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Abstract

To help understand the underlying mechanisms of neural networks (NNs), several
groups have, in recent years, studied the number of linear regions ` of piecewise
linear functions generated by deep neural networks (DNN). In particular, they
showed that ` can grow exponentially with the number of network parameters p,
a property often used to explain the advantages of DNNs over shallow NNs in
approximating complicated functions. Nonetheless, a simple dimension argument
shows that DNNs cannot generate all piecewise linear functions with ` linear
regions as soon as ` > p. It is thus natural to seek to characterize specific families of
functions with ` linear regions that can be constructed by DNNs. Iterated Function
Systems (IFS) generate sequences of piecewise linear functions Fk with a number
of linear regions exponential in k. We show that, under mild assumptions, Fk can
be generated by a NN using only O(k) parameters. IFS are used extensively to
generate, at low computational cost, natural-looking landscape textures in artificial
images. They have also been proposed for compression of natural images, albeit
with less commercial success. The surprisingly good performance of this fractal-
based compression suggests that our visual system may lock in, to some extent, on
self-similarities in images. The combination of this phenomenon with the capacity,
demonstrated here, of DNNs to efficiently approximate IFS may contribute to
the success of DNNs, particularly striking for image processing tasks, as well as
suggest new algorithms for representing self similarities in images based on the
DNN mechanism.

In the past few years Deep Neural Networks (DNN) have been remarkably successful in solving
problems in computer vision (e.g., Krizhevsky et al. (2012); CireşAn et al. (2012); Qi et al. (2017)),
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natural language processing (e.g., Manning et al. (2014); Collobert and Weston (2008)), signal
processing (e.g., Piczak (2015)), and even art investigation (e.g., Sabetsarvestani et al. (2019)). This
success has spawned a vast body of literature focusing on both practical and theoretical aspects of
DNNs.

One of the main topics in the theoretical investigation of DNNs is the understanding of their expres-
siveness and approximation power. The universality theorem shows that even NNs with one hidden
layer can approximate any continuous function Cybenko (1989); Hornik et al. (1989). However, these
results do not give a reasonable explanation to the power of depth, which had shown to be pivotal to
the success of DNNs. In recent years, several works showed that shallow networks are not as efficient
as deep ones in terms of their approximation power Poggio et al. (2017); Yarotsky (2017); Liang and
Srikant (2016); Cohen et al. (2016); Eldan and Shamir (2016).

In contrast with the study of approximation, the study of expressiveness focuses on understanding
the class of functions which DNN can express exactly. As modern DNNs are typically composed
of affine transformations and linear activation units (ReLU), functions expressed by DNNs must
be continuous and piecewise linear (CPwL) by construction. Moreover, it is well established that
neural networks with p parameters can express standard families of CPwL functions with O(p) linear
regions such as free knot splines and CPwL bases over triangulations (Arora et al. (2018); Yarotsky
(2017); He and Zheng (2018); Daubechies et al. (2019)). As these results do not necessarily require
the network to be deep this can be considered as an analogue of the universality theorem in terms of
expressiveness. However, DNNs can also express CPwL functions with `� p linear regions. Several
recent works Arora et al. (2018); Serra et al. (2017); Montúfar (2017); Montufar et al. (2014)) have
studied the maximal number of linear regions generated by DNNs. Their results show that for DNNs
` can in fact grow exponentially faster than p, if the depth of the network is allowed to grow. This
property is often used as a possible explanation of the advantages of DNNs over shallow networks in
expressing complex functions.

In this paper our aim is to further our understanding of the class of CPwL functions in the domain
`� p. Using a simple dimension argument we show that DNNs with p parameters cannot span all
piecewise linear functions with `� p linear regions (see Lemma 3 in Appendix A). What then are
the CPwL functions which can be expressed by a DNN with a small number of parameters? To the
best of our knowledge there is not much known on this topic, a notable exception being the works of
Daubechies et al. (2019); Grohs et al. (2019) which construct some examples of such scalar functions.

Our main result is that DNNs are capable of expressing fractal-like functions, such as the (almost)
indicator function of the fractals shown in figure 1. This construction is applicable for a wide family
of fractals arising from Iterated Functions Systems (IFS) satisfying some weak conditions.

IFS generate intricate fractal-type shapes by iteratively applying all possible combinations of a small
fixed number of functions. Throughout the history of computer vision research IFS have played
an important role Welstead (1999). IFS make it possible to generate, at low computational cost,
natural-looking landscape textures Barnsley (2014); they can be used for artificial generation of
such images in entertainment applications such as movies and video games Van Pabst and Jense
(1996). Self similarity in images has been suggested as a tool for several tasks in computer vision
including deblurring, dehazing and super resolution Bahat and Irani (2016); Michaeli and Irani
(2013); Irani (2009). IFS can also obtain surprisingly good results in image compression Jacquin
(1992), by encoding geometric similarity of small parts of an (arbitrary) image with other, slightly
larger parts elsewhere in the same (natural) image. That images compressed and then reconstructed
via this coding are perceived as reasonable approximations of the original image may be connected
as much (or more) with our visual system as with the properties of natural images; this observation is
reminiscent of the role played by similar comparisons between parts of images in Smale et al. (2010).
The particular efficiency of NNs at encoding functions or shapes generated by IFS, demonstrated
in this paper, is intriguing in light of this possible connection of IFS with the perception of natural
images through our own biological neural system, together with the observation that NNs were
originally inspired, at least in part, by an (idealized) version of the network formed by biological
neurons.
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(a) (b) (c)

Figure 1: The first few sets in the iterative construction of (a) the Cantor set, (b) The Sierpinski
triangle, and (c) the Koch curve.

1 Problem setup and main results

Prior to quoting our main result, we wish to introduce some notations pertaining to neural networks,
and give a brief introduction to iterated function systems.

1.1 Neural network notation

The term neural network is being used in the literature to describe both learning algorithms (based
upon artificial neural network architecture) and realizations of such architectures; i.e., a given
architecture with fixed coefficients to be used as a function. In this paper, we focus on a family
of functions that can be expressed through such architecture. Thus, to emphasize this distinction,
throughout the paper we refer to such functions as Neural Network Functions (NNF). Furthermore,
we limit our discussion to fully connected architectures with ReLU non-linear activation. We also
restrict our attention to the behavior of f on some fixed arbitrarily large compact set K.
Definition 1 (ReLU). Let x = (x1, . . . , xN )T , then

ReLU(x)
def
= (max(x1, 0), . . . ,max(xN , 0))T , (1)

Definition 2 (NNF). A neural network function is a function of the form

f(x) = η1 ◦ η2 ◦ · · · ◦ η2d+1(x),∀x ∈ K, (2)

where η2i−1 is an affine transformation and η2i = ReLU for all i = 1, . . . , d.

The representation of f in the form (2) is non-unique, and we refer to a specific representation as fη .
Given such a representation we denote L(fη) = d and refer to it as the depth of fη . The width of
fη is the maximal input or output dimension of all ηi comprising fη and is denoted by W (fη). We
denote the family of NNFs with depth at most d and width at most w by

NNFn1→n2

w,d
def
= {f : K ⊆ Rn1 → Rn2 | ∃fη s.t. f = fη, L(fη) ≤ d, W (fη) ≤ w} , (3)

Note that the number of parameters needed to express f ∈ NNFn1→n2

w,d is O(w2 · d).

1.2 Iterated Function System

We provide a short review on Iterated Function System (IFS). The results stated here can be found in
the classical book on IFS Barnsley (2014).

An IFS on Rd is a method for constructing very detailed patterns from a small number of building
blocks. Mathematically, they are defined as a finite collection F = {f1 . . . , fJ} of contractive
mappings fj : Rd → Rd. Given an initial bounded subset A0 ⊂ Rd, an IFS generates a sequence of
increasingly detailed sets Ak by recursively applying the Hutchinson operator

H(A) =

J⋃
j=1

fjA,

to obtain a sequence of sets
Ak+1 = H(Ak). (4)
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For any compact set A0, the sequence Ak = HkA0 converges in the Hausdorff metric to a compact
set K which is called the attractor of the IFS. However, despite the asymptotic independence on the
choice of the initial set, in practice from visual as well as computational considerations it is useful to
work with special sets which we will call “nice” sets:
Definition 3 (Nice sets). We say that a bounded set A is nice with respect to F = {f1, . . . , fJ}, if

fjA ⊆ A, j = 1, . . . , J (5)

and
fiA ∩ fjA = ∅, ∀i 6= j, (6)

The existence of nice sets is an imporant property in the study of IFS (Barnsley (2014) page 129):
Definition 4 (Totally disconnected). An IFS is totally disconnected if it possesses a nice compact set.
Definition 5 (Just touching). An IFS is just touching if it possesses a nice open set.

From here on, for the sake of clarity and convenience in notation, we will denote compact sets by the
character C or K, open sets by U and general sets by A.

1.2.1 Examples

The cantor set: The cantor set KCantor is the attractor of an IFS on R defined by F = {f1, f2},
where

f1(x) = 1/3x and f2(x) = 1/3x+ 2/3. (7)
The IFS F is totally disconnected since the set C0 = [0, 1] is a nice compact set. Figure 1(a) shows
the first few sets Ci obtained from this choice of C0.

Just touching Figure 1(b)-(c) shows two examples of just touching IFS which generate the Sierpinski
triangle and the Koch curve. A full description of these IFS is given in the Appendix for completeness.

1.3 Main results

Our goal is to use NNF to efficiently construct functions which represent sets Ak of the form (4). The
classical choice of a function which represents a set A is the standard indicator function

χA(x) =

{
1 , x ∈ A
0 , x /∈ A . (8)

However, this function cannot be realized as an NNF as it is not continuous. Instead, we define the
notion of a CPwL indicator function
Definition 6. We say that ϕC(x) is a CPwL indicator function of the compact set C, if{

ϕC(x) ≥ 0 , x ∈ C
ϕC(x) < 0 , x /∈ C .

Note that a compact set C may admit many CPwL indicator functions ϕC . CPwL indicators can be
used to approximate indicator functions to arbitrary precision due to the following simple lemma.

Lemma 1. If ϕC ∈ NNFd→1
W,L is a CPwL indicator function of C, then there exist ψn ∈

NNFd→1
max{W,2},L+1 which converge to χC pointwise and in Lp(K) for all 1 ≤ p <∞.

The proof of this lemma is given in Appendix A.

We now state our main result:
Theorem 1. Let F = {f1, . . . , fJ} be an IFS on Rd. Let C0 be a nice compact subset of Rd, and
assume

1. C0 is a finite union of convex polytopes.

2. fj are invertible affine transformations.

Then, there exist constants W0, L0, such that for all k, there exists a CPwL indicator function
ϕk ∈ NNFd→1

W0,L0k for the set Ck = HkC0.
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The constants W0, L0 are given in Equation (31). They depend on d, J , the number p0 of convex
polytopes which compose C0, and the maximal number of hyperplanes m needed to express each of
the polytopes.

One example for which Theorem 1 applies is the cantor set we discussed earlier, with the initial
compact nice set C0 = [0, 1]. The set C0 is an interval- a 1D polytope, and the functions f1, f2
defined in (7) are affine and invertible. In this case d = 1, p0 = 1, J = 2,m = 2, and so the theorem
together with the parameter count in (31) shows that we can represent a CPwL indicator function for
Ck as an NNF with width 10 and depth 4k.

We note that by combining the theorem with Lemma 1 we also obtain that the indicator χCk
can be

approximated to machine precision using a NNF with almost identical complexity. Finally we note
that as can be seen in (30) the DNN construction we propose is composed of an identical network
applied k times to obtain a CPwL indicator of Ck, and so by using a recurrent NN architecture instead
of the fully connected architecture we described here the number of parameters necessary to represent
Ck can be completely independent of k.

We now turn to discuss just touching IFS; that is, IFS which possesses a nice open set U . In this
case, we can use the mechanism of the proof of Theorem 1 to approximate χUk

to arbitrary precision,
though we cannot construct an exact CPwL indicator in this case:
Theorem 2. Let F = {f1, . . . , fJ} be an IFS on Rd. Let U0 be a nice open subset of Rd, and assume

1. U0 is a finite union of disjoint open convex polytopes.

2. fj are invertible affine transformations.

Then, there exist constants W0, L0, such that for all k, there exist a sequence of functions ψn ∈
NNFd→1

W0,L0k+1 which converge to the indicator function of Uk = HkU0 pointwise and in Lp(K) for
all compact K and 1 ≤ p <∞.

Finally, we note that any IFS on Rd can be lifted to a totally disconnected IFS on Rd+1. We discuss
this simple construction in Appendix C.

The remainder of the paper is organized as follows: In Section 2 we discuss some theoretical
preliminaries, which will be useful for the proof of Theorem 1, presented in Section 3. An outline
of the proof of Theorem 2, the proof of Lemma 1, and the dimension argument mentioned in the
introduction (i.e., the fact that DNNs with p parameters cannot span all CPwL with ` � p linear
regions), can be found in Appendix A.

2 Theoretical preliminaries

In this section we wish to define formally some basic actions on NNF as well as two NNF building
blocks that will be used in our construction later on. The actions we wish to address are composition,
splitting, and summation; and the building blocks are the commonly used min and max NNFs.

2.1 Basic actions

Composition: Using the aforementioned notation, the composition of two neural network functions
is

f ∈ NNFn1→n2

w1,d1
, g ∈ NNFn2→n3

w2,d2
⇒ g ◦ f ∈ NNFn1→n3

max(w1,w2),d1+d2
. (9)

Accordingly, the number of parameters in g ◦ f is O
(
max(w1, w2)2 · (d1 + d2)

)
.

Splitting: It is sometimes desirable to split a function into two separate operations
f(x)

↗
x∈ ↘
Rn g(x)

(10)

where f ∈ NNFn→n1

w1,d1
, g ∈ NNFn→n2

w2,d2
. The NNF resulting from the action of splitting (10) is

denoted by xfg and

xfg ∈ NNFn→(n1+n2)
w1+w2,max(d1,d2)

. (11)
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In the case where d1 = d2 the definition of xfg is straightforward. The case d1 < d2 can be reduced
to the case d1 = d2 by representing f using a network of depth d2. This is done by shifing f by
such a large value b so that f(K) + b ≥ 0, and so f + b, will be unaffected by ReLU, then applying
identity mappings, and finally reapplying translation by −b to achieve the original function f .

Summation: Finally, given f ∈ NNFn1→n2

w1,d1
and g ∈ NNFn1→n2

w2,d2
, the function f + g is well defined

and

f + g =

f(x)
↗ ↘

x f(x) + g(x)∈ ↘ ↗
Rn1 g(x)

. (12)

Thus, f + g is merely xfg with an added linear layer as output, and so

f + g ∈ NNFn1→n2

(w1+w2),max(d1,d2)+1. (13)

2.2 min and max as NNF

Although common neural network architectures apply min and max operations (e.g., max-pooling),
in order to maintain consistency with the standard definition of fully connected networks we define
them here as NNF using ReLU. We can pronounce the max and min operation as

max{x, y} = ReLU(x− y) + y, and min{x, y} = x− ReLU(x− y), (14)

Thus, for x, y ∈ R
min{x, y},max{x, y} ∈ NNF2→1

2,1 . (15)

For a vector x ∈ R` we define

min(x)
def
= min{x1, . . . , x`}. (16)

This minimum operation can be implemented via a Divide and Conquer type approach (e.g., see He
and Zheng (2018), Theorem 3.1) with log2 ` depth, and therefore

min(x) ∈ NNF`→1
`,dlog2(`)e. (17)

Furthermore, for x ∈ R` and y ∈ R we denote the vector-scalar minimum operation by

m{x, y} def
= (min{x1, y}, . . . ,min{x`, y}), (18)

and it follows that
m{x, y},∈ NNF`+1→`

`+1,1 . (19)

3 Proof of Theorem 1

The outline of the proof is as follows:

1. Since C0 is a nice set with respect to the IFS, there exists a function T : Rd → Rd, which
satisfies T ◦ fj(x) = x.

2. Then, we can establish the following relation (see Lemma 2)

x ∈ Ck ⇐⇒ x, Tx, . . . , T k−1x ∈ C1. (20)

3. Both T and ϕ1 (a CPwL indicator of C1) can be constructed as NNF (see Sections 3.1 and
3.2).

4. Then, from the construction of vector min as NNF and the fact that composition of NNFs is
NNF (see Sections 2.1 and 2.2), we get that a CPwL indicator of Ck can be pronounced as
the following NNF

ϕk(x) = min(ϕ1(x), ϕ1(Tx), . . . ϕ1(T k−1x)). (21)
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5. Using the basic actions’ calculations for width and depth (Section 2.1) we come to the
conclusion that

ϕk ∈ NNFd→1
W0,L0k, (22)

where W0, L0 are some constants independent of k (see Section 3.3).

Let us now show that if there exists a function T , as described in item 1 in the outline, then the
equivalence relation of item 2 holds.
Lemma 2. Let {f1, . . . , fJ} be an IFS, and assume C0 is a nice set, and fjC0 ⊆ C0,∀j. Assume
T : Rd → Rd satisfies T ◦ fj(x) = x for all x ∈ C0, then

x ∈ Ck ⇐⇒ x, Tx, . . . , T k−1x ∈ C1.

Proof. Assume x ∈ Ck, then there exist j1, j2, . . . jk ∈ {1, . . . , J}, and y ∈ C0, such that
x = fj1 ◦ fj2 . . . ◦ fjk(y)

Thus for all 0 ≤ r ≤ k − 1

T rx = fjr+1
◦ fjr+2

. . . ◦ fjk(y) ∈ Ck−r ⊆ C1

as required.

We prove the opposite direction by induction on k. For k = 1 the claim is obvious. Now assume the
claim holds for k− 1, we want to show that it holds for k as well- we assume x, Tx, . . . T k−1x ∈ C1

and we need to show that x ∈ Ck.

Since x ∈ C1, there exists y1 ∈ C0 and j1 ∈ {1, . . . , J}, such that
x = fj1(y1). (23)

By applying T to this equation we obtain
Tx = y1. (24)

On the other hand by the induction hypothesis we have that Tx ∈ Ck−1 so that there exists y2 ∈ C0

and j2, . . . , jk ∈ {1, . . . , J} such that
Tx = fj2 ◦ fj3 . . . ◦ fjk(y2) (25)

and so it follows that x ∈ Ck since

x
(23)
= fj1(y1)

(24)
= fj1(Tx)

(25)
= fj1 ◦ fj2 ◦ fj3 . . . ◦ fjk(y2)

3.1 Construction of ϕ1

We now show how to construct a CPwL indicator function ϕ for the set C1, using the same methodol-
ogy as in Kovalsky et al. (2019). By assumption, C0 is a union of some p0 convex polytopes, each
defined as an intersection of at most m half-spaces. Accordingly C1 is a finite union of p = Jp0 such
polytopes.

A half-space H is defined by a linear function ϕH : Rd → R

ϕH
def
= 〈a, x〉+ b,

and
H = {x|ϕH(x) ≥ 0}.

Thus, by definition ϕH is a CPwL indicator of H and is a member of NNFd→1
1,0 . If P is a convex

polytope which is an intersection of at most m half-spaces Hi, then we obtain a CPwL indicator for
P via

ϕP(x) = min(ϕH1
(x), ϕH2

(x), . . . ϕHm
(x)).

Note that ϕP ∈ NNFd→1
m,dlog2me due to the splitting, composition and minimum rules from Section 2.

Now, if a set C is the union of p polytopes Pi, each defined by at most m half-spaces, then a CPwL
indicator ϕC for C is given by

ϕC(x) = max(ϕP1(x), ϕP2(x), . . . , ϕPp(x)),

which is in NNFd→1
mp,dlog2me+dlog2 pe due to the splitting, composition and maximum rules from

Section 2. This is the class of function ϕ1 = ϕC1
belongs to, when we set p = Jp0.
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3.2 Construction of T as NNF

We now construct T as an NNF. T will be of the form T =
∑J
j=1 Tj where each Ti will be an NNF

satisfying

Ti(x) = δijf
−1
i (x), ∀x ∈

J⋃
j=1

fjC0 (26)

Let,
M = ‖f−1i ‖L∞(C0), and − δ = max

x∈∪j 6=ifjC0

ϕfiC0
(x) < 0,

and 1d denotes the constant vector with unit value in all d entries . Recall that f−1i is defined for all
points in R, as it is the inverse of an affine transformation. Then, we construct Ti as NNF according
to the following scheme

f−1i (x) → f−1i (x)
↗ ↘

x → ϕfiC0
(x)︸ ︷︷ ︸ → 4M

δ
(y1 + δ/2)︸ ︷︷ ︸ → m{f−1i (x), y2}︸ ︷︷ ︸ → · · ·

y1 ∈ R y2 ∈ R y3 ∈ Rd

· · · → ReLU(2(y3 +M1d)) −ReLU(y3 + 2M1d)

(27)

For convenience, we enumerate the sequential operations (marked by the boxes) by `1, . . . , `4. We
claim that Ti constructed in this form fulfills (26). Note that the magnitudes of the coordinates of
f−1i (x) are smaller than M for all x ∈ C0. By construction, y2 > 2M if x ∈ fi(C0) and is smaller
than −2M if x ∈ fj(C0) for j 6= i. It then follows that if x ∈ fi(C0) then y3 = f−1i (x) and if
x ∈ fj(C0) for j 6= i then y3 ≤ −2M elementwise. Finally by applying the function

ReLU(2(t+M))− ReLU(t+ 2M) =

{
0 if t ≤ −2M
−t− 2M if − 2M ≤ t ≤ −M
t if t ≥ −M

(28)

elementwise to y3, we obtain Ti(x) which satisfies (26). Using the parameter counting rules from
Section 2 we have

`1 = x
f−1
i
ϕfiC0

∈ NNFd→d+1
d+mp0, dlog2me+dlog2 p0e

`2 ∈ NNFd+1→d+1
d+1,0 ; `3 ∈ NNFd+1→d

2d,1 ; `4 ∈ NNFd→d2d,1

and so using the composition we have that Ti ∈ NNFd→d1/JWT ,LT
for

WT = J max{d+mp0, 2d}, LT = 2 + dlog2me+ dlog2 p0e, (29)

and by using the summation rule to count the parameters of T we obtain that T ∈ NNFd→dWT ,LT
.

3.3 Construction of Ck through NNF

To conclude the proof of the theorem, we show how to construct a CPwL indicator of Ck as an NNF
based on (21) and our construction of T and ϕ. We set

m0(x) = ϕ1(x), mj(x) = mj(mj−1, T
jx) = min{mj−1(x), ϕ1(T jx)}, 1 ≤ j ≤ k − 1.

and note that mj ∈ NNFd+1→1
mp, dlog2me+dlog2 pe+1 while m0 has one layer less. Note that the indicator

ϕk from (21) is equal to mk−1, and so ϕk can be computed by the following NNF:

Tx → T 2x → · · · T k−1x
↗ ↘ ↘ ↘

x → m0(x) → m1(x) → · · · mk−2(x) → mk−1(x)
. (30)

The width ofmj is the same as the width of ϕ1 and it is one layer deeper, therefore ϕk(x) = mk−1(x)
can be constructed as an NNF with constant width W0 and depth kL0 , where these constants are
defined by

W0 = J max{d+mp0, 2d}+ Jmp0, L0 = dlog2me+ dlog2(Jp0)e+ 2. (31)
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4 Future work

Our results can be interpreted as showing that black and white images of 2D fractals- the indicator
functions of Ck- can be compressed efficiently by DNN. DNN are also known to provide efficient
construction of wavelets Grohs et al. (2019). As both IFS and wavelets have been used successfully
to compress images we believe it may be possible to devise improved compression algorithms based
on DNNs. We intend to investigate this in the near future.
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A Additional proofs

Proof of Theorem 2. Looking at the outline of the proof of Theorem 1, the only item that needs
to be adapted to the case of open sets is the construction of T , as it is not clear how we should
define it on the boundary of the domains fjU0. Assume w.l.o.g. that 0 6∈ Ū1. We define T to
be a (non-continuous) function which is equal to f−1j (x) if x ∈ fjU0 for some j, and is equal to
zero otherwise. Note that Lemma 2 does not assume compactness of C0, and so the sufficient and
necessary conditions of item 2 of the outline holds for the non-continuous T .

Let ϕ be the CPwL indicator function of Ū1, which is constructed in Subsection 3.1, and note that
ϕ satifies that x ∈ U1 if and only if ϕ(x) > 0. Thus we can use (21) to define a (non-continuous)
function ϕk which satisfies ϕk(x) > 0 if and only if x ∈ Uk.

Next we can use the same construction as in Subsection 3.2 to define for δ > 0 CPwL maps T δi (x)
which are zero if ϕi(x) ≤ 0, and are equal to f−1i if ϕi(x) ≥ δ. We take the sum of these maps to
obtain a CPwL map T δ which converge pointwise to T as δ → 0. Next we replace T with T δ in the
definition of ϕk in (21) to obtain CPwL functions ϕδk which converge pointwise to ϕk as δ → 0.
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To obtain pointwise convergence to the indicator of Uk we need to compose ϕδk with a simple scalar
function: For a < b we define the function

fa,b(x) =
1

b− a
(ReLU(x− a)− ReLU(x− b)) =

 0 if x ≤ a
x−a
b−a if a ≤ x ≤ b
1 if x ≥ b

(32)

Now we set a = ϕk(0) which is negative since 0 6∈ Ū1, and b = 0, and obtain that ψδ = fa,b ◦ ϕδk
converges pointwise to the indicator of Uk as δ → 0. The Lp(K) convergence argument is identical
to the argument in Lemma 1

Proof of Lemma 1. By choosing f = fa,b as defined in (32) with a = −2, b = −1, we obtain that
ψt(x) = f ◦ ϕC(tx) converges elementwise to χC as t→∞. For a fixed compact set K and fixed
1 ≤ p <∞, we show Lp(K) convergence by showing that the integral of the functions

gt(x) = |ψt(x)− χC(x)|p

converge to zero. This follows easily from the dominated convergence theorem since gt converge
pointwise to zero and are bounded uniformly for all t by the constant function 1 which is integrable
in K.

Dimension argument
Lemma 3. If ` is larger than the number of parameters p defining NNF1→1

W,L , then not all CPwL
functions with ` knots are contained in NNF1→1

W,L .

Proof. Denote the set of parameters by θ, and denote by fθ the NNF defined through θ. Choose any
t1, t2, . . . , t` ∈ R. It is sufficient to show that the function F : Rp → R` defined by

Fi(θ) = fθ(ti), i = 1, . . . `

is not onto. Indeed, F is continuous as the parameter space Rp can be partitioned into a finite number
of sets on which F is a multivariate polynomial whose degree is determined by the degree of the
network (for example, the composition of two affine transformations results with a second order
polynomial in the coefficients). It follows that the restriction of F to a closed ball B̄N of radius N is
Lipschitz, and therefore it is known (see Chapter 2 in Falconer (2004)) that its image has Hausdorff
dimension ≤ p. The image of F is the countable union of F (BN ), hence it has Hausdorff dimension
≤ p < ` as well and so F is not onto.

B IFS examples

The Sierpinski triangle: The Sierpinski triangle KSierpinski is the attractor of an IFS on R2. It is
defined using an equilateral triangle T with vertices v1, v2, v3 ∈ R2, where F = {f1, f2, f3} are
defined to be

fi(x) = 1/2x+ vi, i = 1, 2, 3.

The open triangle U0 = T ◦ is a nice open set. Figure 1(b) shows the first few sets Ui obtained from
this choice of U0.

The Koch curve: The Koch curve KKoch is the attractor of an IFS on R2. It is defined via four maps
fi(x) = Ai(x) + bi where

A1 =
1

3

[
1 0
0 1

]
, b1 =

[
0
0

]
, A2 =

[
1/6 −

√
3/6√

3/6 1/6

]
, b2 =

[
1/3
0

]
A3 = AT2 , b3 =

[
1/2√
3/6

]
, A4 = A1, b4 =

[
2/3
0

]
.

The open triangle with vertices

v1 =

[
0
0

]
, v2 =

[
1/2√
3/2

]
, v3 =

[
1
0

]
is a nice open set w.r.t. this IFS. Figure 1(c) shows the first few sets Ui obtained from this choice of
U0.
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C Lifting

Any IFS on Rd composed of affine and invertible functions can be lifted to an IFS on Rd+1 fulfilling
the conditions of 1. Assume we are given such an IFS {f1, . . . , fJ} on Rd and an initial convex
polytope C0 fulfilling (5) (such a set always exists). We can then define a new IFS {f̂1, . . . , f̂J} on
Rd+1 by

f̂j(x, t) =

(
fj(x),

1

3(J + 1)
t+

j

J + 1

)
.

The convex polytope Ĉ0 = C0× [0, 1] is a nice compact subset of Rd+1, and so we can use Theorem 1
to construct the indicator function of Ĉk, which is related to the indicator function of Ck via

χCk
(x) = max

t∈[0,1]
χĈk

(x, t)
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