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Geometric Approach to Quantum
Statistical Inference

Marcin Jarzyna and Jan Kołodyński

Abstract—We study quantum statistical inference tasks of
hypothesis testing and their canonical variations, in order to
review relations between their corresponding figures of merit—
measures of statistical distance—and demonstrate the crucial
differences which arise in the quantum regime in contrast to
the classical setting. In our analysis, we primarily focus on the
geometric approach to data inference problems, within which the
aforementioned measures can be neatly interpreted as particular
forms of divergences that quantify distances in the space of prob-
ability distributions or, when dealing with quantum systems, of
density matrices. Moreover, with help of the standard language of
Riemannian geometry we identify both the metrics such diver-
gences must induce and the relations such metrics must then
naturally inherit. Finally, we discuss exemplary applications of
such a geometric approach to problems of quantum parameter
estimation, “speed limits” and thermodynamics.

Index Terms—Physics, quantum mechanics, geometry,
information geometry, statistics, probability.

I. INTRODUCTION

QUANTUM statistical inference is a field lying at the
intersection of quantum information theory and statis-

tics [1]–[4]. Its main goal is to provide tools that allow for an
efficient assessment of data in order to extract desired proper-
ties of its underlying probability distribution—which crucially
describes outcomes of measurements performed on a single or
multiple quantum systems. As the aim of any experiment is to
prove (or disprove) a hypothesized theoretical model, when-
ever a quantum mechanical description is required, quantum
statistical inference methods become essential for making any
scientific claims. Overall, the key is always to perform infer-
ence tasks most efficiently, in particular, obtaining as much
information as possible from a given dataset, e.g., maximizing
precision or an appropriate information measure, or minimiz-
ing the error or its probability. However, being tailored to
problems embedded into the quantum realm, another important
role of quantum statistical inference is to quantify and study
the advantage of features that only quantum systems and mea-
surements may possess. On one hand, a quantum system may
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exhibit entanglement [5] in between its constituents, which
after being measured can then yield correlations stronger than
the classical theory allows for [6]. On the other hand, a
collective measurement performed on multiple system copies
can uncover, thanks again to its inbuilt quantum correlations,
system properties that are classically inaccessible [7], [8].

In fact, the above aspects of a quantum theory turn out to
be vital for the tasks of quantum parameter estimation and
quantum hypothesis testing, respectively. By using entangled
particles as probes, the error in estimating a parameter encoded
independently onto each of them can decrease even as ∝ 1/N
with the particle number N, attaining the so-called Heisenberg
limit [9]–[11]—as opposed to the best classical scaling of
∝ 1/

√
N imposed by the central limit theorem [12]. In con-

trast, in quantum hypothesis testing, e.g., in discrimination
problems, it is the ability to perform collective measure-
ments on many system copies, which allows the probability
of incorrect decision to asymptotically vanish with a rate that
is unattainable by classical means [13]–[16]. Such observa-
tions have led to booming research in quantum metrology [9]
and sensing [17] at core of which lies the quantum estimation
theory, as well as other information theoretical tasks such as
private communication over quantum channels [18] or quan-
tum key distribution [19], whose security and performance
largely rely on proofs involving hypothesis testing problems.

In this work, the motivation is to study figures of merit
that arise in quantum statistical inference tasks and estab-
lish important relations between them. In order to achieve
this, we approach the inference problems with help of the
information geometry [20], [21], which allows us to directly
generalise the geometric picture of a probability space that in
the quantum case naturally inherits the structures of quantum
states and measurements. In particular, we use these notions to
study the distinguishability problem of quantum states that lie
very close to one another, for which we show that figures of
merit arising in hypothesis testing naturally reduce to quanti-
ties emerging in the complimentary estimation and information
theoretical tasks. As a result, we are able to provide alter-
native proofs of properties for the geometrically motivated
quantum measures that are then naturally inherited from the
geometric structure, e.g., convexity, additivity or monotonicity
of the quantum Fisher information (QFI) and other quantum
metrics. Although we gather and combine results previously
established in the literature, we obtain this way also novel
relations connecting quantum distance measures, e.g., a lower
bound on the QFI obtained with help of the infinitesimal
expansion of the trace distance. Finally, we demonstrate that
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Fig. 1. Geometric representation of a classical statistical manifold M and its quantum generalisation MQ, with the latter containing density matrices
rather than probability distributions. The tangent space TpM defined at a given point (probability distribution) p in M naturally translates onto TρMQ
defined in a similar manner on MQ for any point (density matrix) ρ. In particular, a tangent space at p ∈M (or ρ ∈MQ) is spanned by all tangent vectors
of curves passing through that point, e.g., vectors V and W tangent to curves pϕ and qϕ (or ρϕ and σϕ ), respectively, at their crossing-point p (or ρ).

the geometrically motivated relations can bring insights into
problems of quantum parameter estimation, speed limits and
thermodynamics. For instance, we identify in the last case
which quantum metric is naturally responsible for the devia-
tion from the exact equality in the familiar Clausius inequality,
which governs all thermodynamic processes.

II. CLASSICAL STATISTICAL INFERENCE

We start by introducing the notion of statistical distances,
their interrelations, as well as conditions one must impose
when requiring them to represent valid metrics or divergences
in the space of probability distributions. Such a space is geo-
metrically represented by the statistical manifold depicted in
Fig. 1 that carries natural structures of Riemannian geometry,
which, as later discussed, allow to apply tools of information
geometry in solving statistical inference tasks.

A. Distance Measures Between Probability Distributions

1) Statistical Distances and Divergences: The purpose of
a statistical distance is to measure discrepancy between statis-
tical objects, e.g.,: probability distributions, random variables,
or samples. Geometrically, any two probability distributions
(PDs) p and q correspond to two points lying on the (classical)
statistical manifold M—the space composed of all legitimate
PDs shown schematically in Fig. 1. The distance between them
must be generally represented by some non-negative function
D : M ×M → R+ such that D[p, q] ≥ 0. In this work
we would like to consider statistical distances that lead to the
intuitive notion of an “overlap” between PDs. That is why,
we will avoid, for instance, the so-called transport distances1

that instead quantify the “cost of transforming” one PD into
another [23].

A statistical distance D[p, q] ≥ 0 is formally termed a met-
ric if: (i) it is ‘symmetric’, D[p, q] = D[q, p]; (ii) satisfies the
‘identity of indiscernibles’, D[p, q] = 0⇔ p = q; and (iii) ful-
fills the ‘triangle inequality’, D[p, q] + D[q, r] ≥ D[p, r].
However, as we will often use the term “metric” referring to its

1Let us note, however, that these arise naturally in constructions of uncer-
tainty relations for quantum measurements [22], which are beyond the scope
of this work.

definition in differential geometry, from now on we will call all
non-negative functions satisfying conditions (i-iii) simply as
distances. On the other hand, as shortly shown in Section II-B,
the above conditions often turn out to be too demanding when
seeking statistical distances with a clear operational motiva-
tion. That is why, we will call a function D[p, q] ≥ 0 a
divergence if it is “almost” a distance, i.e., it does not satisfy
all of the conditions (i-iii).2 Instead, unless stated otherwise,
we will require a divergence to satisfy the ‘identity of indis-
cernibles’ (ii), while not insisting on its ‘symmetry’ (i) nor the
‘triangle inequality’ (iii).

2) f -Divergences and Their Monotonicity: A partic-
ularly useful class of divergences are the so-called
f -divergences [24], [25]. For any given convex function
f : R+ → R+ such that f (1) = 0, an f -divergence is defined
as [24]–[27]:

Df
[
p, q

]
:=

∑

i

pi f

(
qi

pi

)
, (1)

where we have assumed the PDs p and q to be discrete,3 so
that

∑
i pi = 1 and pi ≥ 0 for all the values, i = 0, 1, 2, . . . ,

the corresponding random variable takes (and similarly for q).
As the form (1) does not assure f -divergences to be symmetric,
we avoid referring to them generally as distances unless all the
above conditions (i-iii) are satisfied.

Importantly, it follows naturally from the convexity of f in
Eq. (1) that any f -divergence must be monotonic [28], i.e., ful-
fill the data-processing inequality Df [p′, q′] ≤ Df [p, q] where
p′ = S p (q′ = S q)4 is the linearly transformed PD p (q) after
action of any stochastic map S : M→M. Interpreting dis-
crete PDs p′ and p as non-negative and normalized vectors,
the map S defines a left-stochastic transition matrix Sij with
non-negative entries (∀i,j : Sij ≥ 0) and columns summing up

2Formally, by relaxing condition (i), (ii) or (iii) one arrives at quasi-,
pseudo- or semi-metrics, respectively.

3For simplicity, throughout this work we primarily consider discrete PDs.
This is sufficient for our purposes, as in the later sections we deal with
quantum states and measurements defined in finite-dimensional Hilbert spaces
only.

4Throughout, we use the same notation for PDs when written in vector
form, so that, e.g., p′ = S p ⇔ ∀i : p′i =

∑
j Sij pj.
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to 1 (∀j :
∑

i Sij = 1) [29]. In fact, one can interpret columns
of a transition matrix as vectors of a conditional probability,
S·j = p(·|j), which effectively randomises the input probabil-
ity vector. Consequently, as under a randomization PDs are
expected to approach one another, a valid distance measure
on the statistical manifold should be non-increasing under the
action of any stochastic map—as assured by the monotonicity
of any f -divergence (1).

Of course, not every D : M ×M → R+ that is mono-
tonic under stochastic maps constitutes an f -divergence. A
counterexample may be easily constructed by composing an
f -divergence with any non-decreasing function g : R+ → R+,
such that g(Df [·, ·]) is then trivially monotonic but cannot be
written as in Eq. (1). Still, due to the freedom in choosing an
arbitrary convex function in Eq. (1), the class of f -divergences
turns out to cover a broad spectrum of statistical distances used
in data processing and inference. However, as discussed later
in Section II-D, surprisingly all f -divergences induce (up to a
constant factor) via the Chentsov theorem [30] the same metric
on the statistical manifold, despite taking in general different
forms depending on f in Eq. (1).

B. Hypothesis Testing Tasks

Let us consider a statistical inference task whose main
objective is to correctly identify, based on the outcomes
xn = (x1, . . . , xn) of n independent rounds, which of the two
given PDs p and q is the one governing the experiment—
constitutes the PD according to which the random variable
X describing a single outcome is distributed. The inference
procedure can then be fully described by a decision function
D : Xn → {0, 1}, so that if D(xn) = 0 one concludes p to
be the correct PD, while for D(xn) = 1 the PD q is accepted.
Unless one of the PDs can be trivially excluded for a given
dataset xn, one must then minimise the probability of error
over all possible decision functions in order to find the optimal
strategy.

Such a problem is an instance of a binary hypothesis testing
(HT) task in which one generally differentiates between the
null H0 and alternative H1 hypotheses of which the first one
is given priority—being assumed true prior to collecting any
data [31]. In particular, for the above problem H0 corresponds
simply to the statement: “p is the true PD”; while H1 to the
opposite: “q is the true PD”. Within the general approach to
HT one defines two types of errors: type-I errors (“false pos-
itives”) – occurring when H0 is rejected based on the data
despite actually holding true; and type-II errors (“false neg-
atives”) – arising when H0 is maintained although the data
has actually been generated in accordance with H1. For our
problem of distinguishing two PDs p and q, the type-I errors
are dictated by the conditional probability Pn(q|p) of selecting
q as the underlying distribution while the observed sequence
xn came actually from p. In analogy, the type-II errors occur
when p is claimed to be behind xn instead of q that is true,
i.e., according to Pn(p|q) which has a similar interpretation to
Pn(q|p) with the roles of p and q reversed.

In symmetric hypothesis testing (sHT) one treats both error-
types at equal grounds, while being interested in minimising

Fig. 2. Symmetric hypothesis testing (sHT) in a single shot: Distinguishing
between continuous probability distributions p(x) and q(x) based on a single
(n = 1) observed measurement outcome x. The optimal Neyman-Pearson
inference strategy indicates to accept p(x) whenever the measured value x is
such that p(x) ≥ q(x), and q(x) otherwise. The shaded areas correspond to
the type-I error probability (black) and type-II error probability (red). For an
unbiased problem πp = πq = 1/2 the average probability of error, perr

min in
Eq. (4), corresponds to the total shaded area multiplied by a factor of 1/2.

the average error probability:

perr
n := πp Pn(q|p)+ πq Pn(p|q), (2)

where πp(q) are the a priori probabilities of p(q) being the
true PD. In contrast, for the case of asymmetric hypothesis
testing (aHT) one is rather interested in minimising the prob-
ability of either type-I or type-II error, i.e., either Pn(q|p) or
Pn(p|q) separately, and not both of them simultaneously. For
this reason, sHT and aHT require slightly different treatment
that we briefly review below. Nevertheless, note that since a
randomization performed on both p and q can only increase
the probability of an error, that is, decrease the distinguisha-
bility between the PDs, all information measures emerging in
HT should be monotonic under stochastic maps.

1) Symmetric Hypothesis Testing:
a) Single-shot scenario (n = 1): Firstly, let us con-

sider the case of distinguishing PDs p and q within the sHT
framework based on a single outcome, i.e., in the single-shot
scenario. The error probability is then governed by Eq. (2)
with n = 1 that must be minimised over all decision func-
tions D : X → {0, 1} to find the best inference strategy. The
optimal D corresponds then to the so-called Neyman-Pearson
test [31], for which the probability of error, perr

n=1 in Eq. (2),
has a natural interpretation depicted in Fig. 2. In particular, the
Neyman-Pearson strategy instructs one to infer p(x) to be the
true distribution if p(x) ≥ q(x) for the measured value x, and
q(x) otherwise. Hence, considering the PDs p(x) and q(x) to be
continuous in Fig. 2 for clarity, the probabilities of type-I and
type-II errors correspond then simply to the areas lying under
the tails of respective distributions, P(p|q) = ∫

p(x)≥q(x) q(x)d x
and P(q|p) = ∫

q(x)≥p(x) p(x)d x, i.e., the shaded regions marked
in Fig. 2 in red and black, respectively.

On the other hand, substituting the above conditional prob-
abilities into Eq. (2) with n = 1 and using πp + πq = 1, as
well as

∫
p(x)≥q(x) . . . d x = 1 − ∫

q(x)≥p(x) . . . d x, one obtains
the minimal average error probability in the single-shot
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scenario as

perr
min := 1

2

(
1−

∫ ∣
∣πp p(x)− πq q(x)

∣
∣ d x

)

≡ 1

2

(

1−
∑

i

∣
∣πp pi − πq qi

∣
∣
)

, (3)

where we have also written its form for discrete PDs by sim-
ply replacing the integral with a sum over a finite number
of values. In case the two hypotheses are equally likely and
πp = πq = 1

2 , the above expression can be conveniently
rewritten as

perr
min =

1

2
(1− T[p, q]) (4)

and neatly interpreted as the total shaded area marked in Fig. 2
divided by two.

In Eq. (4) above we have used the common definition of
the Total Variation (TV) distance:

T[p, q] := 1

2

∫
|p(x)− q(x)| d x ≡ 1

2

∑

i

|pi − qi|, (5)

applicable to both continuous and discrete PDs. Note that
T[p, q] may be termed a distance, as it satisfies all the condi-
tions (i-iii) stated in Section II-A1. Nonetheless, it can also
be interpreted as an f -divergence with a (convex) function
f (t) = 1

2 |1− t| in Eq. (1) with f (1) = 0. However, as such f (t)
is not differentiable at t = 1, the TV distance crucially differs
from other commonly used f -divergences that are smooth for
all t ∈ R+—a point we return to in Section II-C.

b) Asymptotic scenario (n → ∞): A similar analysis
can also be followed for any finite number n > 1 of inde-
pendent rounds appearing in Eq. (2), in which case after
minimising over all inference strategies one arrives at a direct
generalisation of Eq. (3) that in case of discrete PDs reads:

perr
n,min := 1

2

(

1−
∑

i

∣∣∣πp p(n)i − πq q(n)i

∣∣∣

)

≤ ξ [p, q]n, (6)

where p(n)i = ∏n
k=1 pik (and similarly for q) denotes now the

probability of obtaining a particular sequence i = (i1, . . . , in)
of outcomes. However, as indicated in Eq. (6), the minimal
error probability can then be generally upper-limited by the
Chernoff bound [32]:

ξ [p, q] := min
0≤α≤1

ξα[p, q] with ξα[p, q] :=
∑

i

pαi q1−α
i . (7)

which is completely independent of the a priori distribu-
tions πp and πq. This is further manifested by ξ [p, q] =
ξ [q, p] always being symmetric, in contrast to the Chernoff
coefficients ξα defined above (also known as Hellinger inte-
grals [26]) whose symmetry cannot be guaranteed for all
0 ≤ α ≤ 1. The only exception is the special case of
α = 1/2 that yields the so-called Bhattacharyya coefficient
F[p, q] := ξ1/2[p, q] = ∑

i
√

piqi being symmetric by its
definition.

In general, the Chernoff coefficients ξα naturally define
a family of f -divergences called Hellinger divergences

parametrised similarly by α [33]:

Hα[p, q] := 1

1− α (1− ξα[p, q]) = 1

1− α

(

1−
∑

i

pαi q1−α
i

)

= 1

1− α
∑

i

pi

(

1−
(

qi

pi

)1−α)
, (8)

which for an extended range of all 0 ≤ α < 1 and
α > 1 consistently constitute examples of Eq. (1) with
f (t) = 1−tα

1−α being convex and satisfying f (1) = 0 [26], [27].
The special symmetric case of α = 1/2 leads to the com-
monly used (squared) Hellinger distance,5 H1/2[p, q] = 2(1−
F[p, q]) [26], that—as the name suggests—satisfies all (i-iii)
conditions of Section II-A1.

Although for any small n ≥ 1 the Chernoff bound (6) may
not be very tight and, hence, very meaningful, in the asymp-
totic scenario of infinitely many rounds it dictates the ultimate
performance in sHT. In particular, as n→∞ the minimal error
probability in Eq. (6) is guaranteed to follow an exponential
decay [31]:

perr
n,min =

n→∞ exp
[−n C[p, q]+ o(n)

]
, (9)

with the exponent being fully determined by the Chernoff
bound (7), where

C[p, q] := − lim
n→∞

1

n
ln perr

n,min = − ln ξ [p, q] (10)

is often referred to as the Chernoff information. Note that
the definition (7) naturally implies ξ [p, q] ≤ ξα[p, q] for any
0 ≤ α ≤ 1, so one can always lower-bound the Chernoff
information using any Chernoff coefficient ξα , e.g., by the
Bhattacharyya coefficient F = ξ1/2 that yields C[p, q] ≥
− ln F[p, q] and is usually the easiest one to compute.

Moreover, for reasons that will soon become clear, it is
also convenient to define a family of the so-called Rényi
divergences [34]:

Dα[p‖q] := 1

α − 1
ln
[
1+ (α − 1)Hα[p, q]

]

= 1

α − 1
ln ξα[p, q] = 1

α − 1
ln

(
∑

i

pαi q1−α
i

)

,

(11)

which, as emphasised by the definition above, are a one-to-
one transformation of Hellinger divergences (8) of the same
order α [27]. Hence, although Dα[p‖q] do not generally con-
stitute f -divergences (1), they maintain all the properties of
Hα[p, q], in particular, condition (ii) of Section II-A1 and the
monotonicity under stochastic maps (recall the last paragraph
of Section II-A2).

2) Asymmetric Hypothesis Testing: In asymmetric hypoth-
esis testing (aHT) the aim is to minimise only the probability
of one type of errors, either type-I or type-II, while keep-
ing the other fixed. Focussing on, say, type-II errors, this
is equivalent to finding optimal inference strategy for which
Pn(p|q) in Eq. (2) is minimal, while simultaneously assuring

5Often the factor of 2 is omitted, so that the range of squared Hellinger
distance is [0, 1] rather than [0, 2] [27].
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that Pn(q|p) ≤ ε for some 0 < ε < 1. Such a problem becomes
interesting in the asymptotic scenario of infinitely many out-
comes, n → ∞, in which similarly to sHT and Eq. (9) the
probability of (one-type) error must decay exponentially as
follows [31]:

Pn,min(p|q) =
n→∞ exp

[−n D[p‖q]+ o(n)
]
, (12)

where according to the Stein’s lemma the exponent corre-
sponds to the relative entropy, also known as the Kullback-
Leibler divergence [35], between PDs p and q:

D[p‖q] ≡ lim
α→1−

Dα[p‖q] ≡ lim
α→1−

Hα[p‖q]

:=
∑

i

pi ln
pi

qi
= −

∑

i

pi ln
qi

pi
, (13)

which, as emphasised above, can be interpreted as the (one-
sided) limiting case of Hellinger (8) and Rényi (11) diver-
gences [26], while still constituting an f -divergence (1) with
f (t) = − ln t.

Note that the asymmetry of the relative entropy (13) is actu-
ally a manifestation of the fact that Pn,min(q|p) �= Pn,min(p|q),
not even asymptotically. Moreover, if the support of p does
not lie within the support of q, i.e., sup p � sup q, and hence
∃i : pi > 0 ∧ qi = 0, then D[p‖q] = ∞. From the operational
point of view it must be so, because as soon as the outcome
i is observed in the data, which is almost certain as n→∞,
one becomes sure that p is the true PD, so that consistently
limn→∞ Pn,min(p|q) = 0 in Eq. (12) no matter what forms p
and q actually take.

C. Information Geometry of Probability Distributions

In information geometry [20], [21] the statistical manifold
M is interpreted as a Riemannian manifold that we schemat-
ically depict in Fig. 1 as a convex oval shape. Hence, not
only each point in M represents a PD from the probability
space, but also M carries the structures common to differential
geometry such as curvatures, metrics, geodesics or connec-
tions. Although a given M may generally be non-Euclidean, a
coordinate system can always be defined on the manifold via a
parametrisation of all PDs: pϕ with ϕ ∈ R

d and d = dim(M)

such that all points in M are covered. Then, a one-parameter
family pϕ of PDs with a smooth ϕ : [0, 1]→M corresponds
to a curve in M, as drawn in Fig. 1 together with another
family (curve) qϕ that coincides with (crosses) pϕ at ϕ = ϕ0,
at which pϕ0 = qϕ0 =: p is the PD on the intersection.

1) Riemannian Metrics and Geodesics: A Riemannian met-
ric on a manifold M is defined as a smooth mapping
g(p) : TpM × TpM → R+ between PDs p ∈M and inner
products 〈 ·, · 〉g(p) ≥ 0 defined for vectors contained in the
tangent space TpM (see Fig. 1) associated with a given point
p. Moreover, the metric g(p) at any p ∈ M may be rep-
resented as a matrix g(p) with entries gij(p) := 〈ei, ej〉g(p)
specified in a fixed orthonormal basis of vectors {ei}i spanning
TpM. As a result, the inner product between any two vectors
V,W ∈ TpM can be conveniently written as 〈V,W〉g(p) =
VT g(p)W = ∑

ij g(p)ijViWj, with the p-dependence often
dropped.

Note that a metric is defined to be additive on Cartesian
products of statistical manifolds for these to describe joint
distributions of independent PDs. Consider distinct mani-
folds M1 and M2 with metrics g1 and g2, respectively, and
the product manifold M12 = M1 ×M2. Then, given a
point (p1, p2) ∈ M1 ×M2 and any two vectors V,W ∈
T(p1,p2)(M1 ×M2) ∼= Tp1(M1)⊕ Tp2(M2) [36], the metric
g12 on M12 must yield the inner product 〈V,W〉g12(p1,p2) =
(P1V)T g1(p1)(P1W) + (P2V)T g2(p2)(P2W), where P1(2)
denotes a projection onto Tp1(2)M1(2). In particular, the matrix
representation of g12 in any orthonormal basis of the tangent
space exhibits a direct-sum structure g12 = g1⊕ g2, where
g1(2) is the matrix representation of g1(2).

Let us emphasise that a metric g must be independently
defined for a given statistical manifold M. Once specified,
however, it defines a special notion of distance between PDs.
For an arbitrary curve γ (p,q) : [a, b] � t �→ u ∈M connecting
points p = γ (p,q)(a) and q = γ (p,q)(b) in M, the tangent vec-
tors along the curve read γ̇ (t) := d γ (p,q)

d t |u =
∑

i γ̇iei given a
basis {ei}i for each TuM. As a result, one may define the
length of the curve as |γ (p,q)| := ∫ b

a

√∑
ij gij γ̇iγ̇j d t [21],

intuitively understood as a sum (i.e., integral) over infinites-
imal segments of length

√〈γ̇ (t), γ̇ (t)〉g d t along the curve.
In particular, the geodesic distance between any two points
p, q ∈M is then unambiguously specified by the metric g as
the length of the shortest curve connecting them, Dg [p, q] :=
minγ (p,q) |γ (p,q)|, while the corresponding curve constitutes the
geodesic. As demanded for any distance, Dg by construction
satisfies then all (i-iii) conditions of Section II-A1.

2) Divergence-Induced Metrics and Their Monotonicity:
As any metric can be interpreted to define infinitesimal trans-
lations along curves on M, any particular distance or more
generally divergence must induce a particular metric on the
manifold [37]. Consider a divergence D[p, q] that satisfies (ii)
in Section II-A1 and is smooth in its both arguments p and q. D
defines then an inner product and, hence, a metric gD(p) for
any two vectors V,W ∈ TpM at p ∈M as follows

gD(p)[V,W] := 〈V,W〉gD(p) = VT gD(p)W, (14)

where the matrix representation of gD(p) for some orthonormal
vector basis {ei}i in TpM reads

gD(p)ij := 〈ei, ej〉gD(p) = −
∂2

∂t∂s
D
[
p+ t ei, p+ s ej

]
∣
∣∣∣
t=s=0

.

(15)

With help of the definition (15) we may compactly write the
leading-order of the Taylor expansion for any divergence D
when perturbing (by δp ∈ TpM and δp → 0) a given PD
p ∈M onto any p+δp ∈M such that sup(p+δp) ⊆ sup(p) as

D
[
p, p+ δp] = 1

2
gD(p)

[
δp, δp

]+ O
(
δp3

)

= 1

2
δpT gD(p) δp+ O

(
δp3

)
, (16)

where the �(δp)-term is always absent above, as any diver-
gence by definition fulfils the condition (ii) of Section II-A
assuring D[p, p] = 0 to be a global minimum. Then, any
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divergence satisfies also D[p, p+δp] = D[p+δp, p]+O(δp3),
despite not being necessarily symmetric, and yields the same
metric no matter whether it is the first or second argument per-
turbed in Eq. (16). Note that, however, if sup(p+δp) � sup(p)
it follows from Eq. (15) that p is perturbed in a pathologi-
cal direction such that the metric is divergent and cannot be
correctly defined.

The definition (16) takes an especially appealing form if we
introduce a local coordinate system on M that parametrises
all pϕ ∈M by a smoothly varying d-dimensional vector ϕ =
(ϕ1, . . . , ϕd) ∈ R

d. For any pϕ we may then consider small
deviations δϕ of ϕ and write [21]:

D
[
pϕ, pϕ+δϕ

] ≈ 1

2
δϕT gD

(
pϕ

)[∇pϕ,∇pϕ

]
δϕ (17)

with gD
(
pϕ

)
ij

[∇pϕ,∇pϕ

]
:= ∂2

∂θi∂θj
D
[
pϕ, pθ

]
∣
∣
∣∣
θ=ϕ

.

(18)

In this context, the metric gD(pϕ)[∇pϕ,∇pϕ] forms a matrix
in the ϕ-coordinate system and can be interpreted as a measure
of susceptibility of pϕ to small changes of the vector parameter
ϕ with the resulting variations of pϕ being measured by the
divergence D. However, one must bear again in mind that
if sup(pϕ+δϕ) � sup(pϕ), Eq. (18) yields gD(pϕ)[∇pϕ,∇pϕ]
divergent and the metric can no longer be defined.

Crucially, Eqs. (16–18) provide a simplified proof of a
general statement—any monotonic divergence must induce a
metric that is also monotonic under stochastic maps [38].
Considering any stochastic map S such that p′ = S p and
δp′ = S δp, the monotonicity of D implies D[p′, p′ + δp′] ≤
D[p, p + δp], so Eq. (16) then yields gD(p) ≥ ST gD(S p)S
up to O(δp3).6 The same argumentation applies to Eq. (17),
but as the metric in Eq. (18) is now defined for both
p = pϕ and p′ = S pϕ in the ϕ-coordinate system, one
obtains gD(pϕ)[∇pϕ,∇pϕ] ≥ gD(S pϕ)[∇(S pϕ),∇(S pϕ)].
For compactness, in what follows we will skip the tangent-
vector arguments in Eq. (18) and refer to the corresponding
(ϕ-coordinate) metric as just gD(pϕ).

Finally, let us emphasise that, although any divergence D
unambiguously defines a metric gD on the statistical manifold,
the converse is not true. In particular, a given metric may be
induced by multiple divergences—different D can yield the
same Hessian matrix in Eqs. (15) and (18). The only diver-
gence uniquely defined by a metric g is the geodesic distance
Dg (which, if monotonic, must be defined by a monotonic
metric by the argument stated above).

D. Uniqueness of the Fisher Metric and Its Properties

The most spectacular fact in information geometry is the
Chentsov theorem [30]. The theorem states that all Remiannian
metrics defined on a given M that are monotonic must always
correspond to the Fisher metric up to a multiplicative con-
stant [39]. This means that properties of the Fisher metric
described below are universal, as they apply to any monotonic
metric.

6Throughout, we use the scalar notation also for matrix inequalities, so that
A ≥ B iff A− B ≥ 0 is a non-negative matrix.

In particular, the f -divergences (1) introduced in Section II-
A2 are monotonic and so must be all the metrics induced by
them. Hence, by the virtue of Chentsov theorem, any metric
arising from an f -divergence must be proportional to the Fisher
metric. To verify this, we explicitly compute the metric gD in
Eq. (18) for a general f -divergence, Df , while assuming f (t)
in Eq. (1) to be twice-differentiable at t = 1. We obtain (see
also [37])

gDf

(
pϕ

) = f̈ (1) F
(
pϕ

)
, where

F
(
pϕ

)
ij :=

∑

x

1

pϕ(x)

∂pϕ(x)

∂ϕi

∂pϕ(x)

∂ϕj
, (19)

is, indeed, the Fisher metric [39] with the exact form of the
f -divergence (1) affecting only the multiplicative factor f̈ (1)
of the overall metric gDf .

Let us focus on the special case when only a curve in the
manifold M parametrised by a single ϕ ∈ R is considered,
see, e.g., pϕ in Fig. 1. Importantly, the Fisher metric (19) takes
then a scalar form of the Fisher Information (FI) common to
estimation theory [40]:

F(pϕ
)

:=
∑

x

1

pϕ(x)

(
∂pϕ(x)

∂ϕ

)2

, (20)

which geometrically represents the tangent “velocity in units
of ϕ” along the curve in M. As a consequence, all the standard
properties associated in the literature with the FI [40], can
be interpreted as being actually inherited from a monotonic
metric, in particular, the additivity of FI on independent PDs,
F(pϕqϕ) = F(pϕ)+F(qϕ) for independent pϕ and qϕ , and the
monotonicity of FI under stochastic maps, F(S pϕ) ≤ F(pϕ)
for any S : M→M (see Section II-C2).

Furthermore, the monotonicity of the Fisher metric (19)
assures its convexity when evaluated on mixtures of PD,
i.e., F(λpϕ + (1 − λ)qϕ) ≤ λF(pϕ) + (1 − λ)F(qϕ) for
any 0 ≤ λ ≤ 1. In order to prove it, let us consider
any two PDs pϕ, qϕ ∈ M and a third distribution p̃ϕ :=
λpϕ ⊕ (1 − λ)qϕ ∈ B2 ×M, where the manifold B2 con-
sists of binary distributions, so that in case of p̃ϕ it contains
a flag that with probability λ (or 1 − λ) indicates the actual
PD to be pϕ (or qϕ). As B2, and hence λ, is not parametrised
by the ϕ-coordinates, it is easy to verify with Eq. (19) that
F(p̃ϕ) = λF(pϕ) + (1 − λ)F(qϕ). Now, consider a stochas-
tic map that corresponds to forgetting the flag outcome,
i.e., S : B2 ×M →M such that S p̃ϕ = λpϕ + (1 − λ)qϕ .
As the Fisher metric constitutes the (only relevant) monotonic
metric, it crucially satisfies F(S p̃ϕ) ≤ F(p̃ϕ) that is equivalent
to F(λpϕ+(1−λ)qϕ) ≤ λF(pϕ)+(1−λ)F(qϕ), which proves
the convexity, as required. Note that convexity of the FI (20)
trivially follows by restricting to the single-parameter case—
without need to resorting to the exact form of F in Eq. (20),
as in the original proof [41].

E. Metrics Induced by Divergences

Let us return to the binary HT tasks discussed in
Section II-B and consider the case when two PDs being com-
pared, pϕ and pϕ+δϕ , are infinitely close to one another. We
can then perform the Taylor expansion in δϕ of relevant
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quantities describing the behaviour of the average error proba-
bility. Considering the asymptotic scenario of HT, we expand
the Chernoff coefficients (7):

ξα
[
pϕ, pϕ+δϕ

] ≈ 1− 1

2
α(1− α)δϕTF

(
pϕ

)
δϕ, (21)

that arise in sHT, and similarly the relative entropy (Kullback-
Leibler divergence):

D
[
pϕ‖pϕ+δϕ

] ≈ 1

2
δϕTF

(
pϕ

)
δϕ, (22)

which determines in aHT the asymptotic exponent of the one-
type error probability in Eq. (12). In both cases, the Fisher
metric, F(pϕ) defined in Eq. (19), can be similarly to Eq. (17)
interpreted as the Hessian matrix (up to a constant factor) for
each of the vector-valued Taylor expansions.

Note that the Chernoff coefficients ξα expanded to the sec-
ond δϕ-order in Eq. (21) have a simple dependence on the
α-parameter, so that minα ξα is always attained for α = 1

2
as δϕ→ 0. As a consequence, when expanding the Chernoff
bound (7), which is minimised over α, it follows directly from
Eq. (21) that the relevant expansion must simply read:

ξ
[
pϕ, pϕ+δϕ

] ≈ 1− 1

8
δϕTF

(
pϕ

)
δϕ. (23)

The above expansions allow us to determine explicitly met-
rics induced by all the divergences (and distances) discussed in
Section II-B, which we summarise in Table I. As expected, in
case of each f -divergence the induced metric obeys Eq. (19)—
being proportional to the Fisher metric in accordance with
the Chentsov theorem. In case of Rényi divergences and the
Chernoff information, which do not constitute f -divergences,
we can easily determine their corresponding metrics thanks to
Eqs. (21) and (23), respectively. The important exception is
the TV distance (5), which despite being interpretable as an
f -divergence yields f (t) = 1

2 |1 − t| in Eq. (1) that is not dif-
ferentiable at t = 1. Hence, it does not induce a Riemannian
metric on M.

F. Relations Between Divergences and Metrics

Although in Section II-B we have introduced different diver-
gences in distinct contexts of HT, majority of them are, in fact,
interrelated [27]. In what follows, we present only the most
common relations, but importantly compute their “infinites-
imal” versions—what allows us to relate also the metrics
induced by each divergence. We on purpose omit below the
PD-arguments of the discussed divergences whenever possible,
in order to emphasise that the following inequalities constitute
functional relations that do not depend on the actual PDs being
considered.

1) Relating Divergences: Considering first the case of sHT,
we relate the TV distance (5) – applicable in the single shot
scenario; with Chernoff coefficients (7) – applicable in the
scenario of multiple (incl. infinite) rounds; by the following
“sandwich” inequality [27], [42]:

1− ξα ≤ T ≤
√

1− F2. (24)

Inspecting definitions of T , ξα and F = ξ1/2 in
Eqs. (5) and (7), note that the left inequality above directly

follows from
∑

i(1− ( pi
qi
)α)qi ≤ 1

2

∑
i |1− pi

qi
|qi, as 1− xα ≤

1
2 |1 − x| for any 0 ≤ α ≤ 1. The right inequality, on the
other hand, between the TV distance and the Bhattacharyya
coefficient can be proven as follows:

T[p, q] = 1

2

∑

i

|pi − qi| ≤ 1

2

∑

i

∣∣√pi −√qi
∣∣∣∣√pi +√qi

∣∣

≤ 1

2

√∑

i

(√
pi −√qi

)2 ∑

j

(√
pj +√qj

)2

=
√

1− F[p, q]2, (25)

where in the second step we have employed a Cauchy-Schwarz
inequality. Reversing the inequalities in Eq. (24), we similarly
obtain a "sandwich" inequality for the Chernoff bound (7):

1− T ≤ ξα
F = ξ1/2 ≤

√
1− T2

}
=⇒ 1− T ≤ ξ ≤

√
1− T2, (26)

which we further minimised over the α-parameter, i.e., ξ :=
minα ξα .

In case of aHT we refer to the celebrated Pinsker
inequality [27]:

T[p, q] ≤
√

D[p‖q]

2
, (27)

which relates the relative entropy (13) – determining the
asymptotic exponent of the asymmetric error probabil-
ity (12); to the TV distance (5). Note that Eq. (27) together
with Eq. (24) imply:

1−
√

D[p‖q]

2
≤ ξ [p, q] ≤ ξα[p, q], (28)

which connects the behaviours of asymptotic exponents for
sHT (9) and aHT (12), in particular, the Chernoff bound (7)
to the relative entropy (13). However, acknowledging that the
minimal error probability in the asymptotic regime for the
symmetric case in Eq. (9) cannot be smaller than its equivalent
in Eq. (12) for the asymmetric scenario [31], we may further
tighten the above bound based on the Pinsker inequality (28)
as follows:

D[p‖q] ≥ − ln ξ [p, q]

=⇒ exp(−D[p‖q]) ≤ ξ [p, q] ≤ ξα[p, q]. (29)

2) Metric-Induced Bounds on the TV Distance: Although
the TV distance (5) cannot be used to define a Riemannian
metric on M – while not constituting a smooth f -divergence,
see Table I; in order to determine its behavior for PDs
infinitely close to one another, i.e., pϕ and pϕ+δϕ introduced
in Section II-E, we can crucially resort to the “sandwich”
inequality (24) involving Chernoff coefficients (7). However,
in what follows we restrict for simplicity to the single-
parameter case of a curve pϕ parametrised by ϕ ∈ R (see
Fig. 1), but all the relations derived below can be straight-
forwardly generalised to the multiparameter case—for which
the scalar inequalities involving the FI (20), F, generalise to
matrix inequalities involving the Fisher metric (19), F, while
the Taylor expansion of the TV distance must be performed
in the vector form involving relevant Hessian matrices.
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TABLE I
DIVERGENCES DEFINED BY MEANS OF CHERNOFF (AND BHATTACHARYYA) COEFFICIENTS ξα[p, q] =∑

i pαi q1−α
i

(AND F[p, q] = ξ1/2[p, q] =∑
i
√

piqi) INTERPRETED AS f -DIVERGENCES WHENEVER POSSIBLE, AND THEIR

ASSOCIATED RIEMANNIAN METRICS IN RELATION TO THE FISHER METRIC F

Substituting the (scalar with δϕ ≡ δϕ) Taylor expan-
sion (21) of the Chernoff coefficient, ξα , into the “sand-
wich” inequality (24) and maximizing the lower bound over
0 ≤ α ≤ 1, we obtain

F(pϕ
) δϕ2

8
≤ T

[
pϕ, pϕ+δϕ

] ≤
√
F(pϕ

) δϕ
2
. (30)

The left and right inequalities above consistently become tight
as δϕ→ 0, i.e., as the TV distance converges to zero for iden-
tical PDs. However, it is only the upper bound in Eq. (30) that
correctly predicts the behavior of T at the �(δϕ)-order (the
first derivative). As the Taylor expansion of the TV distance in
δϕ reads T[pϕ, pϕ+δϕ] = 1

2

∑
x | ∂pϕ(x)

∂ϕ
|δϕ+O(δϕ2), it becomes

clear that in the δϕ → 0 limit only the right inequality in
Eq. (30) yields a non-trivial bound:

∥∥∥∥
∂pϕ
∂ϕ

∥∥∥∥

2

1
≤ F(pϕ

)
, (31)

where by ‖v‖1 :=∑
i |vi| we denote the �1 (Manhattan) norm

of a vector v. Intuitively, Eq. (31) means that the speed of
pϕ along the curve in Fig. 1, when evaluated as the squared
sum of all the absolute changes in outcome probabilities for a
given ϕ, cannot be larger than the corresponding metric along
the curve at pϕ , i.e., larger than the FI (20) introduced in
Section II-D.

III. QUANTUM STATISTICAL INFERENCE

The laws of quantum mechanics may be viewed, up to some
degree, as a generalization of the classical statistical theory in
which instead of PDs one deals with density matrices [43].
Each of the latter kind represents the knowledge available
about a given quantum system, i.e., its quantum state, and for-
mally corresponds to a non-negative linear Hermitian operator
ρ ∈ L(H) with unit trace Tr{ρ} = 1 acting on some Hilbert
space H. The pure states constitute then the extreme points
of the density-matrix set corresponding to rank-one matrices
ρ = |ψ〉〈ψ |, and adequately describe the system if its state is
perfectly known (and hence deterministic).

In case the system is composite or, in other words, mul-
tipartite, its density matrix describes the overall state of two
(or more) subsystems A and B, while accounting for the cor-
relations being shared between the two parties. The overall

Hilbert space may then be generally decomposed into a ten-
sor product of subsystem Hilbert spaces HAB = HA ⊗ HB,
while the shared state ρAB ∈ L(HA ⊗ HB) does not nec-
essarily can be written in a product form. In particular, the
correlations it yields can only be described classically when
the state is separable, i.e., decomposable into a convex sum
of pure states ρAB =∑

� p�|ψ�〉A〈ψ�| ⊗ |φ�〉B〈φ�|. Otherwise,
the state is said to exhibit entanglement [5]—a fundamental
feature of quantum mechanics that distinguishes it drastically
from the classical realm.

Moreover, unlike classical physics, the correct description
of the measurement is as important in the quantum picture. It
is so, as, on one hand, the measuring process actively changes
the state of a quantum system and, on the other, multipar-
tite (collective) measurements may extract correlations beyond
reach of measurements performed separately on each subsys-
tem. On mathematical grounds, the measurement is described
with help of a positive operator value measure (POVM) {�i}i,
composed of operators in L(H) indexed by each outcome i
that satisfy �i ≥ 0 and

∑
i�i = 1. The probability of obtain-

ing an outcome i, given the system is in the quantum state ρ,
is then given by the Born rule: pi = Tr{ρ�i} [43].

From the perspective of statistical inference tasks, the quan-
tum setting may still be viewed at the level of PDs just as
instances of a classical inference problem, when one possesses
a “deeper” information about the origin of each PD. This, in
particular, should not affect any of the PD-based inference
methods and geometric structures discussed in the previous
sections. However, in the optimisation of each task and its
geometric description one has then the freedom to vary both
the quantum state of a system, as well as the measurements
being performed—both of which carry now their individual
(also geometric) structures unique to quantum mechanics.

From a different perspective, however, the classical statisti-
cal theory may be regarded as a special case of the quantum
one in which the density matrices are forced to be diagonal
in the basis defined by some projective measurement that is
the only one available. As any state ρ is then constrained to
yield the same eigenvectors in ρ =∑

n pn|n〉〈n| for the mea-
surement {�n = |n〉〈n|}n being considered, every possible PD
of outcomes n can be associated with a particular vector of
state eigenvalues, p ∈ M for ρ above, belonging to just a
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(classical) statistical manifold—with the quantum structure of
states and measurements becoming completely irrelevant.

Still, in the general case, the full information about a quan-
tum state is contained in its density matrix rather than the
outcome PD that applies only after a given measurement
has been specified. Hence, as the quantum framework must
allow to describe the evolution of information under cer-
tain processes—similarly as the transformations of PDs are
described by stochastic maps S : M → M in Section II-
A2—it must allow to correctly describe generalisations of
stochastic maps that transform density matrices. Indeed, a gen-
eral mapping of a quantum system is formally described by a
quantum map (channel) � : L(H) → L(H) that constitutes
a completely positive, linear and trace-preserving transforma-
tion on L(H) [43]. For instance, a special and idealistic case
is the unitary map �[ρ] = UρU†, which describes a noise-
less evolution of an isolated quantum system with the unitary
operator U : H → H constituting, e.g., the solution to the
celebrated Schrödinger equation U = exp [− i Ĥt] for some
physical Hamiltonian Ĥ [43].

However, as any real quantum system will inevitably inter-
act with its environment and/or be destructively affected while
being measured, the theory of quantum maps in its full scope
constitutes the “tour de force” also in quantum statistical infer-
ence. Nonetheless, as quantum maps form generalisations of
(classical) stochastic maps, they should be regarded as “quan-
tum randomisations” applied now on quantum states rather
than PDs. Therefore, as one requires all the statistical distance
measures—in particular, divergences, see Section II-A2—to
be monotonic under action of stochastic maps S, one must
similarly ensure their quantum generalisations to decrease
under the action of quantum maps �. This important require-
ment will have a crucial impact on both the HT tasks and
the information geometry in the quantum setting, which we
discuss in the following sections.

A. Distance Measures Between Quantum States

1) Quantum Statistical Distances and Divergences:
Similarly to the classical case of PDs, one may define dis-
tance measures on the space of quantum states, i.e., on
the set of positive semidefinite, unit-trace operators acting
on some Hilbert space H. The requirements for a function
D:L(H)×L(H)→ R+ acting now on pairs of quantum states
to constitute a valid quantum distance are exactly the same as
the conditions (i-iii) specified in Section II-A1. Moreover, in
the same way that divergences are required to fulfil only the
‘identity of indiscernibles’ (ii: D[ρ, σ ] = 0⇔ ρ = σ ), it is not
demanded for a quantum divergence to neither be ‘symmet-
ric’ (i: D[ρ, σ ] = D[σ, ρ]), nor respect the ‘triangle inequality’
(iii: D[ρ, σ ]+D[σ, �] ≥ D[σ, �]), when considering, this time,
any quantum states ρ, σ, � ∈ L(H).

However, aiming to generalise any (classical) definition of a
statistical distance such that it can be unambiguously defined
on the space of quantum states, one must ensure its quantum
definition to be independent of the measurement choice. This,
in particular, can be achieved by performing maximisation over

all the POVMs available, i.e.,:

D[ρ, σ ] := max{�i}i
D[p, q]

s.t. pi = Tr{ρ�i} & qi = Tr{σ�i}, (32)

whose elements must be non-negative �i ≥ 0 and satisfy∑
i�i = 1. In this way, we obtain a natural recipe on how

to redefine in the quantum setting a given distance D[p, q]
measuring separation between any two PDs p, q ∈ M, so
that D[ρ, σ ] in Eq. (32) is now unambiguously specified for
a pair of any quantum states ρ, σ ∈ L(H) and automatically
inherits all the conditions (i-iii) of Section II-A1 that are origi-
nally satisfied by D[p, q] [43]. Furthermore, as motivated in the
previous section, one should expect any quantum distance to
reproduce its classical equivalent in case the compared quan-
tum states are diagonal in the same basis, i.e., ρ =∑

i pi|i〉〈i|
and σ = ∑

i qi|i〉〈i| for which Eq. (32) consistently reads
D[ρ, σ ] = D[p, q] with PDs p and q corresponding to the
eigenvalues of ρ and σ , respectively.

2) Quantum f-Divergences and Their Monotonicity Under
Quantum Maps: The classical notion of an f -divergence (1)
introduced in Section II-A2 has been generalised to the quan-
tum realm in the seminal works of Petz [44], [45]. Considering
as in Eq. (1) a convex function f : R+ → R+ such that f (1) =
0, its action on for any positive semidefinite operator � ≥ 0
naturally generalises to f (�) := ∑

i f (λi)|χi〉〈χi| being now
specified in the eigenbasis � = ∑

i λi|χi〉〈χi|. Consequently,
a quantum f -divergence between states ρ, σ ∈ L(H) may be
defined for f as [46]:

Df [ρ, σ ] = Tr
{
ρ1/2f

(
LσRρ−1

)
ρ1/2

}
, (33)

where L� (R�) denotes a left- (right-)multiplication superop-
erator by a state � ∈ L(H), such that L�A := �A (R�A := A�)
for any A ∈ L(H), while f (LσRρ−1) := ∑

i f ( qi
pi
)Lψi Rφi can

be evaluated by resorting again to eigendecompositions of
ρ = ∑

i pi|φi〉〈φi| and σ = ∑
i qi|ψi〉〈ψi| and restricting to

the positive subspace7 of ρ (pi > 0) in Eq. (33). Note that
when ρ and σ commute, i.e., ∀i : |ψi〉 = |φi〉, Eq. (33) consis-
tently simplifies to the classical definition of an f -divergence
with p and q in Eq. (1) specified by the eigenvalues of ρ and
σ , respectively.

For the purpose of this article, let us just state that any
quantum f -divergence (33) is monotonic under the action of
general quantum maps [45]. In particular, for all ρ, σ ∈ L(H)
and any quantum (completely positive, trace-preserving) map
� : L(H)→ L(H) a general Df [ρ, σ ] defined according to
Eq. (33) must always satisfy Df [�[ρ],�[σ ]] ≤ Df [ρ, σ ]. For
an explicit proof of the monotonicity property and its subtle
variations beyond the scope of this work, we refer the reader
to [46]–[49].

B. Quantum Hypothesis Testing Tasks

All the tasks of binary HT introduced in Section II-B have a
natural generalisation in the quantum setting. The crucial dif-
ference, however, is that while in classical HT one must decide

7By continuity, in case the states ρ, σ in Eq. (33) are not of full rank, one
can equivalently evaluate their quantum f -divergence by considering the limit
Df [ρ, σ ] = limε→0+ D[ρ + ε1, σ + ε1] [47].
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Fig. 3. Quantum hypothesis testing (HT) of states ρ vs σ under local
(a) and collective (b) measurement strategies. In the local case identical
POVMs {�i}i are performed on each system copy, while a collective mea-
surement is represented by a single POVM {�i}i acting on all the system
copies.

between two PDs p, q ∈M, in the quantum scenario the aim
is to distinguish which of the two quantum states ρ, σ ∈ L(H)
describes a physical system being measured—with the null H0
or alternative H1 hypotheses indicating ρ or σ to be the true
state, respectively. Still, such a quantum HT task reduces to
the classical problem when the measurement (characterised by
a POVM {�i}i) is fixed, so that all discussions of Section II-B
then apply with pi = Tr{ρ�i} and qi = Tr{σ�i}.

Similarly to quantum generalisations of statistical distance
measures in Eq. (32), in order to find the optimal strategy
in quantum HT one must minimise the average error prob-
ability (2)—either perr

n in sHT or Pn(p|q) in aHT—over all
potential measurements (POVMs) that importantly can now
be performed collectively on all the n copies of the system, as
schematically depicted in Fig. 3(b), so that pi = Tr

{
ρ⊗n�i

}

and qi = Tr
{
σ⊗n�i

}
. The decision strategy, on the other hand,

remains captured by the classical HT theory and, hence, its
optimisation may be performed following the same procedure
discussed in Section II-B.

Nonetheless, any quantity dictating the behaviour of the
minimal discrimination error in the quantum setting, which
we review for sHT followed by aHT below, one should expect
to be monotonic under the action of quantum maps. This is
because a quantum map, which is generally introduced to
account for, e.g., disturbance, dissipation, noise or lack of con-
trol, when acting on a pair of states can only make them less
distinguishable.

1) Symmetric Quantum Hypothesis Testing:
a) Single-shot scenario (n = 1): Within the frame-

work of sHT and only a single copy of the quantum system
available, we may just apply the classical expression (3)
for the minimal average error probability, perr

min, given that
the measurement {�i}i is fixed, so that pi = Tr{ρ�i} and
qi = Tr{σ�i} in Eq. (3). The optimisation over all POVMs
(∀i : �i ≥ 0 and

∑
i�i = 1), however, is then straightforward

and yields [1], [13]:

perr
min := 1

2

(
1− ∥∥πρ ρ − πσ σ

∥∥
1

)
(34)

where πρ, πσ are again the a priori probabilities of each

hypothesis and ‖A‖1 = Tr
{√

A†A
}

denotes the trace norm of
a matrix A ∈ L(H). Moreover, the optimal POVM for which
Eqs. (3) and (34) coincide is given by {�+, �−}, where �+

(�−) is the projection operator onto a non-negative (negative)
subspace of the matrix πρ ρ−πσ σ appearing in Eq. (34) [1].

For equally likely hypotheses, πρ = πσ = 1
2 , Eq. (34) yields

a direct generalisation of Eq. (4):

perr
min =

1

2
(1− T[ρ, σ ]), (35)

where T[ρ, σ ] is now the trace distance—the quantum equiv-
alent of the TV distance (5)—that is defined between any two
quantum states ρ, σ ∈ L(H) as

T[ρ, σ ] := 1

2
‖ρ − σ‖1. (36)

In fact, the trace distance can be equivalently obtained from
the TV distance (5) by following the procedure (32), so that
it should not be surprising that it consistently satisfies all (i-
iii) conditions of Section II-A1 forming a ‘proper’ distance.
Still, it can also be interpreted as an example of a quantum
f -divergence defined for a convex function f (t) = 1

2 |1 − t|
in Eq. (33).

b) Asymptotic scenario (n→∞): For more than a sin-
gle copy, n > 1, the two hypotheses formally become ρ⊗n

and σ⊗n, so that although the adequate classical expression (6)
for perr

n,min remains valid, in order to completely minimise it,
one must allow for the freedom to perform collective measure-
ments (POVMs) on all the system copies at hand, see Fig. 3(b).
Note that only a single POVM outcome i can then be assumed
to be available, despite n being even arbitrary large. On the
other hand, we may interpret such a situation just as a single-
shot quantum scenario, and substitute ρ → ρ⊗n and σ → σ⊗n

in Eq. (34) to obtain its equivalent for arbitrary n as

perr
n,min =

1

2

(
1− ∥∥πρ ρ⊗n − πσ σ⊗n

∥∥
1

) ≤ ξ [ρ, σ ]n (37)

which, as indicated above, can be generally upper-bounded by
the quantum Chernoff bound that takes an exactly analogous
form to the (classical) Chernoff bound (6) [13], [50]:

ξ [ρ, σ ] = min
0≤α≤1

ξα[ρ, σ ] with ξα[�, σ ] := Tr
{
�ασ 1−α},

(38)

being again independent of priors πρ and πσ , and symmetric
with respect to the interchange of, this time, the quantum states
ρ and σ . The quantum Chernoff coefficients, ξα , are similarly
to their classical equivalents not guaranteed to be symmetric
for all 0 ≤ α ≤ 1 except α = 1/2, at which ξ1/2[ρ, σ ] :=
Tr
{√
ρ
√
σ
}

defines the so-called (quantum) affinity [51].
However, let us strongly emphasise that one should not

interpret the quantum affinity ξ1/2[ρ, σ ] as a quantum
equivalent of the Bhattacharyya coefficient, i.e., F[p, q] =
ξ1/2[p, q] = ∑

i
√

piqi defined in Section II-B1. Although
one may naively define the (squared) quantum Hellinger
distance as H1/2[ρ, σ ] := 2(1 − ξ1/2[ρ, σ ]) and prove it
to consistently satisfy all the necessary (i-iii) conditions of
Section II-A1 requisite for a distance [51], it does not con-
stitute the quantum version of classical Hellinger distance,
H1/2[p, q] = 2(1−F[p, q]), in the sense of the procedure (32).
If one performs explicitly the maximisation of H1/2[p, q] over
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POVMs in Eq. (32), one arrives instead at the so-called Bures
distance [52], B[ρ, σ ] := 2(1− F[ρ, σ ]), where

F[ρ, σ ] := Tr

{√√
σρ
√
σ

}
= ∥∥√ρ√σ∥∥1 (39)

is the celebrated (quantum) fidelity8 [53], [54], which is gener-
ally greater than or equal to affinity, i.e., ξ1/2[ρ, σ ] ≤ F[ρ, σ ],
with the equality being assured for commuting ρ and σ [42].

Nonetheless, focussing on general quantum Chernoff
coefficients, ξα in Eq. (38), in the same manner their classical
counterparts define Hellinger divergences, Hα[p, q] in Eq. (8),
one may define with their help a natural family of quantum
f -divergences (33) called Tsallis relative entropies [55], [56]
that we term here as Tsallis divergences to avoid confusion, i.e.,:

Hα[ρ, σ ] := 1

1− α (1− ξα[ρ, σ ])

= 1

1− α
(

1− Tr
{
ρασ 1−α}), (40)

which constitute an example of Df [ρ, σ ] with f (t) = 1−tα
1−α in

Eq. (33) being convex and satisfying f (1) = 0 for an extended
range of 0 ≤ α < 1 and α > 1 [57], as required.

Returning to Eq. (37) and considering the asymptotic sce-
nario of n→∞, a collective POVM of the form depicted in
Fig. 3(b) is crucially guaranteed to exist [14], such that the
inequality Eq. (37) is attainable in a similar sense to the clas-
sical case and Eq. (9), i.e., with the average probability for
the optimal strategy decreasing exponentially (up to sublinear
terms) as:

perr
n,min =

n→∞ exp[−n C[ρ, σ ]+ o(n)], (41)

where the exponent corresponds now to a natural generalisa-
tion of Eq. (10), i.e., the quantum Chernoff information defined
as [13]:

C[ρ, σ ] := − lim
n→∞

1

n
ln perr

n,min = − ln ξ [ρ, σ ]. (42)

However, let us stress that although Eq. (42) consitutes
a single-copy formula, being determined by the quantum
Chernoff bound (38), there is no guarantee that there exist
a local (single-copy) measurement �i in Fig. 3(a), such
that the classical Chernoff bound (7) for corresponding PDs
pi = Tr(ρ�i) and qi = Tr(σ�i) coincides with its quantum
counterpart (38). We discuss such a restriction to local POVMs
explicitly below, but rather in the context of trace distance (36).

Finally, in order to establish all the relevant quantities
in the quantum setting, we note that the family of Rényi
divergences (11) also possesses their quantum generalisation,
i.e., [47]:

Dα[ρ‖σ ] := 1

α − 1
ln[1+ (α − 1)Hα[ρ, σ ]]

= 1

α − 1
ln ξα[ρ, σ ] = 1

α − 1
ln
(

Tr
{
ρασ 1−α}),

(43)

8In [53] the quantum fidelity was originally introduced by Jozsa as gen-
eralisation of a “transition probability” rather than a distance-like measure,
what would lead to an extra square in the definition (39), i.e., F[ρ, σ ] :=
‖√ρ√σ‖21.

termed, as expected, quantum Rényi divergences, which simi-
larly to the classical case constitute a non-decreasing function
of Tsallis divergences (40) and, thus, can be shown to be
monotonic under quantum maps for 0 ≤ α < 1 and 1 <

α < 2 [47].
c) Restriction to local POVMs: An important property

of the fidelity (39) distinguishing it amongst other quan-
tum distance-like measures is that it can be saturated by
using only local measurements of the form depicted in
Fig. 3(a). In order to demonstrate this, let us first reproduce
the proof (see [43]) of F[ρ, σ ] constituting the quantum equiv-
alent of the Bhattacharyya coefficient F[p, q] = ∑

i
√

piqi,
i.e., F[ρ, σ ] = min{�i}i

∑
i
√

piqi with pi = Tr{ρ�i} and
qi = Tr{σ�i}, which confirms that following the recipe (32)
the (classical) Hellinger distance generalises to the (quantum)
Bures distances. Using the polar decomposition

√√
ρσ
√
ρ =√

ρ
√
σU, the expression (39) for fidelity can always be

rewritten as

F[ρ, σ ] = Tr
{√
ρ
√
σU

} = Tr

{
√
ρ
∑

i

�i
√
σU

}

=
∑

i

Tr
{√
ρ
√
�i

√
�i
√
σU

}
(44)

≤
∑

i

√
Tr{ρ�i}Tr{σ�i} =

∑

i

√
piqi = F[p, q],

(45)

where Eq. (45) constitutes a Cauchy-Schwarz inequality

Tr{AB} ≤
√

Tr
{
A†A

}
Tr
{
B†B

}
with A = √ρ√�i and B =√

�i
√
σU that may be saturated whenever for each outcome

i there exists λi ∈ R such that
√
�i
√
ρ = λi

√
�i
√
σU.

For any invertible ρ (and non-invertible ones by continuity),
the above polar decomposition equivalently reads

√
σU =

(
√
ρ)−1

√√
ρσ
√
ρ, so that the condition for a POVM to

saturate the inequality (45) can be restated as:

∀i : ∃λi∈R s.t.
√
�i

(
1− λiMρ,σ

) = 0

with Mρ,σ =
(√
ρ
)−1

√√
ρσ
√
ρ
(√
ρ
)−1

. (46)

Crucially, there always exists a POVM: {�i = |i〉〈i|}i with
|i〉 being the eigenvectors of the matrix Mρ,σ ; which satisfies
the above condition and, hence, constitutes the optimal mea-
surement that when performed guarantees the Bhattacharyya
coefficient to coincide with the fidelity (39). Considering now
the scenario of Fig. 3 with multiple (n > 1) copies of the
system available, the above arguments again apply after sim-
ply substituting ρ → ρ⊗n and σ → σ⊗n. Moreover, it is
not hard to prove that the matrix M in Eq. (46) fulfils then
Mρ⊗n,σ⊗n = M⊗n

ρ,σ , so that an optimal local POVM, as in
Fig. 3(a), must always exist with its elements simply corre-
sponding to the tensor product of the single-copy solution,
i.e., �(n)i1,...in

= ⊗n
m=1|im〉〈im|.

This is in stark contrast to the case of trace distance (36)
for which a collective measurement depicted in Fig. 3(b) over
multiple copies of the state is generally required, so that the
TV distance (5) between the resulting outcome PDs attains
the optimal quantum value. In order to demonstrate this, let
us consider first the recipe (32) in the single-copy scenario,
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which for the trace distance reads T[ρ, σ ] = max{�i}i T[p, q]
with pi = Tr{ρ�i} and qi = Tr{σ�i}. However, as we deal
now with a maximisation over POVMs (differently to the case
of fidelity), we rather focus on the r.h.s. and upper bound the
corresponding TV distance as follows:

1

2
max{�i}i

∑

i

|pi − qi| = 1

2
max{�i}i

∑

i

|Tr{�i(ρ − σ)}|

≤ 1

2
max{�i}i

∑

i

Tr{�i|ρ − σ |}

= 1

2
Tr{|ρ − σ |} = T[ρ, σ ]. (47)

Hence, in order to saturate the above inequality and crucially
attain the trace distance, a binary projective measurement is
required that projects onto the non-negative and negative sub-
spaces of the matrix ρ − σ , as in Section III-B1. Turning
to the multiple copy (n > 1) scenario and substituting for
ρ → ρ⊗n and σ → σ⊗n above, it becomes clear that it is
now the ρ⊗n − σ⊗n matrix that must be decomposed into
its (non-)negative subspaces to construct the optimal POVM,
which consequently must be in principle collective as in
Fig. 3(b), and act on all the system n copies.

2) Asymmetric Quantum Hypothesis Testing: Adopting the
task of aHT introduced in Section II-B2 to the quantum set-
ting, one must still perform minimisation of the respective
one-type error probability—taken again to be the type-II error
P(p(n)|q(n)) in Eq. (2)—where the integer n, however, denotes
now the number of independent copies of the quantum system
available rather than independent rounds of the protocol. In
particular, while keeping P(q(n)|p(n)) ≤ ε for some ε > 0,
P(p(n)|q(n))must be minimised over all possible POVMs {�i}i,
in particular, collective ones depicted in Fig. 3(b), which may
yield only a single outcome i distributed then according to
either p(n)i = Tr{ρ⊗n�i} or q(n)i = Tr{σ⊗n�i}. Nonetheless,
in the asymptotic regime of infinitely many system copies
(n→∞), one may prove the number n to be treatable at the
same grounds as the repetition number in the classical case of
aHT, so that P(p(n)|q(n)) minimised over all POVMs decays
exponentially in a similar manner to Eq. (12), i.e., [16], [58]:

Pmin
(
ρ⊗n|σ⊗n) =

n→∞ exp[−n D[ρ‖σ ]+ o(n)], (48)

where D[ρ‖σ ] above is now the quantum relative entropy of
the (single-copy) state ρ with respect to the state σ , taking the
form originally introduced by Umegaki [59]:

D[ρ‖σ ] ≡ lim
α→1−

Dα[ρ‖σ ] ≡ lim
α→1−

Hα[ρ‖σ ]

:= Tr{ρ(ln ρ − ln σ)}. (49)

We have noted above that the quantum relative entropy
D[ρ‖σ ]—similarly to its classical counterpart (Kullback-
Leibler divergence) D[p‖q] in Eq. (13) that is interpretable
as a (one-sided) limit of Hellinger (8) and Rényi (11)
divergences—can be analogously defined with help of the
quantum Tsallis (40) and Rényi (43) divergences [47], [55],
while constituting thus naturally a quantum f -divergence (33)
with f (t) = − ln t [47].

Moreover, as for the (classical) relative entropy D[p‖q] that
is finite only if sup p ⊆ sup q in Eq. (13), the quantum relative

entropy D[ρ‖σ ] becomes divergent whenever the support of
ρ is not contained in the support of σ in the matrix sense,
i.e., sup ρ � sup σ . For instance, if ρ is a pure state then
D[ρ‖σ ] = ∞ iff ρ �= σ . This should be expected, since had
one measured then in the eigenbasis of ρ and obtained a result
prohibited under the assumption that the correct state is σ , one
would become sure about the correctness of state ρ—an event
that consistently can never occur, as then Pmin(ρ

⊗n|σ⊗n) = 0
in Eq. (48) due to D[ρ‖σ ] = ∞.

C. Information Geometry of Quantum States

As indicated already in Fig. 1, the geometrical approach
described in Section II-C for the classical theory can be
straightforwardly generalised to the quantum picture [21],
[60]. Each state ρ ∈ L(H), similarly to each PD p ∈ M,
can be treated just as a point on a Riemannian manifold MQ
known as the quantum statistical manifold. Furthermore, anal-
ogously to the case of (classical) statistical manifold M, one
may introduce a local coordinate system on MQ, so that all
the contained quantum states, ρϕ ∈MQ, become parametrised
by a vector ϕ ∈ R

d of dimension d = dim(MQ). Similarly,
all other definitions from Section II-C, since they describe just
differential-geometric concepts, transfer directly to encompass
the geometry of quantum states. We will therefore just briefly
summarise basic notions of quantum information geometry,
leaving the emerging features that distinguish it from the
classical case for next sections.

1) Divergence-Induced Quantum Metrics: As in the clas-
sical setting of Section II-C2, any quantum divergence D that
satisfies the condition (ii) of Section II-A1 and is smooth in
both of its arguments, must induce a metric on the quantum
statistical manifold MQ. In particular, for any two vectors
V, W ∈ TρM lying in the tangent space at a given point
ρ ∈ MQ one can define the D-induced metric gD and its
matrix representation gD analogously to Eqs. (14) and (15)
as:

gD(ρ)[V,W] = VT gD(ρ)W

= −
∑

ij

∂2

∂t∂s
D
[
ρ + tVi, ρ + sWj

]
∣∣∣∣
t=s=0

, (50)

which measures now susceptibility of the respective diver-
gence D to small changes of the quantum state ρ ∈ MQ.
Similarly to Eq. (17), assuming some local coordinate system
ϕ induced on MQ, a change of the divergence under small
deviation δϕ of the vector ϕ can be written as

D
[
ρϕ, ρϕ+δϕ

] ≈ 1

2
δϕT gD(ρϕ)

[∇ρϕ,∇ρϕ

]
δϕ. (51)

Note, that since D[ρϕ, ρϕ] = 0 is the minimal value of a
divergence, the first-order term �(δϕ) must be absent from
the above expression and one obtains the same metric gD(ρϕ)

as a matrix the in ϕ-coordinate system regardless of which
argument is perturbed, i.e., D[ρϕ, ρϕ+δϕ] = D[ρϕ+δϕ, ρϕ] +
O(δϕ2), even though the divergence itself may not be sym-
metric. However, for the same reason sup(pϕ+δϕ) � sup(pϕ)

implies the metric gD(pϕ) in Eq. (18) to be ill-defined in the
classical case, whenever sup(ρϕ+δϕ) � sup(ρϕ), i.e., the state
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ρϕ+δϕ changes its rank exactly at δϕ = 0, the metric gD(ρϕ) in
Eq. (50) does not exist and the corresponding ϕ-based expan-
sions (51) of divergences (e.g., of the Bures distance [61],
[62]) cannot be performed.

Importantly, as was the case in the classical setting, mono-
tonic divergences induce monotonic metrics. The argument is
similar as before with a general stochastic map S replaced now
by a general quantum map �. From monotonicity of a quan-
tum divergence it follows that D[�[ρϕ],�[ρϕ + ∇ρϕδϕ]] ≤
D[ρϕ, ρϕ+∇ρϕδϕ] and, since � is linear and does not depend
on ϕ, by Eq. (51) one obtains gD(�[ρϕ])[∇�[ρϕ],∇�[ρϕ]] ≤
gD(ρϕ)[∇ρϕ,∇ρϕ], as required.

A particularly useful class of metrics are the ones induced
by the quantum f -divergences (33). These may be obtained by
expanding any given quantum f -divergence for neighbouring
states ρϕ and ρϕ+δϕ (with sup(pϕ+δϕ) ⊆ sup(pϕ)) in the ϕ-
coordinate system as in Eq. (51), so that

Df
[
ρϕ, ρϕ+δϕ

] ≈ 1

2
δϕT gDf

(
ρϕ

)
δϕ where

gDf

(
ρϕ

) = f̈ (1)Ff
(
ρϕ

)
(52)

and the (quantum) f -metric, Ff (ρϕ), above should be inter-
preted as the quantum generalisation of the Fisher metric (19).
We have omitted the (tangent-vector) arguments [∇ρϕ,∇ρϕ]
as before, but in contrast to Eq. (19) we have explicitly kept
the dependence on the convex function f specifying a given
quantum f -divergences (33) for reasons that will soon become
clear.

Still, without defining explicitly Ff in Eq. (52) for a given
Df , any f -metric (52) must inherit properties of a general
divergence-induced metric defined in Eq. (51). In particular, Ff

similarly to gD must be additive on tensor products of quan-
tum states, i.e., Ff (ρϕ ⊗ σϕ) = Ff (ρϕ) + Ff (σϕ), which is a
reminiscent of the additivity property of metrics on Cartesian
products of statistical manifolds discussed in Section II-C1.
Moreover, thanks to the monotonicity under quantum maps
inherited by gD in Eq. (51) from any monotonic divergence D,
another feature that transfers straightforwardly from the clas-
sical setting and can be proven analogously to Section II-D, is
the convexity property of any f -metric (52). In particular, for
any states ρϕ, σϕ ∈MQ and any λ ∈ [0, 1] it generally holds
that Ff (λρϕ + (1− λ)σϕ) ≤ λFf (ρϕ)+ (1− λ)Ff (σϕ).

D. Plethora of Metrics Monotonic Under Quantum Maps

One of the profound differences between the geometrical
structure of the classical M and quantum MQ statistical
manifolds depicted in Fig. 1 is the fact that MQ in con-
trast to M allow for many inequivalent (monotonic) metrics
defined based on quantum f -divergences (33). Considering a
MQ parametrised by a particular coordinate system ϕ, one
can explicitly write the f -metric introduced in Eq. (52) at a
given ρϕ ∈MQ as [48], [63]:

Ff
(
ρϕ

)
ij =

∑

n

∂ipn∂jpn

pn
+ 1

f̈ (1)

∑

m,n

[
pm f

(
pn

pm

)
+ pn f

(
pm

pn

)]

× 〈n|∂im〉
〈
∂jm|n

〉
, (53)

where pn and |n〉 are the ϕ-dependent eigenvalues and eigen-
vectors of the quantum state ρϕ = ∑

n pn(ϕ)|n(ϕ)〉〈n(ϕ)|,
and by ∂i we denote the derivative with respect to the ith
component of ϕ. Note that, as expected from the ‘quantum
to classical correspondence’ applying for diagonal density
matrices, the first term above corresponds to nothing but the
(classical) Fisher metric, F(pϕ) in Eq. (19), computed for the
ϕ-parametrised PD defined by the eigenvalues of ρϕ .

It is convenient to also rewrite the expression for the f -
metric (53) by reparametrising the convex function f : R+ →
R+ associated with the quantum f -divergence (33) by another
function g : R+ → R+ such that for all t ∈ R+ it fulfils:

1

g(t)
= f (t)+ t f (1/t)

(t − 1)2
. (54)

Moreover, one may set f̈ (1) = 1 in Eqs. (52) and (53) for
simplicity, which can always be assured by just rescaling the
Df being considered in Eq. (52). As a result, another classi-
fication of (quantum) metrics parametrised by functions g is
obtained:

Fg
(
ρϕ

)
ij =

∑

n

∂ipn∂jpn

pn
+
∑

m,n

(pn − pm)
2

pm g
(

pn
pm

) 〈n|∂im〉
〈
∂jm|n

〉
,

(55)

which we refer to as the g-metrics to distinguish them from
the f -metrics specified in Eq. (53).

The existence of inequivalent monotonic metrics on the
quantum statistical manifold MQ is the essence of the quan-
tum Chentsov theorem [64], [65]. The theorem states that
every Riemannian metric g on MQ that is monotonic under
the action of quantum maps must be (up to a multiplicative
factor) proportional to one of the g-metrics specified in
Eq. (55) with a function g that constitutes a standard oper-
ator monotone, i.e., a function g : R+ → R+ that satisfies
∀t∈R+ : g(t) = t g(1/t) and g(1) = 1, and when naturally gen-
eralised to positive semidefinite matrices (see Section III-A2)
fulfils g(A) ≤ g(B) for any pair of positive matrices such that
A ≤ B. Interestingly, all such g-functions are identified by
ones that for all t ∈ R+ satisfy the inequality [48], [65]:

2t

t + 1
≤ g(t) ≤ 1+ t

2
. (56)

Crucially, as any f -metric (53) is guaranteed to be mono-
tonic thanks to being induced by a (monotonic) quan-
tum f -divergence (33), it must always be expressible as a
g-metric (55) with a g-function satisfying the inequality (56).
This is consistently true, as for any convex function f (with
f (1) = 0) specifying a Df in Eq. (33), the corresponding func-
tion g defined through the relation (54) constitutes always up
to the rescaling factor f̈ (1) (set here to unity for convenience)
a standard operator monotone [48].

In conclusion, in stark contrast to the classical case
described in Section II-D, quantum f -divergences (33) induce
metrics that cannot be trivially related, while explicitly
depending on a particular choice of the function f assumed
in Eq. (33) [48], [63], [65]. More generally, depending on the
(monotonic) quantum divergence D used to distinguish states
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in a quantum statistical manifold MQ, a different notion of the
inner product in the tangent space, TρMQ for any ρ ∈MQ
in Fig. 1, is obtained, as the metric gD being induced strongly
varies with the choice of D in the quantum setting. In what
follows, we discuss in more detail several important metrics
that may so arise, while resorting to the classification based
on the g-metrics (55).

1) Quantum Fisher Information and Right Logarithmic
Derivative Metrics: By choosing a g-metric (55) with the
maximal possible function g fulfilling the inequality (56), one
arrives at the so-called quantum Fisher information (QFI) met-
ric, FQ := Fg with g(t) = 1+t

2 , which has an important
practical interpretation in quantum information theory. It can
be easily verified with Eq. (55) that the QFI-metric can be
equivalently defined as [1], [2], [66]:

FQ
(
ρϕ

)
ij =

1

2
Tr
{
ρϕ

(
LϕiLϕj + LϕjLϕi

)}
, (57)

where Lϕi are the so-called symmetric logarithmic deriva-
tive (SLD) operators, each defined implicitly as a solution
to the equation ∂ρϕ

∂ϕi
= 1

2 (ρϕLϕi + Lϕiρϕ) with ∂
∂ϕi

denot-
ing an entry-wise derivative of the state ρϕ with respect to the
ith ϕ-coordinate. From the operational perspective of quan-
tum metrology [9]–[11], [67], which we refer to later in
Section IV-A, by the virtue of so-called quantum Cramér-Rao
inequality the QFI metric (57) can be used to lower bound
the minimal mean-squared-error when treating ϕ as a vec-
tor of parameters to be estimated. Lastly, let us note that the
geodesic distance (see Section II-C1) defined by the QFI-
metric takes a compact form—it corresponds to the Bures
angle BA[ρ, σ ] := arccos(F[ρ, σ ]) [68], which should be
understood as a modification of the Bures distance B[ρ, σ ]
introduced in Section III-B1 to a surface of a sphere.

On the other hand, by choosing a g-metric (55) with the
minimal possible function g fulfilling the inequality (56),
one arrives at the right logarithmic derivative (RLD) metric,
FR := Fg with g(t) = 2t

t+1 , which can be defined similarly to
Eq. (57) after replacing the SLD operators, Lϕi , with the so-
called RLD operators Rϕi defined implicitly by the equation
∂ρϕ

∂ϕi
= ρϕRϕi [1], [2].

It is not hard to verify that for any two standard oper-
ator monotone functions g1(t) ≤ g2(t) the corresponding
g-metrics (55) fulfil Fg1 ≥ Fg2 in the matrix sense. Hence,
the maximal and minimal g-functions defined by the inequal-
ity (56), yield in fact the minimal and maximal g-metrics,
respectively, i.e., for any ρϕ ∈MQ it generally holds that:

FQ
(
ρϕ

) ≤ Fg
(
ρϕ

) ≤ FR
(
ρϕ

)
, (58)

where the QFI and RLD metrics thus define the extremal
(minimal and maximal) cases of the so-constructed hierar-
chy of (monotonic) g-metrics (55) satisfying the inequal-
ity (56) [65]. In Fig. 4 we demonstrate explicitly how the
hierarchy (58) arises, by plotting the minimal and maximal
g-functions allowed by (56), as well as ones generating the
Wigner-Yanase-Dyson and Kubo-Mori metrics that we will
now discuss. In particular, as g1 ≥ g2 implies Fg1 ≤ Fg2 ,

Fig. 4. Standard operator monotone g-functions and the monotonic g-
metrics, Fg in (55), they generate. The inequalities (56) forbid any g(t) to
enter the shaded regions, while the ordering of g-functions (g ≥ g′) leads
to a reversed order of their corresponding g-metrics (Fg ≤ Fg′ ). As a result,

the maximal g(t) = 1+t
2 (black) yields the QFI metric FQ that is minimal in

the hierarchy (58), whereas the minimal g(t) = 2t
1+t (red) yields the maximal

RLD metric FR. We also mark g(t) = 1
4 (1+

√
t)2 (purple) that generates the

WYD metric with α = 1/2, Fα=1/2 in (59), as well as g(t) = t−1
ln t (orange)

that yields the KM metric, J in (63).

thanks to the functional inequalities between the correspond-
ing g-functions evident from the plot, one may directly deduce
the matrix inequalities between the g-metrics they generate.

2) Wigner-Yanase-Dyson Metrics: Let us consider the
Tsallis divergences (40) that constitute an example of quan-
tum f -divergences with f (t) = 1−tα

1−α in Eq. (33) satisfying
f̈α(1) = α. Hence, by adequately defining a rescaled func-
tion f̃α(t) = 1−tα

α(1−α) with ¨̃fα(1) = 1, we can directly identify
the metric induced by every Df̃α

with help of Eq. (54) as
a α-parametrised class of g-metrics (55) with gα(t) = α(1 −
α)

(t−1)2

(tα−1)(t1−α−1)
. The functions gα(t) satisfy the inequality (56)

for any t ∈ R+ and, hence, constitute standard operator mono-
tones for −1 ≤ α ≤ 2, for which they define the so-called
generalised Wigner-Yanase-Dyson (WYD) metrics [69]:

Fα
(
ρϕ

)
ij =

∑

n

∂ipn∂jpn

pn
+ 2

α(1− α)
∑

n,m

p1−α
m

(
pαm − pαn

)

× 〈n|∂im〉
〈
∂jm|n

〉
, (59)

which for any ρϕ ∈ MQ generally fulfil Fα=1/2 ≤ Fα ≤
Fα=−1 = Fα=2 = FR being constrained by the (monotonic)
metric hierarchy (58). The minimal WYD metric Fα=1/2 con-
stitutes a special g-metric with g(t) = 1

4 (1+
√

t)2, for which
a geodesic distance can be explicitly computed as for the
QFI metric (57). It takes a similar form of DWYD[ρ, σ ] :=
arccos(ξ1/2[ρ, σ ]), where the “spherical angle” is now dic-
tated by the affinity ξ1/2[ρ, σ ] rather than the fidelity F[ρ, σ ]
between quantum states ρ, σ ∈MQ [70].

In the special case of states ρ̄ϕ = ∑
n pn|n(ϕ)〉〈n(ϕ)|,

whose eigenvalues pn are independent of ϕ so that the first
term (the classical Fisher-metric (19) contribution) vanishes in
Eq. (59), one can assign to each WYD metric Fα a quantity
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called the generalised Wigner-Yanase-Dyson (WYD) diver-
gence9 that still forms a matrix in the ϕ-coordinate system,
i.e., [71], [72]:

Iα
(
ρ̄ϕ

)
:= α(1− α)

2
Fα

(
ρ̄ϕ

)
, (60)

but in contrast to Fα is maximal for α = 1
2 , i.e., Iα(ρ̄ϕ) ≤

I1/2(ρ̄ϕ) for any ρ̄ϕ ∈ MQ. The maximal I1/2(ρ̄ϕ) is
commonly referred to as the Wigner-Yanase (WY) skew
divergence [71].

Although the WYD divergences Iα in Eq. (60) do not
formally constitute metrics—in contrast to the WYD met-
rics Fα in Eq. (59)—the WY skew-divergence I1/2 turns
out to be particularly useful in quantum information theory
as a measure of coherence [73], [74] and correlations [75]
of quantum states. Moreover, it can be conveniently used to
lower- and upper-bound the QFI metric FQ in Eq. (57) for any
(eigenvalue-invariant) ρ̄ϕ ∈MQ through inequalities [76]:

4I1/2
(
ρ̄ϕ

) ≤ FQ
(
ρ̄ϕ

) ≤ 8I1/2
(
ρ̄ϕ

)
. (61)

In order prove the left inequality above, it is convenient to
explicitly write

4I1/2
(
ρ̄ϕ

)
ij = 4

∑

n,m

√
pm

(√
pm −√pn

)〈n|∂im〉
〈
∂jm|n

〉
. (62)

and interpret it as a (non-monotonic) g-metric at ρ̄ϕ with a
function g(t) = 1

2 (
√

t + 1)2 in Eq. (55). However, as the g(t)
is then larger for any t ∈ R+ than the maximal behaviour
allowed by the inequality (56)—and, hence, does not constitute
a standard operator monotone—its resulting g-metric must be
smaller than the one associated to the maximal g(t) = 1+t

2 ,
i.e., the QFI metric FQ(ρ̄ϕ) defined in Eq. (57). On the other
hand, the rightmost inequality in Eq. (61) directly follows from
Eq. (58), which generally implies FQ ≤ Fα=1/2 and, hence,
FQ(ρ̄ϕ) ≤ 8I1/2(ρ̄ϕ) for any ρ̄ϕ ∈MQ after substituting for
the WY skew divergence according to Eq. (60).

3) Kubo-Mori Metric: The last monotonic metric we would
like to mention is the Kubo-Mori (KM) metric [65], [77] (see
also [78]) that constitutes a g-metric (55) with a (standard
operator monotone) function g(t) = t−1

ln t and for a general
ρϕ ∈MQ reads

J
(
ρϕ

)
ij =

∑

n

∂ipn∂jpn

pn
+ 2

∑

n,m

ln(pn)(pn − pm)

× 〈n|∂im〉
〈
∂jm|n

〉
. (63)

Note that it can be equivalently interpreted as the WYD
metric after taking the limit of α → 0 ∨ 1 in Eq. (59),
i.e., J = Fα=0 = Fα=1, while also naturally falling into the
mid-range of the metric hierarchy (58). From the quantum
information perspective, the KM metric covers the effects of
output superadditivity in classical communication over quan-
tum channels [79], and naturally appears also in the contexts
of thermodynamics [80] and renormalisation theory [81].

9For consistency, we adopt the usual “misleading” name for Iα as the WYD
divergence, however, let us emphasise that it is unrelated to the canonical
meaning of quantum divergences that measure distances between quantum
states, see Section III-A.

E. Selected Scalar Metrics for Pure States and the Unitary
Parametrisation

In general, the g-metrics take a complicated form (55) which
is hard to deal with, especially when one’s aim is to fur-
ther optimise the metric over the quantum states. However,
for families of states parametrised by a single parameter ϕ,
the g-metrics Fg become (non-negative) scalars, which we
denote by Fg and call g-informations for short. Moreover, if
the parameter is encoded unitarily in a linear fashion, i.e., by
a unitary quantum map �ϕ = Uϕ�U†

ϕ with Uϕ = e− iϕĤ

for a given fixed Hamiltonian Ĥ, the expression (55) for the
g-information simplifies significantly to

Fg

(
�, Ĥ

)
=
∑

n,m

(pn − pm)
2

pm g
(

pn
pm

) |Hnm|2, (64)

where � = ∑
n pn|n〉〈n| and Hnm = 〈n|Ĥ|m〉. In Eq. (64) we

have explicitly written that the g-information for the unitary
encoding is fully defined by the (unperturbed) state � and the
Hamiltonian Ĥ, while Fg is independent of the actual value
of the parameter ϕ.

On one hand, if the state is pure � = |ψ〉〈ψ |, Eq. (64)
simplifies even further to

Fg

(
|ψ〉, Ĥ

)
= 2

g(0)
�2
ψ Ĥ, (65)

where �2
ψ Ĥ := 〈ψ |Ĥ2|ψ〉− 〈ψ |Ĥ|ψ〉2 is now the variance of

the Hamiltonian Ĥ evaluated for the state |ψ〉. Consequently,
by just computing g(0) for exemplary metrics discussed in
Section III-D, we can directly write the scalar form for the
QFI, WYD, Kubo-Mori and RLD metrics as:

FQ

(
|ψ〉, Ĥ

)
= Fα=1/2

(
|ψ〉, Ĥ

)
= 4�2

ψ Ĥ

≤ Fα
(
|ψ〉, Ĥ

)
= 1

α(1− α)�
2
ψ Ĥ

≤ J
(
|ψ〉, Ĥ

)
= FR

(
|ψ〉, Ĥ

)
= ∞, (66)

which consistently respect the hierarchy (58) with the RLD
and the Kubo-Mori informations (scalar metrics) being gener-
ally divergent on pure states.

On the other, Eq. (64) takes a particular neat form in case of
the WYD information Iα—the scalar (single-parameter) ver-
sion of the WYD divergence Iα defined in Eq. (60)—which
for 0 ≤ α ≤ 1 can be written as [71], [72]:

Iα
(
�, Ĥ

)
= 1

2
Tr
{[
�α,H

][
�1−α,H

]}
, (67)

and for the case of WY skew information (α = 1/2) simplifies
further to [51], [75], [76]:

I1/2

(
�, Ĥ

)
= 1

2
Tr
{[√

�,H
]2
}
. (68)

F. Quantum Metrics Induced by Divergences

In analogy with the classical information geometry, the
quantum distance measures encountered in Section III-B,
while considering the tasks of binary HT in the quantum set-
ting, induce particular monotonic metrics onto the quantum
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statistical manifold MQ. However, as in the previous sec-
tion we have shown a plethora of such metrics to exist, it
is important to identify by performing δϕ-expansions as in
Eq. (51), which of the g-metrics (55) are induced by particular
distinguishability measures.

Considering the sHT tasks of Section III-B1, we expand
first for infinitesimally close states ρϕ and ρϕ+δϕ the quantum
Chernoff coefficients (38) and the fidelity (39) to obtain

ξα
[
ρϕ, ρϕ+δϕ

] ≈ 1 −α(1− α)
2

δϕTFα
(
ρϕ

)
δϕ,

F
[
ρϕ, ρϕ+δϕ

] ≈ 1− 1

8
δϕTFQ

(
ρϕ

)
δϕ, (69)

where the former expansion follows from the fact that ξα =
1 − (1 − α)Hα and the rescaled Tsallis divergence (40),
Hα/α, we have shown in Section III-D2 to be the quan-
tum f -divergence (33) inducing the WYD metric (59), Fα .
The expansion for fidelity can be obtained indirectly by just
acknowledging that F[ρ,σ ] = cos(BA[ρ, σ ]) and recalling
that the Bures angle BA is the geodesic distance for the QFI
metric (57) [68]. Furthermore, the expansion of the quantum
Chernoff bound (38) can just be deduced by minimising the
first expansion in Eq. (69) over α as [13]:

ξ
[
ρϕ, ρϕ+δϕ

] ≈ 1− 1

8
δϕT Fα=1/2

[
ρϕ

]
δϕ, (70)

since the WYD metric (59) is minimal for α = 1/2.
In case of aHT tasks of Section III-B2, the quantum relative

entropy (49) must expand to the Kubo-Mori metric (63) as
follows

D
[
ρϕ‖ρϕ+δϕ

] ≈ 1

2
δϕT J

(
ρϕ

)
δϕ, (71)

as D[ρ‖σ ] constitutes a quantum f -divergence with f (t) =
− ln t in Eq. (33), so according to the relation (54) it must
induce a g-metric with g(t) = t−1

ln t in Eq. (55), which is indeed
the KM metric J.

The expansion (71) of the quantum relative entropy is partic-
ularly useful when considering single-parameter perturbations
of thermal states. A thermal state of a system, whose evolu-
tion is governed by a Hamiltonian Ĥ, is given as ω = e−Ĥ /Z,
where Z = Tr

{
e−Ĥ

}
can just be interpreted as a normal-

ization constant. A small perturbation of the Hamiltonian
Ĥ → Ĥ − εV with ε  1 results in a disturbed thermal
state ωε = e−Ĥ+εV /Z ≈ e−Ĥ /Z + ε δω, where δω = �ω[V]
and the superoperator �ω is defined implicitly via the relation
�−1
ω [A] = . d

d t ln(ω+tA)|t=0 holding for any Hermitian A [81].
The corresponding KM information (scalar metric (63)) for the
ε-perturbation can then be written as [81], [82]:

J (ωε)|ε=0 = Tr{δωV} = Tr{V �ω[V]}. (72)

The above expression is especially appealing if V = H, i.e.,
the perturbation of the Hamiltonian occurs due to a change
of temperature, in which case J (ωε)|ε=0 = �2

ωĤ. In such a
setting, the KM information equals just to the variance of the
original Hamiltonian.

The above discussion is summarised in Table II, where we
present all the quantum divergences and distances encoun-
tered in Section III-B together with the Riemannian metrics

they induce. The crucial difference between the infinitesimal
expansions of quantum divergences and their classical counter-
parts is that different distinguishability measures expand rather
to different metrics in the quantum case. In particular, none
of the above quantities except fidelity (or Bures distance) is
directly related to the ordinary QFI metric (57), which can be
interpreted as the most natural quantum generalisation of the
classical Fisher metric (19) due to their common operational
interpretation in the task of parameter estimation [67] (see
also Section IV-A). Strikingly, the quantum relative entropy
that expands in Eq. (71) to the KM metric (63) is, unlike the
QFI metric, even undefined on pure states. Note that, simi-
larly to the classical TV distance (5) presented in Table I, the
trace distance does not induce a Riemannian metric, as it cor-
responds to a quantum f -divergence with f (t) = 1

2 |1 − t| in
Eq. (33) that is not differentiable at t = 1.

G. Relations Between Quantum Divergences and Metrics

Quantum divergences, similarly to their classical counter-
parts, are related to each other trough various inequalities.
Most of the relations mentioned in the classical setting in
Section II-F straightforwardly generalise to the quantum case.
However, since the structure in the latter scenario is richer,
some novel relation also arise [42]. As we did in the case
of Section II-F, in what follows we drop the quantum-state
arguments of the quantum divergences considered whenever
possible, in order to emphasise functional character of the
relations.

1) Relating Quantum Divergences: Focussing on sHT tasks
of Section III-B1, the quantum Chernoff coefficients (38), ξα ,
and the trace distance (36), T , describing error in asymptotic
and single-shot regimes may be related through the following
“sandwich” inequality [14], [42]:

1− ξα
1− F

}
≤ T ≤

√
1− F2 ≤

√
1− ξ2

1/2, (73)

where 1−F ≤ T ≤ √1− F2 is often referred to as the “Fuchs-
van der Graaf inequality” [83], while the rightmost inequality
is a simple consequence of the fact that ξ1/2 ≤ F—affinity
being always less than or equal to the fidelity (39). Note that
although 1− ξα and 1− F both serve as lower bounds on the
trace distance, they are also interrelated via F ≤ √ξα [42].
This inequality can be proven by rewriting the fidelity (39)
as F[ρ, σ ] = ‖ρ1/2σ 1/2‖1 = ‖ρ(1−α)/2(ρα/2σ (1−α)/2)σα/2‖1
and applying the Hölder’s inequality to the last expression.

Reversing the inequalities in Eq. (73), one obtains an equiv-
alent inequality for the quantum Chernoff bound (38), ξ , as
follows

1− T ≤ ξα
F ≤ √1− T2

}
=⇒ 1− T ≤ ξ ≤ F ≤

√
1− T2, (74)

which should be interpreted as the quantum equivalent of
the classical relation (26) with an important novel middle
inequality that arises due to affinity and fidelity constituting
different distinguishability measures in the quantum setting,
which generally obey ξ1/2 ≤ F.
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TABLE II
QUANTUM DIVERGENCES DEFINED BY MEANS OF QUANTUM CHERNOFF COEFFICIENTS ξα[ρ, σ ] = Tr

{
ρασ 1−α} AND QUANTUM

FIDELITY F[ρ, σ ] = ‖√ρ√σ‖1 �= ξ1/2[ρ, σ ] INTERPRETED AS QUANTUM f -DIVERGENCES WHENEVER POSSIBLE,
AND THEIR ASSOCIATED RIEMANNIAN METRICS

In case of aHT, also the Pinsker inequality (27) has a direct
quantum generalisation [84]:

T[ρ, σ ] ≤
√

D[ρ‖σ ]

2
, (75)

relating the trace distance (36) to the quantum relative
entropy (49). Moreover, one can derive an inequality com-
pletely analogous to Eq. (28) with the classical divergences
replaced by their quantum counterparts. Similarly, by the same
argument as in the classical case, inequality (29) also holds
true in the quantum realm.

2) Metric-Induced Bounds on the Trace Distance: As men-
tioned already in Section III-F and Table II, the trace distance
does induce a Riemannian metric on the quantum statisti-
cal manifold. Nonetheless, similarly to procedure for the TV
distance discussed in Section II-F2, we can perform the δϕ-
expansion of the trace distance T[ρϕ, ρϕ+δϕ] in order to relate
its dominating terms to the ones arising in expansions of other
quantum divergences via inequalities (73). As in the classical
case of Section II-F2, we focus below only on the single-
parameter case δϕ ≡ δϕ, leaving the generalization to higher
dimensions to the reader.

Expanding in the inequalities (73) to the lowest order in
δϕ the quantum Chernoff coefficients ξα and the fidelity F
according to Eq. (69), one obtains

FQ
(
ρϕ
)δϕ2

8
≤ I1/2

(
ρϕ
)
δϕ2 ≤ T

[
ρϕ, ρϕ+δϕ

]

≤
√
FQ

(
ρϕ
) δϕ

2
≤
√

2I1/2
(
ρϕ
)
δϕ, (76)

where the inequalities containing WYD information apply
above only if the eigenvalues of the state ρϕ do not change
with ϕ. Upon taking the tightest bounds from both sides, one
arrives at

I1/2
[
ρϕ
]
δϕ2 ≤ T

[
ρϕ, ρϕ+δϕ

] ≤
√
FQ

[
ρϕ
]δϕ

2
, (77)

where the trace distance can be further expanded by con-
sidering two infinitesimally close states ρϕ and ρϕ+δϕ =
ρϕ + ∂ρ

∂ϕ
|ϕδϕ + O(δϕ2), as follows

T
[
ρϕ, ρϕ+δϕ

] = 1

2

∥
∥ρϕ − ρϕ+δϕ

∥
∥

1 =
1

2

∥∥
∥∥
∂ρϕ

∂ϕ

∥∥
∥∥

1
δϕ + O

(
δϕ2

)
.

(78)

Hence, it is the rightmost inequality in Eq. (77) that correctly
recovers the dominating behaviour of the trace distance as
δϕ→ 0, yielding an inequality

∥∥∥
∥
∂ρϕ

∂ϕ

∥∥∥
∥

2

1
≤ FQ

[
ρϕ
]

(79)

that holds in general for any ρϕ—previously reported for the
case of unitary encodings [85]. Moreover, in the context of
coherence theory, the trace norm of state derivative is referred
as the asymmetry and used to quantify coherence of a given
state [73].

IV. APPLICATIONS

A. Quantum Parameter Estimation

A complementary statistical inference task to HT discussed
in Section II-B is the problem of parameter estimation. Let us
consider a family of PDs pϕ(x) that is parametrised by a single
parameter ϕ and describes results of an experiment depending
on an unknown value of ϕ. The main goal is to find the true
value of ϕ, which can be also seen as identification of a cor-
rect probability distribution describing the system. However,
in contrast to HT, one deals here with a continuous family
of PDs. The value of ϕ is estimated using an estimator func-
tion ϕ̃(x) which provides a guess about the true value of the
parameter. The precision of the estimation procedure is quan-
tified by means of the a mean squared error (MSE), defined
as �2ϕ :=∑

x pϕ(x)(ϕ̃(x)−ϕ)2 which must be minimised for
the best performance. For unbiased estimators, that is for esti-
mators that on average return the true value of the parameter,
i.e.,

∑
x pϕ(x)ϕ̃(x) = ϕ, the Cramér-Rao inequality [31]:

�2ϕ ≥ 1

ν F(pϕ
) , (80)

provides a general lower bound on the MSE. Here, ν is
the number of independent repetitions of the experiment and
F(pϕ) is nothing but the Fisher information (FI) defined in
Eq. (20). Importantly, the Cramér-Rao bound (80) is guar-
anteed to be tight in the ν → ∞ limit of large number of
repetitions, e.g., by the maximum likelihood estimator [40],
what, on the other hand, gives a clear operational meaning to
the FI.
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In the quantum version of the parameter estimation task one
deals with a parameter-dependent quantum state ρϕ to be mea-
sured by some POVM {�x}x, whose outcome x occurs then
with probability pϕ(x) = Tr{ρϕ�x} and is used to estimate
the true value of ϕ. Since idealistically the experimentalist has
control over the measurement apparatus, she can choose the
optimal detection scheme giving the best estimation precision
for a given state ρϕ . Hence, in order to obtain the correspond-
ing tightest quantum version of the bound (80) on precision.
one must maximise the FI appearing in Eq. (80) over all the
possible measurements. Although such procedure may seem
to be difficult, it can be shown that it results in the quantum
Fisher Information (QFI) FQ(ρϕ) [66], [67], i.e., the scalar
version of the QFI metric (57), that bounds then the precision
through the quantum Cramer-Rao inequality [1]:

�2ϕ ≥ 1

ν FQ
(
ρϕ
) , (81)

which is guaranteed to coincide with the bound (80) in the
asymptotic ν limit, when one performs a identical projective
measurements on each copy of the state in the eigenbasis of
the SLD operator (see Eq. (57)) for the ϕ-parameter [66] and
employs the maximum likelihood estimator.

B. Quantum Speed Limits

An interesting problem in which quantum metrics play a
crucial role is the determination of the so-called quantum
speed limits. The task is to derive a lower bound on the
minimal time τ required for a given evolution specified by
a quantum map �t to drive the system from an initial state
ρt=0 = ρ to a final state ρt=τ = σ [86]–[89]. Intuitively, states
that are poorly distinguishable lie close to each other and there-
fore τ should be small, while easily distinguishable should
require a larger τ to be evolved onto one another. In order
to formalise this notion, let us choose a particular metric g
on the quantum statistical manifold MQ and consider a curve
ρt = �t[ρ] parametrised by t ∈ [0, τ ]. The length of such a

curve can be evaluated as S(τ ) = ∫ τ
0

√∑
ij g(ρt)ij

d ei
d t

d ej
d t d t =

∫ τ
0

√
g(ρt)tt d t, where {ei}i are the basis vectors of TρtMQ at

a given ρt ∈ MQ that can always, in principle, be chosen
so that only one of them points along the t-curve. One can,
however, take a different path on MQ, in particular, choose
the shortest one as defined by the geodesic length between
the states ρ and σ , denoted as Lg [ρ, σ ]. Hence, one can in
general write

1

τ
Lg [ρ, σ ] ≤ 1

τ

∫ τ

0

√
gtt d t =⇒ τ ≥ Lg [ρ, σ ]

√g
, (82)

where
√g := 1

τ

∫ τ
0
√gtt d t can then be interpreted as the

square root of the metric averaged over time. Interestingly,
for various choices of the metric g above one gets differ-
ent quantum speed limits. In particular, it was shown that for
some quantum dynamics between states the quantum speed
limit (82) obtained with help of the WYD metric (59) may
turn out to be tighter then the one originating from the QFI
metric (57) [90], despite the latter metric constituting in fact
the minimal one in the hierarchy of monotonic metrics (58).

C. Quantum Thermodynamics

Classical thermodynamics is usually concerned with large
systems, whose macroscopic properties can be inferred in
the thermodynamic limit without resorting to the detailed
microscopic description of the system. Obviously this assump-
tion is not satisfied if one wants to delve into the micro-world
governed by the laws of quantum mechanics. It is there-
fore interesting how the classical laws of thermodynamics
must be generalised or modified for them to also apply
when dealing with quantum systems—a question that has
recently motivated a rapid development in the field of quantum
thermodynamics [91].

Let us consider a process in which a system is governed by
a Hamiltonian Ĥ, while initially being prepared in a thermal
state ω0 = e−βH/Z at a temperature β. Given that it evolves
into a state ω1, the quantum relative entropy (49) between the
final and initial states reads

D[ω1‖ω0] = β(F(ω1)− F(ω0)) = β �
〈
Ĥ
〉
−�S, (83)

where F(ω) := Tr
{
ωĤ

}
− S(ω)/β is the free energy of state

ω, whereas �S := S(ω0) − S(ω1) and �〈Ĥ〉 := Tr
{
ω1Ĥ

}
−

Tr
{
ω0Ĥ

}
. In particular, the quantum relative entropy is effec-

tively equal to the difference between the free energies of the
final and initial states. Now, since the relative entropy consti-
tutes a non-negative quantum f -divergence (33), it follows that
�S ≤ β �〈Ĥ〉, which is just the familiar Clausius inequality.

Let us assume that the process ω0 → ω1 is parametrised by
a parameter λ ∈ [0, δλ] and the final and initial states are close
to each other, so δλ 1. Then, one may rewrite Eq. (83) by
Taylor-expanding the relative entropy in δλ, as in Eq. (71).
Although to first-order O(δλ) one obtains then �S = β �〈Ĥ〉,
as the expansion (71) of the quantum relative entropy must
always start at �(δλ2), the leading term by which β �〈Ĥ〉 is
greater than �S is then given by δλ2 J (ω0)/2 [92]. In other
words, one may say that the KM information (72) dictates the
amount by which the equality in �S ≤ β�〈H〉 is violated.

V. CONCLUSION

We have reviewed relations between various measures of
statistical distances and divergences from the perspective of
both the classical and quantum statistical inference tasks.
In particular, we have focussed on interrelating them, while
studying what geometric structures they impose on the clas-
sical and quantum statistical manifolds in the language of
information geometry. The quantum setting is much richer,
especially because different quantum divergences induce dis-
tinct quantum metrics on the quantum statistical manifold
in stark contrast to the classical case—even when restricting
only to the operationally motivated ones that are monotonic
under the action of quantum maps. This, however, creates
an interesting playground of quantum monotonic metrics that
then naturally arise in different forms in problems of quantum
information theory, such as: quantum parameter estimation,
quantum speed limits or quantum thermodynamics.
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