · · · ,M} and them-
th ad-hoc band overlaps with a set of sub-channels given by
Nm (N =

⋃M
m=1 Nm andNm

⋂

Nl = Ø if m 6= l). The ad-
hoc traffic in them-th band is modeled by a strictly stationary,
ergodic and independent binary continuous-time Markov chain
(CTMC)Xm(t), whereXm(t) = 1 (Xm(t) = 0) represents an
ACTIVE (IDLE) state at timet. The holding (or sojourn) peri-
ods of ACTIVE and IDLE states are exponentially distributed
with rate parametersλ and µ, respectively. The probability
transition matrix of the CTMC model of Bandm is given by
[13, p. 391]

P (t)=
1

λ+µ

[

µ+λe−(λ+µ)t λ−λe−(λ+µ)t

µ−µe−(λ+µ)t λ+µe−(λ+µ)t

]

, (1)

where the element in the(i+1)-th row and(j+1)-th column
of P (t) stands for the transition probabilityPr{Xm(t+ τ) =
j|Xm(τ) = i} for i, j ∈ {0, 1}. This CTMC model has
been considered in many spectrum sharing studies including
theoretical analysis and hardware tests; see [3]–[11].

The source and relay detect the ACTIVE/IDLE state of each
ad-hoc band at the start of both Phase 1 and Phase 2. The
sensing outcome of the two phases are denoted byXm(0) =
xm ∈ {0, 1} and Xm(αTf ) = ym ∈ {0, 1}, respectively.
Perfect sensing and negligible sensing overhead are assumed
in this paper.

III. PROBLEM FORMULATION

Let us defineω , {gs,rn , gr,dn , gs,dn , xm, ym, n ∈ N ,m ∈
M} as the network state information (NSI). The dynamic

transmission parameters are determined by the instant NSI
ω. Suppose that the source and relay nodes can switch on
and off their transmissions freely over each sub-channel, and
may transmit only in part of the time during Phase 1 and
Phase 2. LetI(1)n (ω) ⊆ [0, αTf ] denote the set of transmission
time of the source over Sub-channeln in Phase 1, and
I
(2)
n (ω) ⊆ [αTf , Tf ] denote that of the source and relay in

Phase 2, forn = 1, . . . , N . I
(1)
n (ω) and I

(2)
n (ω) each may

be a union of several disjoint transmission time intervals. We
utilize the words “traffic collision” to represent the eventthat
both the CRN and ad-hoc network are transmitting in the
same spectrum band at the same time. In [14], we showed
that ergodic traffic collision time between the two networksis
given as

I=Eω

{

M
∑

m=1

[

∫

⋃
n∈Nm

I
(1)
n (ω)

Pr{Xm(σ)=1|Xm(0)=xm} dσ

+

∫

⋃
n∈Nm

I
(2)
n (ω)

Pr {Xm(σ) = 1|Xm(αTf ) = ym} dσ

]}

,(2)

which is proportional to the transmission error probability of
the ad-hoc network in strong interference scenarios [4].

Letπ(S) represents the size (measure) of setS; for example,
π([a, b]) = b − a. Thus, the transmission time fractions of
the CRN are determined asθ(1)n (ω) = π(I

(1)
n (ω))/Tf and

θ
(2)
n (ω) = π(I

(2)
n /(ω))Tf , respectively, for Phase 1 and Phase

2 of the frame. Then, the ergodic achievable rate of the CRN
can be expressed as [14]

RDF

=Wmin

N
∑

n=1

Eω

[

θ(1)n (ω) log2

(

1+
P

(1)
s,n(ω)max{gs,rn , gs,dn }

θ
(1)
n (ω)

)

+θ(2)n (ω) log2

(

1+
P

(2)
s,n(ω)gs,dn

θ
(2)
n (ω)

)]

,

N
∑

n=1

Eω

[

θ(1)n (ω) log2

(

1 +
P

(1)
s,n(ω)gs,dn

θ
(1)
n (ω)

)

+θ(2)n (ω) log2

(

1 +
P

(2)
s,n(ω)gs,dn + Pr,n(ω)gr,dn

θ
(2)
n (ω)

)]}

. (3)

Note that this ergodic rate can be achieved in slow-fading en-
vironment by means of queuing at the relay node. Moreover, it
is a concave function of{P (1)

s,n(ω), P
(2)
s,n(ω), Pr,n(ω), θ

(1)
n (ω),

θ
(2)
n (ω), n ∈ N}, since the perspective of a concave function

is also concave [15, p. 89].
The joint spectrum access and resource allocation problem

the CRN is formulated as

(P) min
P (1)

s,n(ω),P (2)
s,n(ω),Pr,n(ω),I(1)n (ω),I(2)n (ω),

θ(1)
n (ω),θ(2)

n (ω), n=1,...,N

I (4)

s.t.RDF ≥ Rmin (5)

Eω

{

N
∑

n=1

[

P (1)
s,n(ω) + P (2)

s,n(ω)
]

}

≤ P s
max (6)

Eω

{

N
∑

n=1

Pr,n(ω)

}

≤ P r
max (7)
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Fig. 2: Time-frequency transmission structure by Lemma 1.

P (1)
s,n(ω), P (2)

s,n(ω), Pr,n(ω) ≥ 0 (8)

I
(1)
n (ω) ⊆ [0, αTf ], I

(2)
n (ω) ⊆ [αTf , Tf ] (9)

π(I(1)n (ω)) = θ(1)n (ω)Tf , π(I(2)n (ω)) = θ(2)n (ω)Tf . (10)

IV. T HE SOLUTION TO THE PROBLEM(P )

Problem (P) is difficult to solve mainly because it is
hard to determine the setsI(1)n (ω) and I

(2)
n (ω) and thus the

objective functionI has no closed-form expression in general.
Fortunately, these issues can be resolved and eventually(P)
can be reformulated as a convex optimization problem, as we
present in the following.

A. Transformation of (P ) to a convex problem

In [14], we show that the optimal spectrum access should
satisfy the following two principles:

1) The source and relay nodes should transmit as soon (late)
as possible if the sensing outcome is IDLE (ACTIVE);

2) The CRN should have identical spectrum access policy
for all sub-channels inNm; that is, I(i)p = I

(i)
q for all

p, q ∈ Nm and i ∈ {1, 2}.

Let us define

θ(i)m (ω) , max
{

θ(i)n (ω), n ∈ Nm

}

, (11)

for m = 1, . . . ,M and i = 1, 2. The above principles are
formalized in the following Lemma:

Lemma 1 [14] For any given transmission time fractions
{θ

(1)
m (ω) ∈ [0, α], θ

(2)
m (ω) ∈ [0, 1− α]}Mm=1, we have that:

1) The optimal spectrum access policy of Phase 1 is
given by I

(1)
n (ω) = [0, θ

(1)
m (ω)Tf ] (I

(1)
n (ω) = [(α −

θ
(1)
m (ω))Tf , αTf ]) for all n ∈ Nm, if the sensing outcome

of Phase 1 is xm = 0 (xm = 1);
2) The optimal spectrum access policy of Phase 2 is given

by I
(2)
n (ω) = [αTf , (α + θ

(2)
m (ω))Tf ] (I

(2)
n (ω) = [(1 −

θ
(2)
m (ω))Tf , Tf ]) for all n ∈ Nm, if the sensing outcome

of Phase 2 is ym = 0 (ym = 1),

An example of the spectrum access policy in Lemma 1 is
shown in Fig. 2. According to Lemma 1, each term inside the
expectation in (2) can be greatly simplified. Forθ ∈ [0, α],
define the functions

φ(1)(θ; 0) =

∫

[0,θTf ]

Pr(Xm(t)=1|Xm(0) = 0)dt

=
λTf

λ+ µ

{

θ +
1

(λ+ µ)Tf

[

e−(λ+µ)θTf − 1
]

}

, (12)

φ(1)(θ; 1)=

∫

[(α−θ)Tf ,αTf ]

Pr(Xm(t) = 1|Xm(0) = 1)dt

=
λTf

λ+ µ

{

θ +
µ/λ

(λ+ µ)Tf

e−(λ+µ)αTf

[

e(λ+µ)θTf −1
]

}

, (13)

and forθ ∈ [0, α], define the functions

φ(2)(θ; 0)=

∫

[αTf ,(θ+α)Tf ]

Pr(Xm(t)=1|Xm(αTf ) = 0)dt

=
λTf

λ+ µ

{

θ +
1

(λ+ µ)Tf

[

e−(λ+µ)θTf − 1
]

}

, (14)

φ(2)(θ; 1)=

∫

[Tf−θTf ,Tf ]

Pr(Xm(t) = 1|Xm(αTf ) = 1)dt

=
λTf

λ+µ

{

θ +
µ/λ

(λ+µ)Tf

e−(λ+µ)(1−α)Tf

[

e(λ+µ)θTf −1
]

}

. (15)

It is easy to prove that the functionsφ(i)(θ;x) are strictly
convex inθ by considering their secondary derivations. Then,
the interference metric in (2) can be reformulated as

I1=Eω

{

M
∑

m=1

[

φ(1)

(

θ(1)m (ω);xm

)

+φ(2)

(

θ(2)m (ω); ym

)]

}

. (16)

After some simple manipulations, the problem(P) can be
reformulated as a convex optimization problem, i.e.,

min
P (1)

s,n(ω),P (2)
s,n(ω),Pr,n(ω),

θ(1)
m (ω),θ(2)

m (ω),n∈N , m∈M

I1 (17)

s.t. R1 ≥ Rmin, R2 ≥ Rmin (18)

Eω

{

N
∑

n=1

[

P
(1)

s,n(ω) + P (2)
s,n(ω)

]

}

≤P s
max (19)

Eω

{

N
∑

n=1

Pr,n(ω)

}

≤ P r
max (20)

P (1)
s,n(ω), P (2)

s,n(ω), Pr,n(ω) ≥ 0, n ∈ N (21)

0 ≤ θ(1)m (ω) ≤ α, 0 ≤ θ(2)m (ω) ≤ 1− α, m ∈ M, (22)

whereR1, R2 are determined by

R1=W
∑

m∈M

∑

n∈Nm

Eω

[

θ(2)m (ω) log2

(

1+
P

(2)
s,n(ω)gs,dn

θ
(2)
m (ω)

)

+θ(1)m (ω) log2

(

1+
P

(1)
s,n(ω)max{gs,rn , gs,dn }

θ
(1)
m (ω)

)]

, (23)

R2=W
∑

m∈M

∑

n∈Nm

Eω

[

θ(1)m (ω) log2

(

1+
P

(1)
s,n(ω)gs,dn

θ
(1)
m (ω)

)

+θ(2)m (ω) log2

(

1+
P

(2)
s,n(ω)gs,dn +Pr,n(ω)gr,dn

θ
(2)
m (ω)

)]

.(24)

B. The optimal solution of (P)

By solving the KKT conditions of the derived convex op-
timization problem (17)-(22), we derived the optimal solution
for each realization of the NSIω and fixed dual variables [14]:

The optimal value of the ratioP (1)
s,n(ω)/θ

(1)
m (ω) is given by

P
(1)
s,n(ω)

θ
(1)
m (ω)

=positive rootx of (26) if it exists, otherwise0,(25)
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and the rootx is determined by

ζmax{gs,rn , gs,dn }

1 + xmax{gs,rn , gs,dn }
+

σgs,dn

1 + xgs,dn

= ε ln 2, (26)

which is equivalent with a quadratic equation with closed-form
solutions.

The optimal values of the ratiosP (2)
s,n(ω)/θ

(2)
m (ω) and

Pr,n(ω)/θ
(2)
m (ω) are given by

P
(2)
s,n(ω)

θ
(2)
m (ω)

=

(

ζ

(ε− ηgs,dn /gr,dn ) ln 2
−

1

gs,dn

)+

, (27)

Pr,n(ω)

θ
(2)
m (ω)

=
σ

η ln 2
−

1

gr,dn

−
P

(2)
s,n(ω)gs,dn

θ
(2)
m (ω)gr,dn

, (28)

with (·)+ , max(·, 0), if Pr,n(ω) > 0 is satisfied. Otherwise,
if Pr,n(ω) = 0, we obtain

P
(2)
s,n(ω)

θ
(2)
m (ω)

=

(

ζ + σ

ε ln 2
−

1

gs,dn

)+

, (29)

Pr,n(ω)

θ
(2)
m (ω)

= 0. (30)

The optimal value ofθ(1)m (ω) is determined as























































θ
(1)
m (ω)=

[

− 1
(λ+µ)Tf

ln

{

1− λ+µ
λ

∑

n∈Nm

[

σf

(

gs,dn

P (1)
s,n(ω)

θ
(1)
m (ω)

)

+ζf

(

max{gs,rn , gs,dn }
P (1)

s,n(ω)

θ
(1)
m (ω)

)]}]α

0

, if xm = 0,

θ
(1)
m (ω)=

[

α+ 1
(λ+µ)Tf

ln

{

λ+µ
µ

∑

n∈Nm

[

σf

(

gs,dn

P (1)
s,n(ω)

θ
(1)
m (ω)

)

+ζf

(

max{gs,rn , gs,dn }
P (1)

s,n(ω)

θ
(1)
m (ω)

]

− λ
µ

})]α

0

, if xm = 1,

(31)

where the value ofP (1)
s,n(ω)/θ

(1)
m (ω) is given by (25),f(x) ,

log2 (1 + x)− x
(1+x) ln 2 , [x]y0 , min{max{x, 0}, y}, andln(x)

is extended to take the value−∞ for x ∈ (−∞, 0] to simplify
the formulations. The optimal value ofθ(2)m (ω) is given by


























































θ
(2)
m (ω)=

[

− 1
(λ+µ)Tf

ln

{

1− λ+µ
λ

∑

n∈Nm

[

ζf

(

gs,dn

P (2)
s,n(ω)

θ
(2)
m (ω)

)

+σf

(

gs,dn

P (2)
s,n(ω)

θ
(2)
m (ω)

+ gr,dn
Pr,n(ω)

θ
(2)
m (ω)

)]}]1−α

0

, if ym = 0,

θ
(2)
m (ω)=

[

1− α+ 1
(λ+µ)Tf

ln

{

λ+µ
µ

∑

n∈Nm

[

ζf

(

gs,dn

P (2)
s,n(ω)

θ
(2)
m (ω)

)

+σf

(

gs,dn

P (2)
s,n(ω)

θ
(2)
m (ω)

+ gr,dn
Pr,n(ω)

θ
(2)
m (ω)

)]

− λ
µ

}]1−α

0

, if ym = 1,

(32)

where the values ofP (2)
s,n(ω)/θ

(2)
m (ω) and Pr,n(ω)/θ

(2)
m (ω)

are given by (27)-(30). Substituting (31)-(32) into (25)-(30),
the optimal values ofP (1)

s,n(ω), P
(2)
s,n(ω), Pr,n(ω) are derived.

We now optimize the dual variablesν , {ζ, σ, ε, η}T by
the subgradient method [14], where the subgradienth(ν) at

the dual pointν is given by

h(ν)=











(Rmin −R
⋆

1)/W

(Rmin −R
⋆

2)/W
∑N

n=1 Eω

{

P
(1)⋆
s,n (ω) + P

(2)⋆
s,n (ω)

}

− P s
max

∑N

n=1 Eω

{

P ⋆
r,n(ω)

}

− P r
max











, (33)

whereP (1)⋆
s,n (ω), P (2)⋆

s,n (ω) andP ⋆
r,n(ω) are derived throught

(25)-(32) at the dual pointν, andR
⋆

1 andR
⋆

2 are the corre-
sponding rate values in (23) and (24), respectively.

C. Real-time implementations

In the following, we show that dual variableν can
be optimized off-line, which reduces the amount of real-
time computations greatly. Moreover, by utilizing the struc-
ture of the optimal solution (25)-(32), the primal solu-
tions {P

(1)
s,n(ω), P

(2)
s,n(ω), Pr,n(ω), θ

(1)
m (ω), θ

(2)
m (ω)} can be

updated on-line efficiently based on real-time NSIω of each
frame, while generating quite short sensing-transmissiondelay.

1) Off-line dual optimization: These expectations (23), (24)
and (33) do not have closed-form expressions. In practice,
one can compute the subgradienth(ν) by means of Monte
Carlo simulations. Specifically, one may randomly generatea
set of realizations of the NSIω following the distributions
of the CQIs and sensing outcomes. Then, the expectation
terms in (23), (24) and (33) can be obtained by computing
(25)-(32), (23) and (24) for each realization ofω, and then
averaging the corresponding terms in (23), (24) and (33) over
these realizations. By this, the subgradient updates with high
computation burden can be performed off-line without using
real-time NSI.

2) On-line primal solution update: In practice, the BS
(destination) acquires the CQI{gs,rn (l), gs,dn (l), gr,dn (l)}Nn=1

of Frame l even before Framel starts through prediction
[16], if the wireless channel varies slowly across the frames.

Therefore, the BS can compute the ratio
P (1)

s,n(ωl)

θ
(1)
m (ωl)

,
P (2)

s,n(ωl)

θ
(2)
m (ωl)

and Pr,n(ωl)

θ
(2)
m (ωl)

according to (26)-(30) in Framel− 1. While the

sensing outcomexm(l) andym(l) is still unknown at the BS
at this moment, the BS can computeθ(1)m (ωl) and θ

(2)
m (ωl)

in (31) and (32) by considering the two possible values of of

xm(l) and ym(l), respectively. Then, the BS sends
P (1)

s,n(ωl)

θ
(1)
m (ωl)

,

P (2)
s,n(ωl)

θ
(2)
m (ωl)

and the possible vales ofθ(1)m (ωl) andθ(2)m (ωl) to the

MT before Framel starts, and sendsPr,n(ωl)

θ
(2)
m (ωl)

and the possible

values ofθ(2)m (ωl) to the relay before Phase 2 of Framel starts.
After receiving the feedbacks from the destination, the MT

performs spectrum sensing at the beginning of Phase 1, and
then selects the value ofθ(1)m (ωl) according to the sensing
outcomexm(l). After Phase 1 of Framel, the MT and relay
node perform spectrum sensing again at the beginning of Phase
2, and then selects the value ofθ

(2)
m (ωl) in accordance with the

sensing outcomesym(l). Therefore the MT and relay nodes
can transmit information signals right after spectrum sensing
with almost no sensing-transmission delay.
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Fig. 3: The interference mitigation performance of different
spectrum sharing policies.

V. NUMERICAL EXPERIMENTS

We now compare our dynamic transmission policy with 2
reference policies:

1. The first one is arelay-free policy [10], where the source
transmits signals directly to the destination without using the
relay node.

2. We then consider atime-hopping random access policy
with no spectrum sensing [17], where the CRN’s transmission
time is chosen randomly in each frame like frequency hopping.
In this policy, the transmission time of the CRN satisfies
θ
(i)
n (ωl) = θ for n = 1, . . . , N , i = 1, 2 and all frame index
l, and the transmission powers of the source and relay are
allocated optimally to maximizeRDF .

We consider that the source, relay and destination stands
in a line and the relay locates in the middle of the source
and destination. The CRN hasN = 16 sub-channels, and
the ad-hoc network hasM = 4 bands. Thus, each ad-hoc
band overlaps with 4 CRN sub-channels. The channel gain
between every two nodes of the CRN at each sub-channel can
be decomposed into a small-scale Rayleigh fading and a large-
scaled path loss component with a path-loss factor of 4. The
small-scale fading are i.i.d. across the sub-channels to simulate
a frequency-selective environment. We assume that the power
constraints of the source and relay nodes are the same and the
signal-to-interference-plus-noise ratio (SINR) of the source-
destination link isP s

maxE{g
s,d
n }

N
= 5dB. The parameters of ad-

hoc traffic model satisfyµTf = λTf = 1. The value ofα is
chosen to be0.5.

Figure 3 illustrates the interference mitigation performance
of the spectrum sharing policies. We find that our policy
achieves better interference mitigation performance thanthe
reference policies. More specifically, the relay-free policy is
slightly worse than our policy in low spectrum efficiency
region. However, if the required uplink spectrum efficiencyis
relative high, the interference mitigation performance ofrelay-
free policy is quite poor, because of its relative low capacity.
The spectrum efficiency of our policy is80% higher than that

of the relay-free policy, when the ergodic traffic collisiontime
per second is larger than0.01s. The time-hopping policy has
quite poor performance for relative low spectrum efficiency,
because it has not utilized the spectrum sensing results.

VI. CONCLUSIONS

This paper studied a spectrum sharing scenario between co-
operative relay and ad-hoc networks. A dynamic transmission
policy of the CRN is proposed which requires little real-time
computation and guarantees high traffic prediction accuracy.
The benefits of spectrum sensing and cooperative relay tech-
niques are demonstrated by our numerical experiments.
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