
FUNCTIONAL ERROR CORRECTION FOR ROBUST NEURAL NETWORKS

A Thesis

by

KUNPING HUANG

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Chair of Committee, Anxiao (Andrew) Jiang
Committee Members, Tie Liu

Zhangyang (Altas) Wang
Head of Department, Scott Schaefer

May 2020

Major Subject: Computer Science

Copyright 2020 Kunping Huang

ABSTRACT

When neural networks (NeuralNets) are implemented in hardware, their weights need to be

stored in memory devices. As noise accumulates in the stored weights, the NeuralNet’s perfor-

mance will degrade. This paper studies how to use error correcting codes (ECCs) to protect the

weights. Different from classic error correction in data storage, the optimization objective is to

optimize the NeuralNet’s performance after error correction, instead of minimizing the Uncor-

rectable Bit Error Rate in the protected bits. That is, by seeing the NeuralNet as a function of its

input, the error correction scheme is function-oriented. A main challenge is that a deep NeuralNet

often has millions to hundreds of millions of weights, causing a large redundancy overhead for

ECCs, and the relationship between the weights and its NeuralNet’s performance can be highly

complex. To address the challenge, we propose a Selective Protection (SP) scheme, which chooses

only a subset of important bits for ECC protection. To find such bits and achieve an optimized

tradeoff between ECC’s redundancy and NeuralNet’s performance, we present an algorithm based

on deep reinforcement learning. Experimental results verify that compared to the natural baseline

scheme, the proposed algorithm achieves substantially better performance for the functional error

correction task.

ii

CONTRIBUTORS AND FUNDING SOURCES

Contributors

This work was supported by a thesis committee consisting of Professor Anxiao (Andrew) Jiang

(advisor) and Zhangyang (Altas) Wang of the Department of Computer Science and Engineering

and Professor Tie Liu of the Department of Electrical and Computer Engineering. It was also

supported by Professor Paul Siegel of Department of Electrical and Computer Engineering at Uni-

versity of California, San Diego.

All other work conducted for the thesis was completed by the student independently.

Funding Sources

Graduate study was not supported by any Funding Sources.

iii

NOMENCLATURE

ECC Error Correcting Code

SP Selective Protection

BER Bit Error Rate

UBER Uncorretable Bit Error Rate

DNN Deep Neural Network

MSB Most Significant Bit

LSB Least Significant Bit

DRL Deep Reinforcement Learning

BSC Binary Symmetric Channel

MLP Multilayer Perceptron

DDPG Deep Deterministic Policy Gradients

BCH codes Bose–Chaudhuri–Hocquenghem codes

IEEE Institute of Electrical and Electronics Engineers

iv

TABLE OF CONTENTS

Page

ABSTRACT . ii

CONTRIBUTORS AND FUNDING SOURCES . iii

NOMENCLATURE . iv

TABLE OF CONTENTS . v

LIST OF FIGURES . vi

1. INTRODUCTION. 1

2. RELATED WORK . 6

3. SELECTIVE PROTECTION SCHEME BY DEEP REINFORCEMENT LEARNING 7

3.1 Weight Representation in Neural Networks . 7
3.1.1 Standard Floating-Point Representation . 7
3.1.2 Fixed-Point Representation . 9

3.2 Selective Protection Scheme. 9
3.3 Deep Reinforcement Learning for Selective Protection . 10

3.3.1 State Space . 11
3.3.2 Action Space . 12
3.3.3 Reward Function . 13
3.3.4 Policy of Agents and the Learning Process . 14

4. EXPERIMENTAL EVALUATION AND ANALYSIS . 18

4.1 Setup of Experiments . 18
4.2 Redundancy-Performance Tradeoff . 20
4.3 Bits Protected by Selective Protection Scheme . 22
4.4 Analysis of BitMask Method and TopBits Method. 23

5. CONCLUSIONS . 27

REFERENCES . 28

v

LIST OF FIGURES

FIGURE Page

1.1 The BER-performance tradeoff for a neural network. 2

1.2 The redundancy-performance tradeoff for protecting a neural network. 4

1.3 A neural network with four node layers (an input layer, two hidden layers and an
output layer) and three edge layers. HereW1,W2,W3 are the set of weights in each
edge layer. 4

3.1 The architecture of VGG16 and ResNet-18 models. 8

3.2 The four neural networks used in the deep reinforcement learning algorithm: the
Actor Network (top left), the Target Actor Network (bottom left), the Critic Net-
work (top right) and the Target Critic Network (bottom right). 15

4.1 The redundancy-performance tradeoff for the SP scheme when ideal ECC is used. . . 20

4.2 The redundancy-performance tradeoff for the SP scheme when BCH codes are used. 21

4.3 The number of selected bits for ECC protection in each edge layer. Here the neural
network is ResNet-18, the dataset is CIFAR-10, and the ECC is the ideal ECC. 22

4.4 Typical examples of the bit-mask vector in some edge layers, with the IEEE-754
floating-point representation and the BitMask method. 23

4.5 The probability distribution of the bits in each bit position. 25

4.6 How the performance of a neural network changes when errors are added to its bits
in two phases. (No bits here are protected by ECC.) . 26

vi

1. INTRODUCTION

Deep learning has become a boosting force for AI with many applications. When a neural

network is implemented in hardware, its weights need to be stored in memory devices. Noise in

such devices will accumulate over time, causing the neural network’s performance to degrade. It

is important to protect neural networks using error correction schemes. In this work, we study how

to use error correcting codes (ECCs) to protect the weights of neural networks.

The protection of neural networks has a different optimization objective from classic error

correction in data storage systems. In classic error correction, the objective is to minimize the

Uncorrectable Bit Error Rate (UBER) in the protected bits. For neural networks, however, the

objective is to optimize its performance (e.g., classification accuracy). That is, by seeing the neural

network as a function of its input, the error correction scheme is function-oriented.

Several challenges exist for the protection of neural networks. First of all, a deep neural net-

work (DNN) often has many weights. For example, DNNs in computer vision often have millions

to hundreds of millions of weights [1]. This can cause a very large redundancy overhead for

ECCs. So it is important to design schemes that can reduce redundancy, and achieve an optimized

redundancy-performance tradeoff. Such a tradeoff is illustrated in Figure 1.2.

Secondly, the relationship between a neural network’s weights and its performance is highly

complex. Understanding on the relationship is very limited, and is an active topic of research in

many areas [2, 3]. Therefore, it is very challenging to design efficient algorithms that can identify

weights that are most important for preserving the performance of neural networks.

We illustrate in Figure 1.1 how a neural network’s performance is affected by noise in its

weights. The network considered here is ResNet-18 [1], a well-known network for image classi-

fication. It consists of 19 layers of nodes and 26 layers of edges (including 8 layers of skip con-

nections). Among the 26 edge layers, 21 of them have trainable weights. When binary-symmetric

errors appear in the bits that represent the network’s weights, the relation between the Bit Error

Rate (BER) and the network’s performance (i.e., classification accuracy) is shown in Figure 1.1 (a).

1

(a) (b)

Figure 1.1: The BER-performance tradeoff for a neural network.

(For a more detailed study on the relation between errors and neural networks’ performance, see

the nice work in [4].) It can be seen that when the BER is quite small, the network’s performance

does not degrade much. However, once the BER exceeds a certain threshold, its performance starts

to degrade substantially. This relation is common for various types of neural networks [4, 5]. It

implies that to protect a neural network, a good redundancy-performance tradeoff can be achieved

by keeping the UBER below a certain threshold, especially for those bits that are most critical to

the neural network’s performance.

We further illustrate that the noise in different layers of a neural network has different impact

on its performance. (Similar results have been shown in [4].) We add noise to the weights of

only one layer of edges in ResNet-18 at a time, and the result is shown in Figure 1.1 (b). 1 It

can be seen that even for the same BER, different layers’ noise can impact performance quite

differently. Therefore, to optimize the redundancy-performance tradeoff, different layers should

receive different levels of protection.

In this paper, we propose a Selective Protection (SP) scheme, which chooses only a subset

of important bits for ECC protection. Furthermore, for different layers of edges, the numbers

of protected bits for their weights are different. The scheme uses the fact that different layers

1For simplicity, the result here is only for the first 18 layers of edges with weights.

2

impact performance differently. However, since layers jointly determine a network’s performance

in complex ways, when noise exists in all layers, how to optimize the scheme is still a challenging

problem.

To address the challenge, we present an algorithm based on deep reinforcement learning. The

key of the algorithm is to learn the complex relation between which bits to protect and the net-

work’s corresponding performance. That is, given the knowledge on which bits are protected from

errors, we learn a function that can predict the performance of the neural network. We then use

the prediction to optimize the set of protected bits, and then the network’s corresponding true per-

formance is measured as a feedback reward signal to help further refine the accuracy of the above

performance-prediction function. The above learning process repeats itself until its performance

converges. To reduce the complexity of learning, we decompose the above process by layers, where

the network’s layers sequentially take the actions of performance prediction and bit selection. Note

that the bits selected for protection in each layer can be a mask vector instead of a single number,

that is, we need to decide which bits to protect instead of just how many bits to protect. That is due

to an interesting finding in this paper that, depending on how weights are represented as bits, those

bits most worthy of protection are not necessarily the Most Significant Bits (MSBs). Furthermore,

since we focus on optimizing the redundancy-performance tradeoff, the ECC redundancy is set as

an integrated component in the reward function.

Our algorithm can be evaluated based on the redundancy-performance tradeoff as follows. Let

ktotal denote the total number of bits used to represent the neural network’s weights. Let kpro

denote the number of bits we protect with ECCs. Let the ECCs be (n, k) linear codes, where n

denotes the codeword length and k denotes the number of information bits. Then the number of

parity-check bits is n−k
k
· kpro. We normalize it by ktotal, and call it redundancy r, namely,

r =
kpro(n− k)

ktotalk
. (1.1)

As for the performance of the neural network, for classification tasks (which this work focuses on),

3

Figure 1.2: The redundancy-performance
tradeoff for protecting a neural network.

Figure 1.3: A neural network with four node
layers (an input layer, two hidden layers and
an output layer) and three edge layers. Here
W1,W2,W3 are the set of weights in each
edge layer.

it usually refers to the classification accuracy, namely, the probability that the inputs are classified

correctly.

We compare the performance of our algorithm to a natural baseline scheme, where all layers of

the neural network receive the same level of protection from ECCs. Experimental results verify that

our proposed algorithm achieves substantially better performance. For example, when the neural

network is ResNet-18 and its weights are represented by bits using the IEEE-754 standard (i.e., the

single-precision floating-point format), and when BER is 1%, the baseline scheme’s classification

accuracy drops very quickly once its redundancy r is below the threshold 0.04525. In comparison,

our algorithm can decrease the corresponding threshold to 0.03879, which represents a reduction of

14.3% in the redundancy requirement. If the ECC approaches the Shannon capacity, this reduction

can be further enlarged to 25.7%.

The rest of the paper is organized as follows. In Section 2, we review related works. In Sec-

tion 3, we introduce the SP scheme, and present its deep reinforcement learning algorithm. In

Section 4, we evaluate the SP scheme by experiments, which verify that the scheme can substan-

tially improve the redundancy-performance tradeoff for neural networks. The results also show

that interestingly, depending on how weights are represented as bits, the bits that are most impor-

4

tant to protect are not necessarily MSBs in the data representation. We present a detailed analysis

for this interesting phenomenon. In Section 5, we present concluding remarks.

5

2. RELATED WORK

The topic explored in this paper is related to several research areas. They include robustness of

neural networks against noise, model compression, and reliability of computational circuits.

In the area of robustness of neural networks against noise, researchers have studied the effect

of noise on the performance of neural networks. In [4], Qin et al. studied random bit errors

for weights stored as bits, and developed an ECC with one parity bit to improve the network’s

performance and robustness. In [6], Upadhyaya et al. studied random noise for weights stored as

analog numbers, and developed analog ECCs to correct the analog noise. In [7, 8], several security

attack methods were tested to find specific error patterns that can cause serious damage to neural

networks’ performance. Note that different from the above works, this paper proposes the Selective

Protection scheme for the first time, which protects different sets of bits for different layers. The

scheme needs to protect all bits that are critical to the neural network’s performance, not just bits

that constitute a specific damaging error pattern.

In the area of model compression, plenty of works have focused on how to reduce the size of

a neural network without affecting its performance [3, 9, 10, 11]. They use various techniques

to either prune or quantize the weights in neural networks, and the simplified networks need to

be retrained. Deep reinforcement learning methods, including the layer-by-layer training method,

have been presented [10, 11]. Note that in our work, we find important bits and protect them,

without the need to modify the weights or retrain the network.

In the area of reliability of computational circuits, researchers have studied the use of ECCs to

ensure the correctness of circuits [12, 13, 14]. In comparison, our work focuses on the redundancy-

performance tradeoff, where the neural network’s performance does not have to be the same before

and after ECC protection.

6

3. SELECTIVE PROTECTION SCHEME BY DEEP REINFORCEMENT LEARNING

In this section, we present the Selective Protection (SP) scheme for functional error correction.

It protects the most important bits in weights by ECC in order to achieve an optimized redundancy-

performance tradeoff. We first introduce weight representation for neural networks, and define the

Selective Protection scheme. We then present a deep reinforcement learning (DRL) algorithm for

the SP scheme.

3.1 Weight Representation in Neural Networks

Neural networks have been used widely in deep learning. An example of a neural network is

shown in Figure 1.3, which has four node layers and three edge layers between them. Examples of

more complex neural networks, including VGG16 and ResNet-18, are shown in Figure 3.1. (Those

two networks are important models for computer vision, and will be used in our experiments.) For

ResNet-18, the skip connections between two node layers are also considered an edge layer.

There are different ways to represent weights in neural networks as bits. We introduce two

important weight representations below. Both of them will be used in experiments.

3.1.1 Standard Floating-Point Representation

IEEE-754 is an international standard for floating-point representation. We adopt its 32-bit

version. Given a weight w ∈ R, let B32
w = (b0, b1, · · · , b31) be its binary representation:

w = (−1)(b0)2 × 2(b1b2···b8)2−127 × (1.b9b10 · · · b31)2 (3.1)

Here b0 is the sign bit, b1b2 · · · b8 are the exponent bits, and b9b10 · · · b31 are the fraction bits. For

example, ifB32
w = (00111100001100000000000000000000), thenw = (−1)(0)2×2(01111000)2−127×

(1.01100000000000000000000)2 = (−1)0 × 2120−127 × 1.375 = 0.0107421875. The IEEE-754

standard can represent values between −2127 and 2127.

7

3×3 conv, 64

3×3 conv, 64

pooling, /2

3×3 conv, 128

3×3 conv, 128

pooling, /2

3×3 conv, 256

3×3 conv, 256

3×3 conv, 256

pooling, /2

3×3 conv, 512

3×3 conv, 512

3×3 conv, 512

pooling, /2

3×3 conv, 512

3×3 conv, 512

3×3 conv, 512

pooling

fc-512

fc-512

fc-512

3×3 conv, 64

3×3 conv, 64

3×3 conv, 64

3×3 conv, 64

3×3 conv, 64

3×3 conv, 128, /2

3×3 conv, 128

3×3 conv, 128

3×3 conv, 128

3×3 conv, 256, /2

3×3 conv, 256

3×3 conv, 256

3×3 conv, 256

3×3 conv, 512, /2

3×3 conv, 512

3×3 conv, 512

3×3 conv, 512

average pooling

fc-1000

Figure 3.1: The architecture of VGG16 and ResNet-18 models.

8

3.1.2 Fixed-Point Representation

In this representation, the weights in a range [−c, c] are linearly quantized and represented as

bits. (Such a representation has been used in neural networks before, including [11].) Consider

its m-bit version. Let s = c/(2m−1 − 1) be a scaling factor. Given a weight w ∈ [−c, c], let

Dm
w = (b0, b1, · · · , bm−1) be its binary representation:

w = (−1)(b0)2 × (b1b2 · · · bm−1)2 × s (3.2)

For example, when c = 127 and m = 8, if Dm
w = (10010011), then w = (−1)(1)2 × (0010011)2 ×

(127/(28−1 − 1)) = (−1)1 × 19× 1 = −19.

3.2 Selective Protection Scheme

We now present the Selective Protection (SP) scheme, which selects important bits and protects

them from errors with ECCs. Consider a neural network with N edge layers. (In this paper, we

consider error protection for weights on edges, not biases in nodes, because biases can often be

implemented in alternative ways in hardware. Note that edge weights constitute by far the majority

of all weights, and the results here can be naturally extended to biases as well.) For i = 1, 2, · · · , N ,

let Li denote the ith edge layer, and let Wi denote the set of weights in Li. Assume that every

weight is represented by m bits. The SP scheme will select a bit-mask vector

Mi = (µi,0, µi,1, · · · , µi,m−1) ∈ {0, 1}m (3.3)

for each edge layer Li. For each weight w = (b0, b1, · · · , bm−1) ∈ Wi, its jth bit bj will be

protected by ECC if µi,j = 1. Naturally, we let µi,j = 1 for the layer Li if its bits in the jth position

are critical for the neural network’s performance.

Note that the SP scheme applies the same bit-mask vector for all the weights in the same layer.

In principle, every weight can be assigned its own bit-mask vector, but that will greatly increase

the overhead of the scheme. By using one bit-mask vector per layer, a good balance between

9

performance and overhead can be achieved.

The neural network has ktotal = m
∑N

i=1 |Wi| bits in total. The number of bits protected by

ECCs is kpro =
∑N

i=1 |Wi|
∑m−1

j=0 µi,j . When the ECCs are (n, k) linear codes, by Equation (1.1),

the redundancy of the SP scheme is

r(M1,M2, · · · ,MN) =
(n− k)

∑N
i=1 |Wi|

∑m−1
j=0 µi,j

km
∑N

i=1 |Wi|
(3.4)

Let P(M1,M2, · · · ,MN) denote the performance of the neural network (e.g. classification ac-

curacy). Let r̄ be a target redundancy. The optimization objective of SP scheme is to maximize

P(M1,M2, · · · ,MN) given that r(M1,M2, · · · ,MN) = r̄. That is, after the ECCs are chosen

appropriately based on the target Bit Error Rate, the SP scheme can be formulated as

max P(M1,M2, · · · ,MN)

s.t. r(M1,M2, · · · ,MN) = r̄
(3.5)

3.3 Deep Reinforcement Learning for Selective Protection

We now present a deep reinforcement learning algorithm for the SP scheme. We assume that

the bits suffer from errors of a Binary Symmetric Channel (BSC) with Bit Error Rate (BER) p,

and a suitable (n, k) linear ECC is used that can correct error of BER p with a probability that

approaches 1. Therefore, after error correction, only the bits not protected by ECC will have

errors. Note that for a neural network, its performance is a highly complex function of its weights.

The DRL algorithm will learn this complex function, and choose the important bits to protect

accordingly.

In the following, we first present the essential components of the DRL algorithm: its state

space, action space, reward function, and policy of agents. We then present the overall learning

process of the DRL algorithm.

10

3.3.1 State Space

There are two types of state spaces in our DRL algorithm: a Global State Space and a set of

Local State Spaces. The global state space uses a set of parameters Θ to characterize the global

configuration of the neural network. For i = 1, 2, · · · , N , the ith edge layer has a local state space

Πi ⊂ Θ, which is a partial view of the global state space used by the agent of the ith edge layer to

take actions. Note that the parameters in Θ depend on the types of layers in the neural network. In

our study, we focus on VGG16 and ResNet, which have two types of layers: convolutional layers

and fully-connected layers. Therefore, the parameters in Θ are set accordingly, although they can

be adjusted if other types of layers are considered. Note that a fully-connected layer can be seen as

a special case of a convolutional layer, where its convolutional kernel has the same size as its input

feature map.

For i = 1, 2, · · · , N , let ciin be the number of input channels for the ith layer Li (i.e., the number

of input feature maps). Let ciout be its number of output channels (i.e., the number of output feature

maps). Let sikernel be its kernel size (i.e. the size of its filter for the convolution operation). Let

sistride be its stride for convolution. Let sifeat be the size of its input feature map (i.e., each input

feature map is a two-dimentional array of size sifeat × sifeat). Let ai ∈ A be the most recent action

taken by the agent for Li, whereA denotes the action space, whose details will be introduced later.

Let αi = (ciin, c
i
out, s

i
kernel, s

i
stride, s

i
feat, |Wi|, ai) denote a state vector associated with Li. Then,

the global state θ ∈ Θ is defined as

θ = (α1, α2, · · · , αN) (3.6)

To simplify the learning process, each layer Li uses a local state πi ∈ Πi defined as follows:

πi = (ciin, c
i
out, s

i
kernel, s

i
stride, s

i
feat, |Wi|, ai−1) (3.7)

When i = 1, the parameter ai−1 = a0 can be a constant. Note that in πi, only the action of its

11

previous layer ai−1 is used, instead of the actions of all its previous layers a1, a2, · · · , ai−1.

3.3.2 Action Space

We now present the space of actions for the DRL algorithm. For i = 1, 2, · · · , N , the action of

the ith layerLi is to choose a value ai ∈ {0, 1}m for its bit-mask vectorMi = (µi,0, µi,1, · · · , µi,m−1).

The overall action is the sequence of actions (a1, a2, · · · , aN). Note that in each iteration of the

DRL algorithm, the actions a1, a2, · · · , aN are chosen sequentially. When the layer Li takes the

action ai, it chooses the value of ai (i.e., sets its bit-mask vector Mi) based on its local state πi and

the reward function (to be introduced later).

Let the above method be called the BitMask method. To make the method satisfy the redun-

dancy constraint, the reward function not only considers the performance of the neural network,

but also the distance between the current redundancy r and the target redundancy r̄. The reward

value is actually a linear combination of the two terms. When the DRL algorithm ends, the final

redundancy r will be close, but not necessarily equal, to r̄. By making the coefficient for the dis-

tance between r and r̄ sufficiently large in the reward value, we can make r sufficiently close to

r̄.

We now present a simplified version of the BitMask method, which we called the TopBits

method. In the TopBits method, each layer always chooses the first few bits of its weights for ECC

protection. (The number of bits chosen by different layers can still be different.) This method is

intuitively understandable for the fixed-point representation, because the first bit b0 is the sign bit

(thus very important), and for the remaining bits, the More Significant Bits (MSBs) affect the value

of the weight more significantly than the Less Significant Bits (LSBs). Similarly, for the IEEE-754

floating-point representation, the first bit b0 is also the sign bit (thus important), the exponent bits

(which follow b0) affect the weight more significantly than the fraction bits, and the MSBs in the

fraction bits affect the weight more significantly than LSBs. Therefore, it seems natural for the

SP scheme to always protect the first few bits. The TopBits method also simplifies the learning

process compared to the BitMask method. However, our study will show the surprising result that

the BitMask method can sometimes outperform the TopBits method (namely, MSBs do not always

12

affect the performance of neural networks more substantially than LSBs).

In the TopBits method, the reward function considers only the performance of the neural net-

work, and does not consider the distance between the current redundancy r and the target redun-

dancy r̄. To satisfy the redundancy constraint, the method takes two rounds of actions across all

the layers in each iteration of the DRL algorithm:

• In the first round, theN layers take actions (a1, a2, · · · aN) sequentially. For i = 1, 2, · · · , N ,

the action of the ith layer Li is to choose a value ai ∈ {0, 1, · · · ,m}, and set the first ai bits

of the bit-mask vector Mi to 1 and set its other bits to 0. Namely, Li selects the first ai bits

of each weight for ECC protection.

• In the second round, if the current redundancy r is greater than the target redundancy r̄, then

for i = 1, 2, · · · , N , each layer Li decreases its ai by 1 (but without making ai negative) and

adjusts its Mi accordingly. The layers take the above actions sequentially, and stop as soon

as we have r ≤ r̄.

3.3.3 Reward Function

We now present the reward function for the DRL algorithm. Let P0 describe the performance

(e.g., classification accuracy) of the neural network without any bit errors. After each iteration

of the DRL algorithm (where the N layers take their actions (a1, a2, · · · , aN) and set their bit-

mask vectors (M1,M2, · · · ,MN) accordingly), random bit errors of BER p are added to all bits

in the N layers (but note that some of them are chosen to be protected by ECCs), and then the

performance P of the neural network is measured. For the TopBits method, the reward function

after the iteration is set as

RTopBits = P − P0 (3.8)

For the BitMask method, its reward function also needs to consider the distance between the

redundancy r after the iteration and the target redundancy r̄. Let β+ and β− to be two positive real

13

numbers. We define a function f(r, r̄) as:

f(r, r̄) =

 β+(r̄ − r) if r ≥ r̄

β−(r − r̄) if r < r̄
(3.9)

and define the reward function as:

RBitMask = P − P0 + f(r, r̄) (3.10)

Note that f(r, r̄) ≤ 0, which represents a penalty for the reward function when the current re-

dundancy r deviates from the target redundancy r̄. When r ≥ r̄ (an undesirable case because

the current redundancy is too large), the penalty β+(r̄ − r) helps the DRL algorithm reduce the

redundancy in the next iteration. When r < r̄ (a desirable case because the current redundancy

is sufficiently small), interestingly, it is also helpful to set a small penalty β−(r − r̄), because it

can prevent the neural network from getting stuck in states of very low redundancy in the practical

implementation of the DRL algorithm. We usually make β− much less than β+. For example, we

can set β+ = 1 and β− = 0.05.

3.3.4 Policy of Agents and the Learning Process

In the DRL algorithm, every layer Li has an agent Ai that takes the action ai based on the local

state πi and an estimated reward function R̂. How the agent Ai chooses the action ai based on

the available information is called its policy. In this part, we present the policy of the N agents

A1, A2, · · · , AN .

We build four deep neural networks: an Actor Network, a Target Actor Network, a Critic Net-

work, and a Target Critic Network. The four networks are illustrated in Figure 3.2. They are all

Multilayer Perceptron (MLP) neural networks of four node layers, where the two hidden layers

have size 400 and 300, respectively. Additional information on their architectures is as follows:

• Actor Network and Target Actor Network: For both networks, the input is the local state πi,

and the output is the action ai. The two networks have similar functions, but update their

14

Figure 3.2: The four neural networks used in the deep reinforcement learning algorithm: the Actor
Network (top left), the Target Actor Network (bottom left), the Critic Network (top right) and the
Target Critic Network (bottom right).

weights with different algorithms during training.

• Critic Network and Target Critic Network: For both networks, the input consists of the local

state πi and the action ai, and the output is an estimated value for the summation of the

current and the future rewards in the same iteration (where future rewards are discounted in

certain ways). Specifically, let γ be a discount factor. Then for t = 1, 2, · · · , N , the output

of the two networks is the value of the following Q function:

Q(πt, at) =
N∑
i=t

γi−tR̂(πi, ai) (3.11)

where R̂(πi, ai) is an estimation of the real reward of this iteration. As before, the two

networks also have similar functions, but update their weights differently during training.

The DRL algorithm keeps using the Actor Network to generate actions. In each iteration, the

N agents A1, A2, · · · , AN generate the actions a1, a2, · · · , aN sequentially. That is, for i =

1, 2, · · · , N , the Actor Network takes πi as input, and outputs the action ai. (Note that the Ac-

15

tor Network outputs real numbers, and we round them to the nearest integers to get the action

ai.) After an iteration, the N local states (π1, π2, · · · , πN), the N actions (a1, a2, · · · , aN) and the

overall reward R of the iteration are stored in a buffer. The buffer has a fixed size. When new data

come in, if the buffer is full, the oldest data will be removed. Therefore, the buffer always stores

the most recent results.

After each iteration, a number of samples will be randomly chosen from the buffer to train

the four networks. Each sample has the form of (πi, ai, πi+1, R). The four networks update their

weights as follows, using the idea of the DDPG algorithm [15]:

• Step 1: train the Critic Network. As shown in Figure 3.2, the Critic Network takes πi and

ai as input, and outputs a value Q(πi, ai). We also concatenate the Target Actor Network

and the Target Critic Network (as shown in Figure 3.2), and use πi+1 as input to generate the

output Qtarget(πi+1, a
target
i+1). The loss function of the Critic Network is then set as

Lcritic = (Q(πi, ai)− γQtarget(πi+1, a
target
i+1)− (R− B))2 (3.12)

where the baseline B is defined as an exponential moving average of all previous rewards

in order to reduce the variance of gradient estimation. A small number of samples are used

as a mini-batch, and their total loss is used to update the weights of the Critic Network via

backpropagation.

• Step 2: train the Actor Network. We concatenate the Actor Network and the Critic Network

(as shown in Figure 3.2), and use πi to generate the output Q(πi, ai). The loss function is

then set as

Lactor = −Q(πi, ai) (3.13)

Then the total loss of a mini-batch of such samples is used to update the weights of the Actor

Network via backpropagation (with the weights of the Critic Network frozen).

• Step 3: train the Target Actor Network. Let δ be a small number, such as δ = 0.01. Let

16

wtarget
actor be a weight of the current Target Actor Network, and let wactor be the corresponding

weight of the updated Actor Network. We update wtarget
actor as:

wtarget
actor ← wtarget

actor + δ(wactor − wtarget
actor) (3.14)

We update all weights of the Target Actor Network in the same way.

• Step 4: train the Target Critic Network. We update its weights in the same way as we did

with the Target Actor Network, except that here we consider the Target Critic Network and

the Critic Network.

In summary, the Critic Network learns to predict the future rewards given the current state

and the action to be taken. The Actor Network learns to take the best action based on the future

rewards predicted by the Critic Network. The Target Critic Network (respectively, the Target Actor

Network) follows the learning of the Critic Network (respectively, the Actor Network), except

that it updates its weights at a slower pace, which is a conservative method that helps the DRL

algorithm converge. The DRL algorithm ends when the four networks’ performance converges or

when a preset number of training steps is reached.

17

4. EXPERIMENTAL EVALUATION AND ANALYSIS

In this section, we present experimental evaluation of the Selected Protection scheme. We

focus on two important deep neural networks in computer vision: ResNet-18 [1] and VGG16 [16].

We consider two well-known datasets: the CIFAR-10 dataset [17] and the MNIST dataset [18]. We

use two data representation schemes for the weights: the IEEE-754 floating-point representation,

and the fixed-point representation. We explore two types of error correcting codes: an ideal ECC

that reaches the Shannon capacity, and a practical finite-length BCH code. And we study the

performance of two methods for the SP scheme: the BitMask method and the TopBits method.

The experimental results show that the Selective Protection scheme based on deep reinforce-

ment learning can substantially outperform the natural baseline scheme, where all layers protect

the same number of bits. The experimental results also reveal a very interesting fact: the Most

Significant Bits (MSBs) in a data representation do not always affect the performance of a neural

network in the most significant ways. Consequently, the BitMask method can sometimes protect

some less significant bits (instead of MSBs) and outperform the TopBits method. We present a

detailed analysis of this surprising finding.

In the following, we introduce the setup of experiments, and present the redundancy-performance

tradeoff of the SP scheme. We then show how the BitMask method and the TopBits method select

bits for protection, and analyse why sometimes LSBs are more important for the performance of

neural networks than MSBs in noisy environments.

4.1 Setup of Experiments

We test the performance of the SP scheme on two important neural network models: ResNet-18

and VGG16. Both models are commonly used for classifying images, and have various applica-

tions in computer vision. The architectures of the two models are illustrated in Figure 3.1. The

ResNet-18 network has 26 edge layers and 11.69 million weights. The VGG16 network has 16

edge layers and 138 million weights. Such sizes are typical for deep neural networks.

18

We perform image classification tasks on two important datasets: the CIFAR-10 dataset and

the MNIST dataset. The CIFAR-10 dataset consists of 60, 000 colored images of size 32 × 32

each, which belong to 10 different classes. The MNIST dataset consists of 70, 000 gray-scaled

images of size 28 × 28 each, which represent the 10 classes of hand-written digits from 0 to 9.

Both datasets are widely used for testing the performance of image classification.

We study the SP scheme for two data representation methods: the IEEE-754 floating-point

representation and the fixed-point representation. The IEEE-754 representation is an international

standard widely used in most hardware systems. The fixed-point representation is a natural alter-

native way to quantize weights with easily controllable ranges and quantization precision. In our

experiments, we let the IEEE-754 representation use 32 bits for each weight, and let the fixed-point

representation use 8 bits for each weight.

We explore two types of ECCs for protecting the important bits selected by the SP scheme. The

first one is an ideal ECC that reaches the Shannon capacity. When the weights suffer from errors

of a binary symmetric channel with BER p, we let the ideal ECC have a code rate of 1 − H(p),

matching the channel’s capacity. We use the code to protect all the selected important bits, and

assume that decoding always succeeds. The second type of codes are practical finite-length BCH

codes. When the IEEE-754 floating-point representation is used, we let the code be a (8191, 6722)

BCH code, which can correct 115 errors. When the fixed-point representation is used, we let the

code be a (8191, 6787) BCH code, which can correct 110 errors. When p = 0.01 (a practical

BER for storage systems), both codes can decode with sufficiently small failure probabilities, thus

causing minimal degradation for the neural network’s performance.

We study the performance of two methods for the SP scheme: the BitMask method and the

TopBits method. The BitMask method offers greater freedom in selecting which bits to protect,

while the TopBits method offers higher efficiency for learning due to its more restricted solution

space. For both methods, the deep reinforcement learning algorithm converges efficiently. Given a

solution of the SP scheme, we generate random errors 100 times for all the weights, and evaluate

the neural network’s average performance (i.e. classification accuracy). The performance was

19

found to be stable over different experiments.

4.2 Redundancy-Performance Tradeoff

(a) (b)

(c) (d)

Figure 4.1: The redundancy-performance tradeoff for the SP scheme when ideal ECC is used.

The experimental results for the redundancy-performance tradeoff are shown in Figure 4.1

and Figure 4.2. They are for two different types of ECCs, respectively: Figure 4.1 is for the ideal

ECC, while Figure 4.2 is for the finite-length BCH codes. In all experiments, we let BER be p =

0.01. The redundancy r = kpro(n−k)

ktotalk
can be adjusted by setting different target redundancy in the

deep reinforcement learning algorithm. The performance is measured as the average classification

accuracy of the neural network, whose noisy weights are partially protected by the ECC.

20

(a) (b)

(c) (d)

Figure 4.2: The redundancy-performance tradeoff for the SP scheme when BCH codes are used.

The figures show that when the redundancy r is relatively large, the neural network retains its

high performance (because the bits most important for its performance are protected by ECCs).

However, once the redundancy drops below a certain threshold, the performance drops sharply. It

can be seen clearly that, overall, both the BitMask method and the TopBits method significantly

outperform the baseline method, where all layers protect the same number of bits. (In the baseline

method, we always protect the first few bits in the weights because they are more significant.)

It can also be seen that when the IEEE-754 representation is used, the BitMask method outper-

forms the TopBits method substantially overall. When the fixed-point representation is used, the

performance of two methods becomes more comparable, with the TopBits method sometimes out-

performing the BitMask method. It is a very interesting observation because the TopBits method

21

always chooses the first few bits of each weight, which are usually considered more significant

than the remaining bits. Furthermore, this restriction also reduces the dimensions of the solution

space substantially, which helps improve the efficiency of learning. It implies that the BitMask

method can find less significant bits that are more important than MSBs for a neural network’s

overall performance. In the following, we analyse this surprising result by studying how the two

methods select bits, and how the bits affect the neural network’s performance.

4.3 Bits Protected by Selective Protection Scheme

We now study how the BitMask method and the TopBits method select bits. For the number

of bits selected by the two methods, its distribution over the layers is as illustrated in Figure 4.3.

It can be seen that when the data representation is IEEE-754, both methods have a relatively even

distribution over the layers. And when the data representation is the fixed-point representation, the

distribution for both methods becomes less even. Overall, the two methods behave similarly in this

aspect.

(a) IEEE-754 floating-point representation

(b) Fixed-point representation

Figure 4.3: The number of selected bits for ECC protection in each edge layer. Here the neural
network is ResNet-18, the dataset is CIFAR-10, and the ECC is the ideal ECC.

22

The major difference between the BitMask method and the TopBits method is in which bits they

select. Since their redundancy-performance tradeoff differs most significantly when the IEEE-754

representation is used, we focus on the IEEE-754 representation from now on. For the TopBits

method, it always selects the first few bits in each layer. For the BitMask method, however, it

selects bits quite differently. Some typical examples are shown in Figure 4.4. It shows that instead

of selecting some more significant bits (such as the third and the fourth bits), the BitMask method

selects some less significant bits (such as the fifth, sixth and seventh bits in the 11th layer, the 12th

layer, · · · , the 16th layer). The result is intriguing because the more significant bits affect the value

of a weight more substantially, and are usually expected to affect the performance of the neural

network more as well. We present the analysis for the result in the next section.

Figure 4.4: Typical examples of the bit-mask vector in some edge layers, with the IEEE-754
floating-point representation and the BitMask method.

4.4 Analysis of BitMask Method and TopBits Method

When the IEEE-754 data representation is used, consider a bit among the exponent bits. (The

exponent bits are where the BitMask method’s selection and the TopBits method’s selection dif-

fer the most. For fraction bits, most of them are not selected by either method.) Recall that

for a weight, when its bits are (b0, b1, · · · , b31), the corresponding weight is w = (−1)(b0)2 ×

2(b1b2···b8)2−127 × (1.b9b10 · · · b31)2. Let 1 ≤ i ≤ 8, and consider the exponent bit bi. There are two

important factors that determine how an error in bi affects the neural network’s performance:

23

1. Factor one: The 0-to-1 error and the 1-to-0 error have an asymmetric impact on the neural

network’s performance.

2. Factor two: The bit bi can have a highly imbalanced probability distribution, which also

affects the performance.

We analyze the two factors in the following. For the first factor, consider a 0-to-1 error that

changes bit bi from 0 to 1. In this case, the weight changes from w to w0−to−1 = 228−i × w. With

a 1-to-0 error that changes the bit bi from 1 to 0, the weight will change from w to w1−to−0 =

2−28−i × w. Since each neuron takes a linear combination of its incoming values before passing it

to an activation function, the absolute value of the weight plays an important role in the function

of the neuron. It is easy to see that the 0 − to − 1 error changes the absolute value of the weight

much more significantly than the 1 − to − 0 error. So the 0 − to − 1 errors are expected to affect

the neural network’s performance more significantly as well.

We experimentally verify the above observation in Figure 4.6 (a) and (b). They show that when

0-to-1 errors are added, the performance of the neural network drops very sharply. When 1-to-

0 errors are added, however, the performance of the neural network does not change much. The

results verify that 0-to-1 errors have a more significant impact on the neural network’s performance.

So to achieve an optimal redundancy-performance tradeoff, there is a strong motivation to protect

bits that are more likely to be 0s.

Let us now study the probability distribution of the bits in each bit position. The results are as

illustrated in Figure 4.5. It can be seen that for many exponent bits (including bit 1 to bit 6), the

probability distribution can be quite uneven. In fact, due to the weight distribution in the neural

network, bit 2 and bit 3 here are nearly always 1s, and that explains why they were not selected by

the BitMask method (as shown in Figure 4.4). Overall, whether a bit should be selected depends

on the balance between both factors: the level of asymmetry in the impact on performance by the

0-to-1 errors and the 1-to-0 errors, and the probability for the bit to be 0 or 1. The greater the level

of asymmetry is, and the more probable the bit is 0, the more likely the bit will be selected.

We study the bits that are selected differently by the BitMask method and the TopBits method,

24

Figure 4.5: The probability distribution of the bits in each bit position.

and explore their impact on the neural network’s performance. The experimental results are shown

in Figure 4.6 (c) and (d). Let STopBits be the set of bits selected by the TopBits method, and let

SBitMask be the set of bits selected by the BitMask method. (Here we let the TopBits method

select the same number of bits as the BitMask method in each layer for fair comparison.) It can be

seen that when errors are added to the bits in SBitMask − STopBits, the performance of the neural

network drops very sharply. When errors are added to the bits in STopBits−SBitMask, however, the

performance does not change much. The results verify that the BitMask method indeed chooses

bits that are more important for the redundancy-performance tradeoff.

25

(a) (b)

(c) (d)

Figure 4.6: How the performance of a neural network changes when errors are added to its bits in
two phases. (No bits here are protected by ECC.)

26

5. CONCLUSIONS

In this work, we use deep learning to selectively protect the weights in neural networks from

errors, in order to achieve an optimized redundancy-performance tradeoff. The error-correction

scheme is function-oriented: it aims at optimizing the neural network’s overall performance, in-

stead of the uncorrectable bit error rates among all the bits after decoding. It studies two important

methods for the Selective Protection scheme: the BitMask method and the TopBits method. Both

methods outperform the baseline scheme significantly. And interestingly, it was discovered that

sometimes, protecting less significant bits (LSBs) is more important to the neural network’s per-

formance than protecting some more significant bits (MSBs).

The proposed error-correction paradigm can be extended in various ways. One interesting ex-

tension is to study how errors in different modules in a neural network (including filters, channels,

attention modules, etc.) affects the neural network’s performance, and design error-correction

schemes accordingly. They remain as our future research.

Moreover, we can apply different rate of ECCs to the weights represented as bits since the

importance of the bits are different. From the observations, the impact of noise added differs

layers by layers. We can protect the bits of high importance to the neural network’s performance

with high rate of ECCs and the bits of low importance with low rate of ECCs. This scheme can

further improve the redundancy-performance tradeoff.

The bit-mask vectors that our algorithm chosen are not optimal to the solution. One bottleneck

on this algorithm is the deep reinforcement learning algorithm usually overestimates the reward of

the observed state and selects a suboptimal bit-mask vectors. To improve the performance of the

function approximation, we can develop an algorithm to take a sequence of points and output an

estimated function with a set of candidate functions and operations.

27

REFERENCES

[1] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” CoRR,

vol. abs/1512.03385, 2015.

[2] J. Kirkpatrick, R. Pascanu, N. C. Rabinowitz, J. Veness, G. Desjardins, A. A. Rusu,

K. Milan, J. Quan, T. Ramalho, A. Grabska-Barwinska, D. Hassabis, C. Clopath, D. Ku-

maran, and R. Hadsell, “Overcoming catastrophic forgetting in neural networks,” CoRR,

vol. abs/1612.00796, 2016.

[3] S. Han, H. Mao, and W. Dally, “Deep compression: Compressing deep neural networks with

pruning, trained quantization and huffman coding,” arXiv preprint arXiv:1510.00149, 2015.

[4] M. Qin, C. Sun, and D. Vucinic, “Robustness of neural networks against storage media er-

rors,” CoRR, vol. abs/1709.06173, 2017.

[5] P. Upadhyaya, X. Yu, J. Mink, J. Cordero, P. Parmar, and A. Jiang, “Error correction for noisy

neural networks,” in Non-Volatile Memories Workshop, 2019.

[6] P. Upadhyaya, X. Yu, J. Mink, J. Cordero, P. Parmar, and A. Jiang, “Error correction for

hardware-implemented deep neural networks,” in Non-Volatile Memories Workshop, 2019.

[7] Y. Liu, L. Wei, B. Luo, and Q. Xu, “Fault injection attack on deep neural network,” in 2017

IEEE/ACM International Conference on Computer-Aided Design (ICCAD), pp. 131–138,

Nov 2017.

[8] A. S. Rakin, Z. He, and D. Fan, “Bit-Flip Attack: Crushing Neural Network with Progressive

Bit Search,” arXiv e-prints, p. arXiv:1903.12269, Mar 2019.

[9] J. Luo, J. Wu, and W. Lin, “Thinet: A filter level pruning method for deep neural net-

work compression,” in Proceedings of the IEEE international conference on computer vision,

pp. 5058–5066, 2017.

28

[10] Y. He and S. Han, “ADC: automated deep compression and acceleration with reinforcement

learning,” CoRR, vol. abs/1802.03494, 2018.

[11] K. Wang, Z. Liu, Y. Lin, J. Lin, and S. Han, “HAQ: hardware-aware automated quantization,”

CoRR, vol. abs/1811.08886, 2018.

[12] A. Gal and M. Szegedy, “Fault tolerant circuits and probabilistically checkable proofs,” in

Proceedings of Structure in Complexity Theory. Tenth Annual IEEE Conference, pp. 65–73,

June 1995.

[13] V. Choudhary, E. Ledezma, R. Ayyanar, and R. M. Button, “Fault tolerant circuit topol-

ogy and control method for input-series and output-parallel modular dc-dc converters,” IEEE

Transactions on Power Electronics, vol. 23, pp. 402–411, Jan 2008.

[14] C. E. Stroud, “Reliability of majority voting based vlsi fault-tolerant circuits,” IEEE Trans-

actions on Very Large Scale Integration (VLSI) Systems, vol. 2, pp. 516–521, Dec 1994.

[15] T. Lillicrap, J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra,

“Continuous control with deep reinforcement learning,” arXiv preprint arXiv:1509.02971,

2015.

[16] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image

recognition,” arXiv preprint arXiv:1409.1556, 2014.

[17] A. Krizhevsky, G. Hinton, et al., “Learning multiple layers of features from tiny images,”

tech. rep., Citeseer, 2009.

[18] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to document

recognition,” Proceedings of the IEEE, vol. 86, pp. 2278–2324, Nov 1998.

29

	ABSTRACT
	CONTRIBUTORS AND FUNDING SOURCES
	NOMENCLATURE
	TABLE OF CONTENTS
	LIST OF FIGURES
	Introduction
	Related Work
	Selective Protection Scheme by Deep Reinforcement Learning
	Weight Representation in Neural Networks
	Standard Floating-Point Representation
	Fixed-Point Representation

	Selective Protection Scheme
	Deep Reinforcement Learning for Selective Protection
	State Space
	Action Space
	Reward Function
	Policy of Agents and the Learning Process

	Experimental Evaluation and Analysis
	Setup of Experiments
	Redundancy-Performance Tradeoff
	Bits Protected by Selective Protection Scheme
	Analysis of BitMask Method and TopBits Method

	Conclusions
	REFERENCES

