
Quantifying Information Leakage in Finite Order
Deterministic Programs ∗

Ji Zhu† and Mudhakar Srivatsa‡

Dept of Electrical and Computer Engg, University of Illinois at Urbana-Champaign†

IBM T.J. Watson Research Center‡

jizhu1@illinois.edu, msrivats@us.ibm.com

October 27, 2018

Abstract

Information flow analysis is a powerful technique for reasoning about the sensitive
information exposed by a program during its execution. While past work has proposed
information theoretic metrics (e.g., Shannon entropy, min-entropy, guessing entropy,
etc.) to quantify such information leakage, we argue that some of these measures not only
result in counter-intuitive measures of leakage, but also are inherently prone to conflicts
when comparing two programs P1 and P2 − say Shannon entropy predicts higher leakage
for program P1, while guessing entropy predicts higher leakage for program P2. This
paper presents the first attempt towards addressing such conflicts and derives solutions
for conflict-free comparison of finite order deterministic programs.

1 Introduction

Protecting sensitive and confidential data is becoming more and more important in many fields
of human activities, such as electronic commerce, auctions, payments and voting. Information
flow analysis is a powerful technique for reasoning about the sensitive information exposed by
a program during its execution [1–3]. Existing approaches to information flow analysis can
be broadly classified into two: qualitative and quantitative approach. Qualitative information
flow analysis, such as taint tracking [4, 5], are coarse-grained − often only distinguishing
between possible leakage and no leakage.

Recently, quantitative information analysis [1, 6–8] techniques have been proposed to al-
leviate this problem by offering a more fine-grained quantitative assessment of information
leakage. Such techniques adopt information theoretic metrics [9, 10] such as mutual infor-
mation between the secret/sensitive input to a program and its public output to quantify
information leakage, as shown in figure 1. In doing so, several entropy measures have been

∗A shorter version of this paper is submitted to ICC 2011.

1

ar
X

iv
:1

00
9.

39
51

v1
 [

cs
.C

R
]

 2
0

Se
p

20
10

Figure 1: Quantification of Information Leakage in a Program

used to assess mutual information, including, Shannon entropy, Renyi entropy, Guessing en-
tropy (see [6, 7, 11] for more details), and so on. However, in most past work, the choice of
such entropy measure has been ad hoc (mostly driven by sample programs) − sometimes
leading to counter-intuitive results. Consider the following two programs (by Smith[7]), where
the secret input A is uniformly distributed 8k-bit integer with k ≥ 2, & denotes bitwise and
and 07k−11k+1 denotes a binary constant.

PROG P1

if A ≡ 0 mod 8 then
O = A

else
O = 1

end if

PROG P2

O = A & 07k−11k+1

Intuitively, one might argue that PROG P1 has much higher information leakage than
PROG P2 when k is large, because it reveals complete information about the secret input
with probability 1

8
; on the other hand, when k is large, PROG P2 reveals roughly 1

8
of the

number of bits in A. However, applying Shannon entropy measure and computing the mutual
information I1 between A and O yields a counter intuitive result:

P1 : I1(A,O) = −7

8
log

7

8
− 1

8
log

1

28k
= k + 0.169,

P2 : I1(A,O) = −2k+1 · 27k−1

28k
log

27k−1

28k
= k + 1,

i.e., leakage by PROG P1 is smaller than leakage by PROG P2, which violates popular con-
sensus in information leakage literature [6, 7]. Indeed, from a security standpoint, PROG P1
leaves A highly vulnerable to being guessed (e.g., when it is a multiple of 8), while PROG P2
does not (at least for large k).

In this paper we argue that past work has failed to address which entropy measure(s) is
best suited for quantifying information leakage. Further, this paper shows that some of these
entropy based measures (proposed by past work) may be conflicting when they are applied
to two programs P1 and P2, i.e., entropy measure H predicts higher leakage for program P1,
while entropy measure H ′ predicts higher leakage for program P2. This paper (to the best
of our knowledge) presents the first attempt to analyze different information leakage metrics,
show the existence of conflicts in measures proposed by past work and propose a new method
for comparing information leakage in finite order deterministic programs.

Outline. The paper is structured as follows. In Section 2, we present a program model for
finite order deterministic programs. Section 3 shows the existence of conflicts between leakage

2

measures proposed by past work, followed by our conflict-free leakage metric in Section 4.
We analyze a few sample programs using our leakage measure in Section 5 and conclude in
Section 6.

2 Model Framework

In this section, we present a formal model for a single-input single-output (SISO) deterministic
program and Renyi-entropy based definition of information leakage. A SISO deterministic
program is modeled as a group of onto mappings: O = F|A|(A),∀|A| ∈ N+, where A is
the high (secret/sensitive) input and O is the program output, where |A| denotes the size
of the high input set. In other words, for every |A| ∈ N+, F|A| is an onto mapping from
A ∈ A = {0, 1, ...|A|− 1} to O ∈ O. We note that |A| acts a tune able security parameter for
the program; assuming |O| is fixed, one may be able to increase |A| with the goal of improving
the security level of the program. More formally, a SISO deterministic program is defined as
follows:

Definition 2.1. A SISO Deterministic Program is denoted as a 4-tuple (q|A|, |A|, F|A|,p|A|),
where ∀|A| ∈ N+, A is a random variable in A = {0, 1...|A| − 1} with distribution vector
q|A|, O = F|A|(A) is an onto mapping from A to O, and p|A| denotes the distribution vector
of output O under mapping F|A|(·).

A SISO deterministic program (q|A|, |A|, F|A|,p|A|) is said to be a Finite Order SISO De-
terministic Program (FOP) if and only if

sup
|A|∈N+

||p|A|||0 <∞

It is called an Infinite Order SISO Deterministic Program (IOP) if and only if

sup
|A|∈N+

||p|A|||0 =∞

where ||p|A|||0 is the zero norm of p|A|.

Unless explicitly specified, in the following portions of this paper, we assume that the
secret input A has an uniform prior distribution in A for any |A|.

A key difference between FOPs and IOPs is that the entropy of output O is bounded
for FOPs, and so is information leakage. Assuming that |O| is fixed (independent of |A|),
intuitively the security level of a real FOP will be non-decreasing in |A|. In the following
portions of this paper we focus on information leakage metrics for FOPs.

Having formalized the program model, we define leakage using Renyi entropy [12], which
covers most of the entropy metrics adopted by past work on information flow analysis [6, 7,
11, 13], such as Shannon entropy, min-entropy, vulnerability one-guess entropy (proposed by
Hamadou et. al, [6]), etc. Renyi entropy is defined as follows: For a random variable X with
distribution p = (p0, p1, ..., pn), its Renyi entropy is defined as:

Hα(X) =
1

1− α
log

n∑
i=0

pαi

3

where α is a parameter. In this paper we also apply Hα(p) to denote Hα(X). When α = 1,
Renyi entropy becomes Shannon entropy; when α → ∞, H∞(X) = − log supi pi is the min-
entropy; when α = 0, H0(X) denotes the vulnerability one-guess entropy.

According to general consensus in information flow analysis literate, information leakage
(IL) of a program C = (q|A|, |A|, F|A|,p|A|) (at a given |A|) under α-Renyi entropy metric is
defined as the mutual information Iα between O and A:

ILα(C, |A|) = Iα(O,A) = Hα(O)−Hα(O|A) = Hα(O)

where ILα(C, |A|) denotes a class of information leakage metrics (for different values of α) of
program C. Note that since the program is deterministic Hα(O|A) = 0,∀α.

It is worth noting that the mutual information Iα(O,A) may also be defined as Iα(O,A) =
Hα(A) − Hα(A|O), which differs from Hα(O) − Hα(O|A) when α 6= 1. This alternative
definition is not considered here because when A is uniformly distributed, Iα(O,A) = Hα(A)−
Hα(A|O) reduces to be Shannon mutual information for all α, as shown below:

Hα(A)−Hα(A|O) = − log |A| −
∑
o∈O

P (O = o)Hα(A|O = o)

= − log |A|+
∑
o∈O

P (O = o) log |{a : F|A|(a) = o}|

= − log |A|+
∑
o∈O

P (O = o) log (|A|P (O = o)) = H1(O)

In the next section, we show that this definition of information leakage results in conflicts
when comparing two programs. In the subsequent sections we develop solutions for conflict-
free comparison of two programs.

3 Conflicts in Information Leakage metrics

In this section we show several examples of conflicts while comparing two program’s informa-
tion leakage. Recall PROG P1 and PROG P2 from Section 1. Consider the Renyi mutual
information of these two PROGs when α = 0, 1,∞.

IL0(P1, 28k) = 8k − 3, IL0(P2, 28k) = k + 1

IL1(P1, 28k) = k + 0.169, IL1(P2, 28k) = k + 1

IL∞(P1, 28k) = 0.134, IL∞(P2, 28k) = k + 1

Note that only the comparing IL0(P1, 28k) and IL0(P2, 28k) agrees with our intuition that
P1 leaks much more information than P2; however, comparing IL1(P1, 28k) and IL1(P2, 28k)
shows that P1 leaks about the same amount of information as P2; comparing IL∞(P1, 28k)
and IL∞(P2, 28k) shows that P2 leaks much more information than P1. We see that the
leakage measures for different α values conflict with each other, and some of them are even
counter-intuitive.

Smith [7] and Hamadou et. al. [6] argue that IL0 is more important than IL1 in infor-
mation flow analysis, because in the above example, IL0 coincides with the intuition but IL1

4

does not. However, it is not difficult to come up with other examples where IL1 coincides
with the intuition but IL0 does not. Consider the following two programs, where the high
input A is an uniformly distributed k-bit integer with k ≥ 2 and L is a parameter in A.

PROG P3 Password Checker

if A = L then
O = 1

else
O = 0

end if

PROG P4 Binary Search

if A ≥ L then
O = 1

else
O = 0

end if

Consider L = |A|/2. The intuition is that PROG P4 leaks much more information than
PROG P3, because when k is large, the probability of A = L becomes so low that PROG P3
leaks almost no information. But PROG P4 always leaks 1 bit of information, irrespective of
|A|. Now, consider the Renyi mutual information when α = 0, 1,∞:

IL0(P3, 2k) = 1, IL0(P4, 2k) = 1

IL1(P3, 2k) = H1(
|A|−1
|A| ,

1
|A|), IL1(P4, 2k) = 1

IL∞(P3, 2k) = − log(1− 1
|A|), IL∞(P4, 2k) = 1

We see that the comparing result when α = 0 fails to coincide with the intuition, while the
comparing results when α = 1 or ∞ match the intuition. The conflict between information
leakage metrics for different values of α appears again.

The following lemma indicates that the conflict between different metrics is very common.

Lemma 3.1. ∀α ≥ 0, β ≥ 0, α 6= β, there exists two SISO deterministic programs C1 =
(q|A|, |A|, F|A|,p|A|) and C2 = (q′|A|, |A|, F ′|A|,p′|A|) with q|A| and q′|A| both being uniform dis-

tributions in A, such that ∃D ∈ R+, if |A| > D,

ILα(C1, |A|) > ILα(C2, |A|) (1)

ILβ(C1, |A|) < ILβ(C2, |A|) (2)

Proof. The key idea to construct the programs stem from the following property of Renyi
entropy Hα(p): Hα(p) is a monotone decreasing function of α for any specific p. Moreover, if
p is uniform, Hα(p) is a constant (independent of α); if p contains a peak probability and a
large number of small probabilities, Hα(p) will decreasing quickly as α increases (see [12] for
details).

5

First, let us suppose 1 < α < β ≤ ∞. Pick values p0 ∈ (0, 1), n ∈ N+ such that

1

21−1/β < p0 <
1

21−1/α (3)

log

[
pβ0 +

(1− p0)β

nβ−1

]
> 1− β (4)

log

[
pα0 +

(1− p0)α

nα−1

]
< 1− α (5)

We note that one can first pick p0 satisfying (3); then, to satisfy (4) and (5) one simply needs
to choose a sufficiently large value for n.

Specify the mapping function F|A| for C1 so that the distribution ofO is p|A| = (p0, p1, ..., pn)
with p0 chosen as described above and p1 = ... = pn = 1−p0

n
for any |A| > n + 1, and specify

the mapping function F ′|A| for C2 so that the distribution of O′ is p′|A| = (1/2, 1/2) for any

|A|. Then, for any |A| > n+ 1,

ILα(C1, |A|) = Hα(p|A|) =
1

1− α
log

[
pα0 +

(1− p0)α

nα−1

]
> 1 = Hα(p′|A|) = ILα(C2, |A|),

ILβ(C1, |A|) = Hβ(p|A|) =
1

1− β
log

[
pβ0 +

(1− p0)β

nβ−1

]
< 1 = Hβ(p′|A|) = ILβ(C2, |A|),

equations (1) and (2) are satisfied.
In the case that 1 < β < α ≤ ∞, switch the mapping function of F|A| and F ′|A| above, so

that the distribution of O|A| is q and the distribution of O′|A| is p, then (1) and (2) are still
valid.

Second, suppose 0 ≤ α < β < 1, pick 2 ≤ m,n ∈ N+ so that

1

1− α
log

[
(
1

2
)α + (

1

2
)αn1−α

]
> logm >

1

1− β
log

[
(
1

2
)β + (

1

2
)βn1−β

]
(6)

A sufficiently large n for (6) can make it possible to choose a valid m.
Specify the mapping function F|A| for C1 so that the distribution ofO is p|A| = (p0, p1, ..., pn)

with p0 = 1
2

and p1 = ... = pn = 1
2n

for any |A| > n + 1, and specify the mapping function
F ′|A| for C2 so that the distribution of O′ is p′|A| = (1/m, 1/m, ...1/m) for any |A|. Then, for

any |A| > n+ 1, equations (1) and (2) are satisfied. The case of 0 ≤ β < α < 1 can be proved
by switching F|A| and F ′|A| as done before.

Third, suppose α and β belong to [0, 1] and [1,∞] separately. For example, if α < 1 ≤ β,
pick a value β′ such that α < β′ < 1, and construct C1 and C2 by the same method above,
with β′ in place of β. Then (1) and (2) can be satisfied because ILβ′(C2, |A|) = ILβ(C2, |A|) =
ILα(C2, |A|) as p′|A| is uniform. Equations (1) and (2) in other case of α and β can be justified
in the same way.

4 Quantifying Information Leakage in FOPs

So far we have shown that some measures of information leakage are not only counter-intuitive,
but also introduce conflicts when comparing two programs. In this section we develop a new

6

approach to quantify and compare information leakage in programs. We first sketch the key
idea behind our approach. Recall that in FOPs, |A| acts as a security parameter for the
program − intuitively, increasing |A| increases the security level of the program (since, |O| is
finite and constant − independent of |A|). Recall the password checker PROG P3 − observe
that increasing the length of the password (A) by one bit doubles the security level of the
program.

In this paper we propose that two FOPs C1 and C2 should be compared by examin-
ing lim|A|→∞ ILα(C1, |A|) lim|A|→∞ ILα(C2, |A|). In particular, we show that one can obtain
conflict free comparison of programs using a relative leakage metric defined by the ratio
lim|A|→∞

ILα(C1,|A|)
ILα(C2,|A|) . Evidently, if the relative leakage metric is 0, then program C2 leaks more

information than program C1; if the relative leakage metric is∞, then program C1 leaks more
information than program C2. Now, if the relative leakage metric of programs C1 and C2 is
a constant c (c 6= 0, ∞), one may increase the size of the secret input (namely, log |A|) for
program C1 by a constant factor relative to the size of the secret input for program C2 to
ensure that the programs C1 and C2 have equal security level; hence, in this case we conclude
that the programs C1 and C2 are equal with respect to information leakage. In this section, we
formalize this intuition and present a conflict-free approach to comparing information leakage
in FOPs.

We first show that for any C = (q|A|, |A|, F|A|,p|A|), ILα(C, |A|) is closely related to
||p|A|||∞.

Lemma 4.1. ∀2 ≤ n ∈ N , for any probability distribution vector p = (p1, p2, ...pn) with
ordered sequence ||p||∞ = p1 ≥ p2 ≥ ... ≥ pn, then,

∀1 < α ≤ ∞, lim
p1→1

Hα(p)

1− p1
=

α

α− 1
(7)

lim
p1→1

H1(p)

−(1− p1) log(1− p1)
= 1 (8)

∀α ∈ (0, 1),

{
lim infp1→1

Hα(p)
(1−p1)α > 0

lim supp1→1
Hα(p)
(1−p1)α <∞

(9)

Proof. Consider (7), use substitution t = 1− p1. When α =∞,

lim
p1→1

H∞(p)

1− p1
= lim

t→0

− log(1− t)
t

= 1

When 1 < α <∞, note that ∀p with n ≥ 2,

1

(n− 1)α−1
≤

n∑
i=2

(pi/t)
α ≤ 1,

7

so we have

lim
p1→1

Hα(p)

1− p1
=

1

1− α
lim
t→0

(1− t)α − 1 +
∑n

i=2 p
α
i

t

=
1

1− α

(
−α + lim

t→0
tα−1

n∑
i=2

(pi/t)
α

)
=

α

α− 1

Thus, equation (7) holds. Next consider (8).
When α = 1, note that ∀p with n ≥ 2,

0 ≤

∣∣∣∣∣
n∑
i=2

pi
t

log
pi
t

∣∣∣∣∣ ≤ log(n− 1),

and we have

lim
p1→1

H1(p)

(1− p1) log(1− p1)

= lim
t→0

(1− t) log(1− t) +
∑n

i=2 pi log pi
−t log t

= 1− lim
t→0

1

log t

n∑
i=2

(pi
t

log
pi
t

)
= 1

Thus, equation (8) holds. Next consider (9).
When 0 < α < 1, note that ∀p with n ≥ 2,

1 ≤
n∑
i=2

(pi/t)
α ≤ (n− 1)1−α,

so we have

lim sup
p1→1

Hα(p)

(1− p1)α

≤ 1

1− α

(
lim
t→0
−αt1−α + lim sup

t→0

n∑
i=2

(pi/t)
α

)

=
1

1− α
lim sup
t→0

n∑
i=2

(pi/t)
α ≤ (n− 1)1−α

1− α
<∞.

The other part of (9) can be proved in the same way.

Define a function Tα(·) for random distributions p = (p1, p2, ...pn) with p1 ≥ p2 ≥ ... ≥ pn:

Tα(p) =


1− p1, if α > 1

−[1− p1] log[1− p1], if α = 1

[1− p1]α, if 0 < α < 1

(10)

8

Lemma 4.1 shows that ∀α > 0, lim||p||∞→1
Hα(p)
Tα(p)

is finite. Further, if 2 ≤ n is finite and
1
n
≤ ||p||∞ < 1− ε for some ε > 0, both Hα(p) and Tα(p) will be upper bounded by log n <
∞ and will both be strictly larger than zero. This leads us to Proposition 4.2.

Proposition 4.2. For any FOP C = {q|A|, |A|, F|A|,p|A|} with q|A| being uniform in A, we
have

∀α > 0, 0 < inf
|A|

ILα(C, |A|)
Tα(p|A|)

≤ sup
|A|

ILα(C, |A|)
Tα(p|A|)

<∞

Proposition 4.2 states that as α is varied, the values of ILα differ among the levels: 1 −
||p|A|||∞,

(
1− ||p|A|||∞

)
log
(
1− ||p|A|||∞

)
,
(
1− ||p|A|||∞

)α
. Note that these levels are all

related to 1−||p|A|||∞. Intuitively, the rate of convergence of 1−||p|A|||∞ to 0 determines the
security level of a program. We formalize this notion in the following proposition:

Proposition 4.3. For any FOPs C1 = (q|A|, |A|, F|A|,p|A|) and C2 = (q′|A|, |A|, F ′|A|,p′|A|),
with q|A| and q′|A| both being uniform in A. Applying notation

fα = lim sup
|A|→∞

ILα(C1, |A|)
ILα(C2, |A|)

, gα = lim inf
|A|→∞

ILα(C1, |A|)
ILα(C2, |A|)

,

we have:

1. 
∃α > 0, fα = 0⇔ ∀β > 0, fβ = 0

∃α > 0, fα =∞⇔ ∀β > 0, fβ =∞
∃α > 0, 0 < fα <∞⇔ ∀β > 0, 0 < fβ <∞

(11)

2. 
∃α > 0, gα = 0⇔ ∀β > 0, gβ = 0

∃α > 0, gα =∞⇔ ∀β > 0, gβ =∞
∃α > 0, 0 < gα <∞⇔ ∀β > 0, 0 < gβ <∞

(12)

Proof. It follows directly from Proposition 4.2 that for any α > 0,

fα = 0⇔ lim sup
|A|→∞

Tα(p|A|)

Tα(p′|A|)
= 0, fα =∞⇔ lim sup

|A|→∞

Tα(p|A|)

Tα(p′|A|)
=∞

0 < fα <∞⇔ 0 < lim sup
|A|→∞

Tα(p|A|)

Tα(p′|A|)
<∞

gα = 0⇔ lim inf
|A|→∞

Tα(p|A|)

Tα(p′|A|)
= 0, gα =∞⇔ lim inf

|A|→∞

Tα(p|A|)

Tα(p′|A|)
=∞

0 < gα <∞⇔ 0 < lim inf
|A|→∞

Tα(p|A|)

Tα(p′|A|)
<∞

9

Note that for any intervals T, S ⊂ (0, 1) and any variables t ∈ T, s ∈ S, ∀v ∈ {0,∞},

lim sup
t∈T,s∈S

1− t
1− s

= v ⇔ lim sup
t∈T,s∈S

(1− t) log(1− t)
(1− s) log(1− s)

= v ⇔ lim sup
t∈T,s∈S

(1− t)β

(1− s)β
= v,∀β ∈ (0, 1),

lim inf
t∈T,s∈S

1− t
1− s

= v ⇔ lim inf
t∈T,s∈S

(1− t) log(1− t)
(1− s) log(1− s)

= v ⇔ lim inf
t∈T,s∈S

(1− t)β

(1− s)β
= v,∀β ∈ (0, 1),

which indicates that,

∃α > 0, lim sup
|A|→∞

Tα(p|A|)

Tα(p′|A|)
= v ⇔ ∀β > 0, lim sup

|A|→∞

Tα(p|A|)

Tα(p′|A|)
= v

∃α > 0, 0 < lim sup
|A|→∞

Tα(p|A|)

Tα(p′|A|)
<∞⇔ ∀β > 0, 0 < lim sup

|A|→∞

Tα(p|A|)

Tα(p′|A|)
<∞

∃α > 0, lim inf
|A|→∞

Tα(p|A|)

Tα(p′|A|)
= v ⇔ ∀β > 0, lim inf

|A|→∞

Tα(p|A|)

Tα(p′|A|)
= v

∃α > 0, 0 < lim inf
|A|→∞

Tα(p|A|)

Tα(p′|A|)
<∞⇔ ∀β > 0, 0 < lim inf

|A|→∞

Tα(p|A|)

Tα(p′|A|)
<∞

So we conclude that (11) and (12) are valid.

Now, we are ready to present our solution to compare information leakage of two programs:

Algorithm 4.4. For any FOPs C1 = (q|A|, |A|, F|A|,p|A|) and C2 = (q′|A|, |A|, F ′|A|,p′|A|), with
q|A| and q′|A| both being uniform in A,

BEGIN PROGRAM
if f∞ =∞ and g∞ > 0 then
C1 has a higher leakage than C2.

else if f∞ <∞ and g∞ = 0 then
C2 has a higher leakage than C1

else if 0 < g∞ ≤ f∞ <∞ then
C1 and C2 are on the same leakage level.

else
C1 and C2 are not comparable.

end if
END PROGRAM.

If IL∞(C1,|A|)
IL∞(C2,|A|) converges as |A| → ∞, Algorithm 4.4 can be rewritten as:

Algorithm 4.5.

BEGIN PROGRAM
if lim|A|→∞

IL∞(C1,|A|)
IL∞(C2,|A|) =∞ then

C1 has a higher leakage than C2

else if lim|A|→∞
IL∞(C1,|A|)
IL∞(C2,|A|) = 0 then

C2 has a higher leakage than C1

else

10

C1 and C2 are on the same leakage level.
end if
END PROGRAM.

Due to Algorithm 4.5, it is natural to define the leakage level of a FOP C as the rate of
convergence of IL∞(C, |A|) as |A| → ∞:

Definition 4.6. Leakage Level For any FOPs C = (q|A|, |A|, F|A|,p|A|) with q|A| being
uniform in |A|, if IL∞(C, |A|) converges as |A| → ∞, then the leakage level of C is defined

to be Θ[14]
(
IL∞(C, |A|)

)
= Θ

(
1− ||p|A|||∞

)
.

We claim that algorithm 4.4 (and thus algorithm 4.5) offers a conflict-free solution to com-
paring information leakage of two programs. The proof follows directly from Proposition 4.3.
We note that in algorithm 4.4 that there may be cases wherein two programs are incompa-
rable. However, we claim that it may be impossible to offer a more fine-grained comparison
of two programs using Renyi-entropy measure as follows. First, we observe that in Algorithm
4.4, information leakage measures for two are distinguishable if and only if the ratio of their
min-entropy leakage metric is either 0 = 1/∞ or ∞. The following lemma shows that it is
impossible to reduce this ratio to some finite D < ∞:

Lemma 4.7. ∀D > 1, ∃α, β ∈ (0,∞], α 6= β, ∃ FOPs C1 = (q|A|, |A|, F|A|,p|A|) and C2 =
(q′|A|, |A|, F ′|A|,p′|A|), with q|A| and q′|A| both being uniform in A, such that,

lim
|A|→∞

ILα(C1, |A|)
ILα(C2, |A|)

> D but

lim
|A|→∞

ILβ(C1, |A|)
ILβ(C2, |A|)

<
1

D

Proof. We first give an intuitive explanation of the proof of Lemma 4.7 here. Recall from
Lemma 4.1 that it is feasible to make Hα(p)

Hβ(p)
as large as possible for distribution p with ||p||∞

close enough to 1. This allows us to construct a program C1 with ||p|A|||∞ close to 1, so
that we have ILα(C1, |A|)/ILβ(C1, |A|) > D2 (when |A| is large) and a program C2 with
ILα(C2, |A|) = ILβ(C2, |A|) =

√
ILα(C1, |A|)ILβ(C1, |A|) (when |A| is large). Clearly, the

constructed programs C1 and C2 satisfies Lemma 4.7.
Here we offer a simple example of C1 and C2. Choose p0 ∈ (0, 1), 2 ≤ n ∈ N such that,

2−1/D < p0 < 1

log n > D − α

1− α
log(1− p0)

Specify C1 so that p|A| = (p0,
1−p0
n
, 1−p0

n
, ...1−p0

n
) for any |A| > n + 1, and specify C2 so that

p′|A| = (1/2, 1/2) for any |A|. And consider 0 < α < 1, β =∞, then

lim
|A|→∞

ILα(C1, |A|)
ILα(C2, |A|)

=
1

1− α
log
[
pα0 + (1− p0)αn1−α] ≥ 1

1− α
log
[
(1− p0)αn1−α] > D

lim
|A|→∞

ILβ(C1, |A|)
ILβ(C2, |A|)

= − log p0 < 1/D

11

5 Experimental Results

In this section, we report results obtained by applying our technique to compare information
leakage of two programs. We begin by reexamining PROG P4 using our Algorithms. Consider
four different parameter values of L: L = |A|/c, L = c log |A|, L = c

√
|A|, L = c where c > 2

is certain constant. Then,



L = |A|/c, IL∞(P4, |A|) = log[c
c−1]

L = c log |A|, IL∞(P4, |A|) = − log
[
1− log |A|

|A|

]
≈ log |A|

|A|

L = c
√
|A|, IL∞(P4, |A|) = − log

[
1− c

√
|A|
|A|

]
≈ c√

|A|

L = c, IL∞(P4, |A|) = − log
[
1− c

|A|

]
≈ c
|A|

According to definition 4.6, for PROG P4, when L = |A|/c, the leakage level is Θ(1);
when L = c log |A|, the leakage level is Θ (log |A|/|A|); when L = c

√
|A|, the leakage level is

Θ
(

1/
√
|A|
)

; when L = c the leakage level is Θ (1/|A|). PROG P4 leaks more information

as L decreases. The result matches the intuition of program flow leakage. Indeed as |A| →
∞ then L = |A|

c
leaks non-zero information (e.g., when c = 2 the program leaks one bit of

information); while for all other values of c considered above the program leaks almost no
information.

Let us now consider program P5 (see below): A is the high input and 1 < L ∈ N+ is an
integer parameter.

PROG P5

O ≡ A mod L

For any value of 1 < L ∈ N+, ||p|A|||∞ = d|A|/Le
|A| →

1
L

as |A| → ∞, so IL∞(P5, |A|) is

finite for all |A|. Thus P5 with any finite L has leakage level Θ(1), which indicates that P5 is
on the same security level as P4 with L = |A|/c.

Let us now consider another program P6 (see below): A is an integer with k bits (|A| = 2k),
and 0 ≤ L ≤ k is an integer parameter.

PROG P6

if A consists of L bits of 1 and k − L bits of 0 then
O = 1

else
O = 0

end if

Consider different values of L: L = 0, 1, 2, 3... Then

IL∞(P6, 2k) = − log

[
1−

(
k
L

)
2k

]
≈
(
k
L

)
2k

Because
(
k
L

)
/
(

k
L+1

)
→ 0 as k →∞, the leakage of PROG P6 increases as L increases. Actually,

the leakage level of P6 is Θ
(
kL/2k

)
. PROG P6 with L = 0 has the same leakage level as

12

PROG P4 with L = c; PROG P6 with L = 1 has the same leakage level as PROG P4 with
L = c log |A|.

We have admit with regret that Algorithm 4.4 still unable to distinguish all FOPs, take
the following program for example, where A is the high input with k-bits and L ∈ N is an
integer parameter.

PROG P7

if log |A| = k is even then
O ≡ A mod 2

else
O = 1{A=L}

end if

PROG P7 has leakage level Θ (1) when log |A| is even, but has leakage level Θ (1/|A|)
when log |A| is odd. When comparing P7 (L = 1) with P4 (L = c log |A|), we have f∞ = ∞
but g∞ = 0. It is not applicable to determine a constant leakage level of P7 since it switches
between high and low leakage constantly.

6 Summary

In this paper we point out important drawbacks in past approaches to information-theoretic
measures for quantifying program leakage. We show using examples that some of the metrics
proposed by past work may not only be counter-intuitive but also conflict with each other. We
have presented a novel conflict-free approach to compare information leakage in two programs
and show that it may be impossible to derive a more fine-grained comparison using Renyi-
entropy based leakage measures. Using several examples we show that the proposed approach
vastly outperforms past approaches in matching popular consensus on program information
leakage.

References

[1] M. Backes, B. Kopf, and A. Rybalchenko, “Automatic discovery and quantification of
information leaks,” in IEEE Symposium on Security and Privacy, pp. 141 –153, 2009.

[2] J. Wittbold and D. Johnson, “Information flow in nondeterministic systems,” in IEEE
Symposium on Security and Privacy, pp. 144–161, 1990.

[3] M. Clarkson, A. Myers, and F. Schneider, “Belief in information flow,” in 18th IEEE
Computer Security Foundations Workshop, pp. 31 – 45, 2005.

[4] A. Sabelfeld and A. C. Myers, “Language-based information flow security,” IEEE Journal
on Selected Areas of Communication, 2003.

[5] R. Giacobazzi and I. Mastroeni, “Abstract non-interference: Parameterizing non-
interference by abstract interpretation,” in ACM Symposium on Principles of Program-
ming Languages, 2004.

13

[6] S. Hamadou, V. Sassone, and C. Palamidessi, “Reconciling Belief and Vulnerability in
Information Flow,” in IEEE Symposium on Security and Privacy, pp. 79 –92, 2010.

[7] G. Smith, “On the foundations of quantitative information flow,” Foundations of Software
Science and Computational Structures, pp. 288–302, 2009.

[8] J. Pliam, “On the Incomparability of Entropy and Marginal Guesswork in Brute-Force
Attacks,” Progress in Cryptology—INDOCRYPT 2000, pp. 113–123, 2000.

[9] A. Teixeira, A. Souto, A. Matos, and L. Antunes, “Entropy measures vs. algorithmic
information,” ArXiv e-prints, Jan. 2009.

[10] C. Cachin, Entropy measures and unconditional security in cryptography. Zürich, 1997.

[11] J. L. Massey, “Guessing and entropy,” in IEEE International Symposium on Information
Theory, p. 204, 1994.

[12] A. RRNYI, “On measures of entropy and information,” Fourth Berkeley Symposium on
Mathematical Statistics and Probability, pp. 547–561, 1961.

[13] T. Cover and J. Thomas, Elements of information theory. John Wiley and Sons, 2006.

[14] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms.
MIT Press, 3 ed., 2009.

14

