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Robust Hypergraph Clustering via
Convex Relaxation of Truncated MLE

Jeonghwan Lee, Daesung Kim and Hye Won Chung

Abstract— We study hypergraph clustering in the weighted
d-uniform hypergraph stochastic block model (d-WHSBM),
where each edge consisting of d nodes from the same community
has higher expected weight than the edges consisting of nodes
from different communities. We propose a new hypergraph clus-
tering algorithm, called CRTMLE, and provide its performance
guarantee under the d-WHSBM for general parameter regimes.
We show that the proposed method achieves the order-wise
optimal or the best existing results for approximately balanced
community sizes. Moreover, our results settle the first recovery
guarantees for growing number of clusters of unbalanced sizes.
Involving theoretical analysis and empirical results, we demon-
strate the robustness of our algorithm against the unbalancedness
of community sizes or the presence of outlier nodes.

I. INTRODUCTION

A hypergraph is an effective way to represent complex in-
teractions among objects of interests. Different from classical
graph modeling, where each edge connects only two nodes to
model pairwise interactions, in hypergraphs an edge can con-
nect more than two nodes to represent multi-way interactions
among the nodes. Hypergraphs have been studied with diverse
practical applications, such as clustering categorial databases
[43], modeling folksonomies [37], image segmentation [4],
and partitioning of circuit netlists in VLSI design [48].

In this paper, we study clustering problem in weighted
uniform hypergraphs: Given a weighted hypergraph, our goal
is to partition nodes into disjoint clusters so that within-
cluster edges tend to have higher weights than cross-cluster
edges. We propose an algorithm that recovers the hidden
community structure from relatively sparse hypergraphs with
growing number of unequal-sized communities, and analyze
its statistical performance that either gives new consistency
results for previously unknown parameter regimes or matches
the best existing results.

We focus on a generative random hypergraph model called
the hypergraph stochastic block model, to evaluate hypergraph
clustering algorithms. In graph clustering, the most widely
studied model is the stochastic block model (SBM) [46], also
referred to as the planted partition model [26], where given an
underlying partition Φ∗ of n nodes, a graph is generated such
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that two nodes in the same community are more likely to be
adjacent than other pairs of nodes. We consider an extension
of the standard SBM to weighted uniform hypergraphs, known
as the weighted d-uniform hypergraph SBM (d-WHSBM) [5],
[42]. We assume that all edges have the same size d. An edge is
called Φ∗-homogeneous if it consists of d nodes from the same
community, and is called Φ∗-heterogeneous otherwise. In this
model, a random weight is assigned from [0, 1] independently
to each edge such that Φ∗-homogeneous edges tend to have
higher weights with expectation pn than Φ∗-heterogeneous
edges, which have weights with expectation qn < pn.

A. Main Contributions

We provide a hypergraph clustering algorithm based on
the truncate-and-relax strategy, called Convex Relaxation of
Truncated Maximum Likelihood Estimator (CRTMLE), which
is motivated by [50], [51] under the unweighted hypergraph
SBM with two equal-sized communities.

Our algorithm can handle the high-dimensional case of d-
WHSBM with hidden communities of order-wise unbalanced
sizes. More precisely, our algorithm can operate in the d-
WHSBM with parameters satisfying (1) the number of com-
munities k may grow in n, and (2) the order of community
sizes can be different, i.e., smax/smin = ω(1), where smin and
smax denote the minimum and maximum community sizes,
respectively. As opposed to our general setup, most recent de-
velopments on efficient hypergraph clustering methods under
variants of hypergraph SBM assume either the approximate
balancedness of community sizes, i.e., smax/smin = O(1),
or the constant number of communities, i.e., k = Θ(1), for
easiness of statistical analysis.

Our main contribution is a statistical analysis of CRTMLE
in general regimes for parameters (pn, qn, smin), which are
allowed to scale in n. Our main theorem shows that CRTMLE
achieves the strong consistency (a.k.a. the exact recovery,
which means that all the nodes are clustered correctly w.h.p.)
provided that the density gap pn − qn satisfies

pn − qn = Ω

(
n
d−2
2 ·

√
pn (smin log n+ n)

sd−1
min

)
. (1)

Note that the condition (1) does not explicitly depend on the
number of communities k but only though smin. From this
single condition, we can show that our algorithm achieves
the order-wise optimal or the best known performance, which
mainly assumes smax/smin = Θ(1) or smin = smax. More-
over, up to our knowledge, this is the first result showing a
sufficient condition for exact recovery in the d-WHSBM with
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growing number of communities of order-wise unbalanced
sizes.

Our technical byproduct is the derivation of a sharp concen-
tration bound on the spectral norm of a certain random matrix,
called the similarity matrix, which has dependency among
entries. Most existing concentration results of random matrices
are built upon the independence between entries. To resolve
the dependency issues, we use the celebrated combinatorial
argument developed by Friedman, Kahn and Szemerédi [36],
[33], [27]. Details can be found in Section VII-A.

This paper is organized as follows. We provide an overview
of related works in Section I-B and introduce the d-WHSBM
and formulate the hypergraph clustering problem under this
model in Section II. Section III presents our hypergraph
clustering algorithm (CRTMLE), and Section IV provides its
performance guarantee. In Section V, we further discuss vari-
ants of the d-WHSBM and provide the performance guarantee
of CRTMLE for the model variants. In Section VI, we provide
some simulation results that demonstrate the robustness of
CRTMLE against the unbalancedness of community sizes
and the presence of outlier nodes. In this section, we also
apply the proposed algorithm to subspace clustering [4], to
demonstrate the performance and robustness of CRMLE in
real applications. The proof of main theorem is provided
in Section VII-B, and other technical proofs are deferred to
appendices. Section VIII is devoted for final remarks.

B. Related Works

1) Graph Clustering: We first review existing results for
graph clustering (d = 2) and compare them with our key con-
dition (1), which holds for any d ≥ 2. The graph clustering has
been extensively studied with full generality to find sufficient
conditions of strong consistency with computationally-feasible
algorithms. Under the SBM with pn = Θ(1), qn = Θ(1) and
|pn − qn| = Θ(1), exact recovery can be solved efficiently
provided that smin = Ω(

√
n) by spectral clustering [15] or

convexified MLE [57], [9], [18]. We remark that this state-
of-the-art result is also valid for variants of the SBM which
allows semi-randomness [32], [53] or outlier nodes. From the
key condition (1), one can see that if pn = Θ(1), qn = Θ(1)
and |pn − qn| = Θ(1), CRTMLE achieves the state-of-the-art
result smin = Ω (

√
n) of the exact recovery for general d ≥ 2.

When edge densities are in the form of pn = pαn and
qn = qαn for some constants p > q > 0, and the number of
communities k may grow in n, the sparsity level αn which
allows the exact recovery in the SBM within polynomial time
is known to be αn = Ω

(
(n+ smin log n) /s2

min

)
[13]. The key

condition (1) reads αn = Ω
((
nd−2 (smin log n+ n)

)
/s2d−2

min

)
,

which coincides with the above result for the graph case.
For the standard SBM with constant number of communities
of approximately balanced sizes, various computationally-
efficient methods achieve the order-wise optimal sparsity level
αn = Ω (log n/n) [56], [3], [2], [45], and our result also
achieves this limit under the above setting.

2) Hypergraph Clustering: We next provide review for the
hypergraph clustering from three different perspectives: (a)
formulation of a generative random hypergraph model, (b)

characterization of information-theoretic thresholds, and (c)
identification of computational limits of efficient algorithms.

Generative random hypergraph model. One of the
most widely studied random models for hypergraph is the
hypergraph SBM. Most of the previous works for hypergraph
SBM assume either the constant number of communities or
the balancedness of the community sizes. In [50], [51], the
hypergraph SBM with two equal-sized clusters is studied,
which is also known as the hypergraph planted bisection
model. The weighted hypergraph case is probed in [5] for
the case where the number of communities is fixed and
community sizes are approximately balanced. In [25], the
dense regime (i.e., pn = Θ(1) and qn = Θ(1)) for hyperedges
is investigated with multiple equal-sized communities.

In this work, our focus is on the weighted d-uniform
hypergraph SBM with growing number of clusters without
any particular assumptions on the balancedness of community
sizes. In this model, we assume that homogeneous edges,
which consist of d nodes from the same community, tend to
have higher weights with expectation pn, while heterogeneous
edges having weights with expectation qn < pn.

We remark that there are several extensions available for
d-WHSBM. In [38], [39], [41], [21], [22], hypergraph planted
partition model or hypergraph SBM is considered where
the hyperedge probabilities depend on edge homogeneity of
the composed nodes, i.e., the more concentrated groups of
nodes in terms of assigned communities are connected with
higher probability. Also, the non-uniform hypergraph SBM,
in which the sizes of hyperedges may vary, is investigated in
[42]. Recently, [49] proposed a model, called the hypergraph
degree-corrected SBM, to handle the degree heterogeneity..

Information-theoretic limits. After establishing the
underlying random model suitable for each application of
hypergraphs, one should decide a target recovery type (a.k.a.,
consistency type of estimators). Typically, there are 3 recovery
types (strong consistency, weak consistency, and detection)
in estimating the ground-truth community assignment, which
will be elaborated in Section II. In [5], [38], [39], [42], [41],
[49], the weak consistency is studied. The strong consistency
conditions are analyzed in [5], [50], [51]. There are limited
number of works on detection of communities in hypergraphs
[58], [5]. In this study, we focus on the strong consistency in
recovering the ground-truth communities.

A sharp statistical limit for the strong consistency is
established for the hypergraph planted bisection model in [51].
The optimal minimax rates of the fraction of misclustering
error are analyzed in [21], [22] in the hypergraph SBM which
reflects the edge homogeneity. For the binary-edge case, [5]
shows that a spectral clustering method with local refinement
procedure achieves the order-wise optimal limit for the strong
consistency when the number of communities is constant
and their sizes are approximately balanced. In Section IV-B,
we show this optimality can be achieved by CRTMLE in
the same regime. As this order-wise threshold is achieved
via polynomial-time methods, it is not only the (order-wise)
information-theoretic limit, but also the computational limit.
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Efficient algorithms and computational limits. In order to
establish the computational limit, a polynomial-time algorithm
should be designed with which the target recovery type can be
achieved. In comparison to graph clustering literature, strong
consistency in hypergraphs has been studied mainly assuming
balanced community structures to provide theoretical analysis
on the proposed methods. Up to our knowledge, our result is
the first one that provides a sufficient condition for the strong
consistency that can be achieved within polynomial-time even
for the case with growing number of communities of order-
wise unbalanced sizes.

Due to remarkable practical advantages in implementation
and computational aspects, many recent works on hypergraph
clustering are built upon the spectral clustering methodology.
One noteworthy approach is to truncate the observed hyper-
graph down to a weighted graph, where the edge weight
assigned to {i, j} ∈

(
[n]
2

)
equals the number of hyperedges

containing both i and j. Then, the latent membership structure
is inferred by applying the standard spectral clustering method
to either the adjacency matrix of the truncated weighted graph
[5], [25], [39], [42] or the hypergraph Laplacian matrix [41],
[21], [22]. Another prominent approach is to conduct a higher-
order singular value decomposition (HOSVD) [52], [29] on
the adjacency tensor of the observed hypergraph and then run
k-means clustering on the output matrix obtained by HOSVD
[38], [40]. Recently, [49] developed a new method to cope
with the degree heterogeneity in hypergraphs.

Compared to spectral clustering, there are limited endeavors
with convex relaxation approach for hypergraphs. In [50],
[51], an efficient algorithm is designed based on the truncate-
and-relax strategy which consists of two stages: (1) truncate
an observed hypergraph down to a weighted graph, and (2)
relax a combinatorial optimization problem on the truncated
objective function. They derived its strong consistency result
under the hypergraph SBM with two equal-sized communities.
We extend it to the weighted case with multiple communities
of unequal sizes. The reason that we consider the convex re-
laxation approach rather than the spectral clustering method in
general parameter setup is that conventional spectral clustering
methods are known to be sensitive to the unbalancedness of
community sizes and the presence of outlier nodes in graphs
[15], [24], [55]. In Section VI, we manifest the robustness
of CRTMLE against the unbalancedness of community sizes
and the presence of outlier nodes via experimental results and
compare it to other spectral methods.

C. Notations

Let Mi∗ and M∗j denote the ith row and the jth column of
M ∈ Rm×n, respectively. For any vector d = (d1, · · · , dn) ∈
Rn, diag(d) denotes the n× n diagonal matrix with diagonal
entries d1, · · · , dn. For any positive integers m and n, we
denote by 1m×n the m × n all-one matrix and In the n × n
identity matrix. For any n × n real symmetric matrix S, let
λi(S) denote the ith largest eigenvalue of S. For any v ∈ Rn
and an integer d ≥ 2, the d-fold tensor product of v, v⊗d ∈
R[n]d , is given by v⊗d(i1, i2, · · · , id) :=

∏d
k=1 vik for every

i1, i2, · · · , id ∈ [n]. Naturally, the inner product of two real n-
dimensional d-tensors A,B ∈ R[n]d is defined by 〈A,B〉 :=∑d
i1=1

∑d
i2=1 · · ·

∑d
id=1 A(i1, i2, · · · , id)B(i1, i2, · · · , id).

For n ∈ N, let [n] := {1, 2, · · · , n}. Given a set A and a
non-negative integer m, we set

(A
m

)
:= {B ⊆ A : |B| = m}

and
( A
≤m
)

:= {B ⊆ A : |B| ≤ m} = ∪ml=0

(A
l

)
.

II. PROBLEM SETUP

Let V := [n] be the set of n vertices and E :=
(

[n]
d

)
denote

the set of all edges of size d (a.k.a., d-regular edges) for a fixed
integer d ≥ 2. Also, let k be the number of communities that
may depend on n and P(n, k) denote the set of all partitions
of n nodes into k communities.

Any partition Φ : [n] → [k] in P(n, k) can be charac-
terized as a membership matrix Z(Φ) ∈ {0, 1}n×k given by
[Z(Φ)]ij = 1 if j = Φ(i) and 0 otherwise. Let Z(n, k) :=
{Z(Φ) : Φ ∈ P(n, k)} denote the set of all membership ma-
trices corresponding to partitions in P(n, k). We say that a
d-regular edge e = {i1, i2, · · · , id} ∈ E is Φ-homogeneous
if Φ(i1) = Φ(i2) = · · · = Φ(id), and Φ-heterogeneous
otherwise. A natural concept to characterize the homogeneity
of d-regular edges with respect to the partition Φ is the cluster
tensor given by T(Φ)(i1, i2, · · · , id) = 1 if Φ(i1) = Φ(i2) =
· · · = Φ(id), and 0 otherwise. Note that T(Φ) is symmetric
and we have T(Φ) =

∑k
j=1 [Z(Φ)]

⊗d
∗j for every Φ ∈ P(n, k).

Also, let T (n, k) := {T(Φ) : Φ ∈ P(n, k)} be the set of all
cluster tensors corresponding to partitions Φ ∈ P(n, k). We
now formally define the weighted d-uniform hypergraph SBM,
which has an abbreviation d-WHSBM.

Definition II.1 (The d-WHSBM). With parameters n, k ∈ N,
pn, qn ∈ [0, 1] and Φ∗ ∈ P(n, k), the weighted d-uniform
hypergraph stochastic block model is a generative random
hypergraph model which samples a weighted d-uniform hy-
pergraph H = ([n],W = (We : e ∈ E)) according to the fol-
lowing rule: a random weight We ∈ [0, 1] is assigned to each
d-regular edge e ∈ E independently; we have E[We] = pn if
e ∈ E is a Φ∗-homogeneous edge, and E[We] = qn otherwise.
This model is denoted by d-WHSBM(n, k, pn, qn,Φ

∗) and the
parameter Φ∗ ∈ P(n, k) is called the ground-truth partition
or the ground-truth community assignment.

Observe that d-WHSBM does not specify the edge weight
distribution, but only specifies their expectations. Following
the standard SBM literature, we mainly focus on the case
pn > qn (assortative case) throughout this paper. The case
pn < qn (disassortative case) can be discussed by considering
the complement hypergraph H :=

(
[n],W

)
of the given

hypergraph H, where W := (1−We : e ∈ E).
While our model looks similar to the one in [5], the number

of communities k may grow in n (a.k.a., the high-dimensional
regime [19], [20]) in our model. We denote by Z∗ := Z(Φ∗)
and T∗ := T(Φ∗) the ground-truth membership matrix and
the ground-truth cluster tensor, respectively. Throughout this
paper, we write C∗a := (Φ∗)

−1
(a), a ∈ [k], to denote the

ath ground-truth community. We also denote by sa := |C∗a |,
smin := min {sa : a ∈ [k]} and smax := max {sa : a ∈ [k]}
the size of the ath community, the minimum and the maximum
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TABLE I
SUMMARY OF NOTATIONS AND DESCRIPTIONS

Notation Description
H = ([n],W) A weighted d-uniform hypergraph

E The set of all d-regular edges of n vertices
Φ : [n]→ [k] A partition of n nodes into k communities

Z(Φ) ∈ {0, 1}n×k The membership matrix corresponding to Φ

T(Φ) =
∑k

j=1 [Z(Φ)]⊗d
∗j The cluster tensor corresponding to Φ

X(Φ) := Z(Φ) [Z(Φ)]> The cluster matrix corresponding to Φ
Φ∗,Z∗,T∗,X∗ The ground-truth quantities

C∗a := (Φ∗)−1 (a), sa := |C∗a | The ath ground-truth community and its size
smin, smax The minimum and maximum sizes of clusters

sizes of communities, respectively. We remark that d-WHSBM
extends the graph case (d = 2) to the d-uniform hypergraph
setting for general d ≥ 2 [47], [66].

Consistency types of estimators. Given a weighted random
d-uniform hypergraph H = ([n],W), we want to recover the
ground-truth community assignment Φ∗ up to a permutation.
To be precise, given any estimator Φ̂ = Φ̂(W) : [n] → [k],
we define the fraction of misclustering error of Φ̂ by

err(Φ̂,Φ∗) :=
1

n
min
π∈Sk

∣∣∣{i ∈ [n] : Φ∗(i) 6= π(Φ̂(i))
}∣∣∣ ,

where Sk denotes the symmetric group of degree k. Then, we
say that an estimator Φ̂ = Φ̂(W) : [n]→ [k] is

1) strongly consistent (a.k.a., solving the exact recovery) if
limn→∞ P{err(Φ̂,Φ∗) = 0} = 1.

2) weakly consistent (a.k.a., solving the almost exact recov-
ery) if err(Φ̂,Φ∗)→ 0 in probability as n→∞.

3) solving the detection if there exists a positive real number
ε > 0 such that limn→∞ P

{
err(Φ̂,Φ∗) ≥ 1

k + ε
}

= 1.

Throughout this paper, we will focus on the strong consistency
of estimators (a.k.a. the exact recovery [1], [30]).

The set of notations introduced in this section is summarized
in Table I.

III. ALGORITHM DESCRIPTION

Our proposed algorithm, Convex Relaxation of Truncated
Maximum Likelihood Estimator (CRTMLE), consists of three
main stages: (1) truncation of maximum likelihood estimator
(MLE), (2) semi-definite program (SDP) relaxation and (3) ex-
plicit clustering via approximate k-medoids clustering method.
We first explain those steps to motivate the algorithm and then
provide the complete algorithm.

1) Truncation of maximum likelihood estimator: Given a
sample H = ([n],W) drawn by d-WHSBM(n, k, pn, qn,Φ

∗),
we consider the MLE T̂MLE(W) of the ground-truth cluster
tensor T∗. We analyze the MLE for the binary-valued edge
weight case and later show that the algorithm developed for
the binary-edge case achieves the strong consistency guarantee
even for the general weighted case.

The log-likelihood function of observing the binary-valued
weighted hypergraph W = (We : e ∈ E) given a cluster tensor
T ∈ T (n, k) is

logP{W|T}

= log
∏
e∈E

[(
pn(1− qn)

qn(1− pn)

)WeTe (1− pn
1− qn

)Te
×

qWe
n (1− qn)1−We

]
= log

(
pn(1− qn)

qn(1− pn)

)∑
e∈E

WeTe − log

(
1− qn
1− pn

)∑
e∈E

Te

+ (constant terms of T)

=
1

d!

[
log

(
pn(1− qn)

qn(1− pn)

)
〈W,T〉 − log

(
1− qn
1− pn

)
〈1E ,T〉

]
+ (constant terms of T) ,

(2)

where Te := T(i1, i2, · · · , id) for every d-regular edge e =
{i1, i2, · · · , id} ∈ E (this convention is well-defined since T is
a symmetric d-tensor.), and 1E ∈ R[n]d denotes the indicator
tensor of the d-regular edge set E , i.e., 1E(i1, i2, · · · , id) := 1
if i1, i2, · · · , id ∈ [n] are all distinct and 0 otherwise. Here, we
may view W as a symmetric n-dimensional d-tensor given by
W(i1, i2, · · · , id) := W{i1,i2,··· ,id} if 1E(i1, i2, · · · , id) = 1,
and 0 otherwise. The assumption pn > qn gives T̂MLE(W) ∈

arg max {〈W,T〉 − µ〈1E ,T〉 : T ∈ T (n, k)} , (3)

where µ = µ(pn, qn) := log(1−qn)−log(1−pn)
log pn+log(1−qn)−log qn−log(1−pn) >

0. Intuitively, the optimization problem (3) seeks for a cluster
tensor T ∈ T (n, k) which maximizes a penalized correlation
with the observed data W. Note that the regularization term
plays a role in balancing the number of homogeneous edges
and heterogeneous edges in order to avoid the circumstance of
having too many edges aligned with groups of nodes belonging
to the same community.

For each cluster tensor T, there is a corresponding mem-
bership matrix Z ∈ Z(n, k) such that T =

∑k
j=1 (Z∗j)

⊗d.
By defining Y := 2Z− 1n×k and Y(n, k) := {2Z− 1n×k ∈
{±1}n×k : Z ∈ Z(n, k)}, we can represent the MLE (3) in
terms of Y: ŶMLE(W) ∈

arg max


〈
W − µ1E ,

k∑
j=1

(Y∗j + 1n)
⊗d

〉
: Y ∈ Y(n, k)

 ,

(4)

where 1n ∈ Rn is the n-dimensional all-one vector. By uti-
lizing the expansion

[
(Y∗j + 1n)

⊗d
]
e

=
∏
i∈e (Yij + 1) =∑

I⊆e
(∏

i∈I Yij

)
for every d-regular edge e ∈ E , one can

observe that for every Y ∈ Y(n, k), we may deduce that the
objective function fW : Y(n, k)→ R of (4) is given by

fW(Y)
(a)
= d!

k∑
j=1

∑
e∈E

∑
I⊆e

(We − µ)

(∏
i∈I

Yij

)

(b)
= d!

k∑
j=1

∑
I∈([n]

d )

∑
e∈E:I⊆e

(We − µ)

(∏
i∈I

Yij

)

= d!
∑

I∈([n]
≤d)

 ∑
e∈E:I⊆e

(We − µ)

 k∑
j=1

(∏
i∈I

Yij

) ,
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where (a) is due to the symmetry of W and (Y∗j + 1n)
⊗d

and (b) is simply from interchanging the order of summation.
Here, we define polynomials in an indeterminate Y by

(pl)W(Y) :=
∑

I∈([n]
l )

 ∑
e∈E:I⊆e

(We − µ)

 k∑
j=1

(∏
i∈I

Yij

)
for l ∈ {0, 1, · · · , d}. Some straightforward calculations yield

(p0)W(Y) =
k

d!
〈W − µ1E ,1E〉,

(p1)W(Y) =
d(2− k)

d!
〈W − µ1E ,1E〉,

(p2)W(Y) =∑
1≤i<j≤n

 ∑
e∈E:{i,j}⊆e

We

− µ(n− 2

d− 2

) [YY>
]
ij
,

and thereby it follows that

fW(Y) = (k + 2d− dk) 〈W − µ1E ,1E〉+ d!(p2)W(Y)

+ (higher-order terms of Y) .
(5)

Instead of evaluating the maximum of the high-order poly-
nomial fW(Y) over Y ∈ Y(n, k), we first approximate (5)
by truncating terms of order higher than 2 and compute the
maximum of the truncated polynomial over Y ∈ Y(n, k). This
computation is called the truncated maximum likelihood esti-
mation and the corresponding estimator is denoted by Ŷtrunc
given by Ŷtrunc(W) ∈ arg max {(p2)W(Y) : Y ∈ Y(n, k)} .
It is clear that Ŷtrunc(W) = 2Ẑtrunc(W)− 1n×k, where

Ẑtrunc(W) ∈ arg max {(p2)W(Z) : Z ∈ Z(n, k)} . (6)

This degree-2 truncation strategy has been considered in [50],
[51], where the truncated MLE for the hypergraph SBM was
derived and analyzed for two balanced clusters. We analyze
this estimator for general parameter regimes. The coefficients
of the polynomial (p2)W(Y) stimulates us to consider the
truncation of the weighted hypergraph H = ([n],W) down to
a weighted graph whose adjacency matrix is referred to as the
similarity matrix [5], [51], [35], [25]:

Definition III.1 (Similarity Matrix). The similarity matrix A
of a weighted d-uniform hypergraph H = ([n],W) is an n×n
real symmetric matrix with entries Aij :=

∑
e∈E:{i,j}⊆eWe

if i 6= j; and Aij := 0 otherwise.

From (p2)W(Z) = 1
2 〈A−µ

(
n−2
d−2

)
1n×n,ZZ

>〉+ n
2µ
(
n−2
d−2

)
,

we arrive at the following equivalent formulation of (6):

Ẑtrunc(W) ∈

arg max

{〈
A− µ

(
n− 2

d− 2

)
1n×n,ZZ

>
〉

: Z ∈ Z(n, k)

}
.

(7)

Note that the program (7) is non-convex and computationally
infeasible since the feasible set Z(n, k) is discrete, non-convex
and exponentially large as |Z(n, k)| = |P(n, k)| = Ω(en).

2) Convex relaxation of truncated MLE: To derive a convex
relaxation of (7), it is more convenient to recast the problem
as the following form:

max
X∈X (n,k)

〈
A− µ

(
n− 2

d− 2

)
1n×n,X

〉
, (8)

where X (n, k) :=
{
ZZ> : Z ∈ Z(n, k)

}
. Let X(Φ) :=

Z(Φ) [Z(Φ)]
> ∈ X (n, k) denote the cluster matrix cor-

responding to Φ ∈ P(n, k). We may observe that any
X ∈ X (n, k) satisfies the following convex properties: (1)
all entries of X lie in [0, 1], (2) Trace(X) = n, and (3) X is
positive definite. By relaxing the non-convex constraint in (8),
we obtain an SDP given by:

max
X∈Rn×n

〈A− λ1n×n,X〉

subject to X � O; 〈In,X〉 = n;

0 ≤ Xij ≤ 1, ∀i, j ∈ [n],

(9)

where O is the n × n all-zero matrix. The tuning parameter
λ ≥ 0, which substitutes the coefficient µ

(
n−2
d−2

)
, must be

specified. One can think of the tuning parameter λ as a
regularization parameter that controls the sparseness of X
since 〈1n×n,X〉 = ‖X‖1, which is immediate from Xij ≥ 0,
∀i, j ∈ [n]. An optimal solution X̂SDP(W) to the SDP (9) will
play a role as an estimator of the ground-truth cluster matrix
X∗ := Z∗ (Z∗)

> ∈ X (n, k).

Remark III.1 (Tuning parameter λ). The proper choice of the
tuning parameter λ is important in the performance of SDP
(9). As will be shown in main results, the tuning parameter λ
should be chosen to lie between the minimum within-cluster
similarity and the maximum cross-cluster similarity (which are
specified in Section IV-A) to guarantee the exact recovery. The
parameter λ specifies the resolution of clustering algorithm: a
higher λ tends to detect smaller clusters with similarity (in
the similarity matrix A) larger than λ. So, varying λ results
in different solutions with cluster resolutions determined by
λ. For this reason, it is not generally possible to determine
a unique choice of λ from the data. Similar phenomenon
has been known for an SDP for graph clustering [18]. If the
community sizes are all equal, on the other hand, it is possible
to determine a proper choice of λ in a completely data-driven
way with a theoretical guarantee (see Section IV-C for details).

Remark III.2. Instead of (9), we may consider the alternative
SDP below:

max
X∈Rn×n

〈A,X〉

subject to X � 0; 0 ≤ Xij ≤ 1, ∀i, j ∈ [n];

〈In,X〉 = n; 〈1n×n,X〉 = 〈1n×n,X∗〉.

(10)

We remark that the program (9) can be viewed as a penalized
form of (10), obtained by removing the constraint on the term
〈1n×n,X〉 but instead penalizing it. Since X∗ij = 1 if and only
if both i and j belong to the same ground-truth community,
one has 〈1n×n,X∗〉 =

∑n
i=1

∑n
j=1 X

∗
ij =

∑k
a=1 s

2
a. Thus,

the alternative SDP (10) does not require parameter tuning for
λ compared to (9), but instead it requires the exact knowledge
of the sum of squares of the community sizes

∑k
a=1 s

2
a. This
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requisite may be unrealistic to assume in practical applications,
however it becomes more reasonable whenever clusters are all
equal-sized. In this section, we focus on the penalized SDP
(9), and we turn to the alternative SDP (10) later when we
allow the existence of outlier nodes, which refer to nodes that
belong to no community, for the balanced case.

3) Explicit clustering via approximate k-medoids cluster-
ing: We next present a method to extract an explicit clustering
from the solution X̂SDP = X̂SDP(W) of the SDP (9). The
basic idea is to use k-medoids clustering for the n row vectors
of X̂SDP. To explain the algorithm details, we first review k-
medoids clustering problem. Let X := {x1, x2, · · · , xn} be
the given n input data points that lie in the ambient Euclidean
space Rp, and X ∈ Rn×p be a matrix with Xi∗ = xi, ∀i ∈ [n].
The k-medoids clustering problem searches for a clustering
assignment of these n data points and the corresponding
centers of k clusters {v1, v2, · · · , vk} ⊆ X such that the sum of
l1-norms of each data point to its cluster center is minimized.
We can formalize this problem as below:

min
Φ,v1,··· ,vk

k∑
a=1

 ∑
i∈Φ−1(a)

‖xi − va‖1


subject to Φ ∈ P(n, k);

v1, v2, · · · , vk ∈ X.

(11)

Representing the cluster centers {v1, v2, · · · , vk} as row vec-
tors of a matrix V ∈ Rk×p, the problem (11) can be re-written
as the following compact form:

min
Z,V

‖ZV −X‖1

subject to Z ∈ Z(n, k), V ∈ Rk×p;
Rows(V) ⊆ Rows(X),

(12)

where Rows(M) denotes the set of row vectors of a matrix M,
and ‖M‖1 is the sum of absolute values of all entries of M. A
common method to solve the k-medoids problem (11) is the k-
medoids clustering algorithm, which approximately minimizes
the objective function of (11) by alternately minimizing over Φ
and v1, v2, · · · , vk. We may extract a clustering from X̂SDP by
applying the k-medoids clustering method on its row vectors.
However, it has a crucial shortcoming in computational aspect
since finding the medoid of given dataset is computationally
hard in general. More generally, computing the exact optimizer
(Z̃, Ṽ) of (12) is known to be NP-hard.

To address this issue, [14] proposed an efficient algorithm
to solve the k-medoids problem approximately. This algorithm
produces an output (Ẑ, V̂) feasible to (12) within polynomial-
time such that∥∥∥ẐV̂ −X

∥∥∥
1
≤ 20

3

∥∥∥Z̃Ṽ −X
∥∥∥

1
.

From this output (Ẑ, V̂), we can extract a community assign-
ment Φ̂ by letting Φ̂(i) be the unique non-zero coordinate of
Ẑi∗. This efficient clustering extraction method was originally
designed in [31], [17], and is called the approximate k-medoids
clustering algorithm. See Algorithm 1 in [31] for the detailed
procedure. Moreover, the authors provide an error bound of

Algorithm 1 CRTMLE: Convex Relaxation of Truncated
MLE

1: Data: A weighted d-uniform hypergraph H = ([n],W),
a tuning parameter λ > 0.

2: Compute the similarity matrix A ∈ Rn×n of H.
3: Solve the SDP (9) with A. Let X̂SDP = X̂SDP(W) be an

optimal solution.
4: Employ the approximate k-medoids clustering (Algorithm

1 in [31]) on X̂SDP for extraction of an explicit community
assignment, Φ̂SDP(W) : [n]→ [k].

5: Output: The community assignment Φ̂SDP = Φ̂SDP(W).

the output of their method. See Proposition 3 therein: Given
any estimator X̂ = X̂(W) of X∗, let Φ̂ be the output of the
approximate k-medoids clustering on X̂. Then, it satisfies

err(Φ̂,Φ∗) ≤ 86

3

‖X̂−X∗‖1
‖X∗‖1

.

This bound implies Φ̂SDP = Φ∗ whenever X̂SDP = X∗, where
Φ̂SDP denotes the output of CRTMLE. Furthermore, there have
been some recent breakthroughs in randomized algorithms for
finding the medoid of the given dataset by converting the
medoid problem to a multi-armed bandit statistical inference
problem [10], [61]. Applying them enables faster implemen-
tation of the k-medoids clustering algorithm.

Remark III.3 (Computational Tractability of CRTMLE). The
time complexity of step 2 in CRTMLE (see Alg. 1 for the
detailed procedure) is O

(
2
(
d
2

)
|E|
)

= O(nd) since each d-

regular edge e ∈ E appears 2
(
d
2

)
times during the construction

of A. Also we note that SDPs are solvable efficiently either
by the interior point method [6] or the alternating direction
method of multipliers [12]. Thus, step 3 in Alg. 1 can be
done within polynomial-time. Finally, as we discussed in
Section III-3), the approximate k-medoids clustering (step 4
in Alg. 1) operates within polynomial-time. Thus, CRTMLE
is a polynomial-time algorithm, i.e., computationally tractable
regardless of its success or failure in the exact recovery.

IV. MAIN RESULTS

In this section, we analyze the statistical performance of
our proposed algorithm and compare it with existing works
(Section IV-A and IV-B). Finally, we discuss how we can
estimate the tuning parameter λ required in the SDP (9) under
the balanced case (Section IV-C).

A. Performance Analysis of CRTMLE
While our main algorithm (CRTMLE) is derived from the

MLE for the binary-valued edge case of d-WHSBM, we study
its performance guarantee for the general case. We aim to
characterize a sufficient condition for the strong consistency
of CRTMLE under the d-WHSBM.

Consider any two off-diagonal entries Aij and Ai′j′ of the
similarity matrix with Φ∗(i) = Φ∗(i′) and Φ∗(j) = Φ∗(j′).
Then, one can see that E[Aij ] = E[Ai′j′ ]. Consequently, we
can define a k×k real symmetric matrix ∆ whose entries are
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given by ∆ab := E[Aij ], where i ∈ C∗a and j ∈ C∗b , for some
i 6= j. We can compute the entries of ∆ explicitly as

∆aa =

(
sa − 2

d− 2

)
(pn − qn) +

(
n− 2

d− 2

)
qn, ∀a ∈ [k];

∆ab =

(
n− 2

d− 2

)
qn, ∀a 6= b in [k].

One can see that the diagonal entries of ∆ are strictly larger
than its off-diagonal entries in the assortative d-WHSBM. The
diagonal entries and the off-diagonal entries of ∆ are referred
to as within-cluster similarities and cross-cluster similarities,
respectively. To elucidate an appropriate choice of the tuning
parameter λ in the SDP (9), we adopt the convention that

p−n := min {∆aa : 1 ≤ a ≤ k}

=

(
smin − 2

d− 2

)
(pn − qn) +

(
n− 2

d− 2

)
qn;

q+
n := max {∆ab : 1 ≤ a < b ≤ k} =

(
n− 2

d− 2

)
qn,

to denote the minimum within-cluster similarity and the max-
imum cross-cluster similarity, respectively.

Now, we provide an explicit condition on model parameters
(n, pn, qn, smin) as well as the tuning parameter λ, under
which the solution X̂SDP to the convex program (9) is capable
of recovering the ground-truth cluster matrix X∗ perfectly.

Theorem IV.1 (Performance Guarantee under the Assortative
d-WHSBM). Let A be the similarity matrix of H = ([n],W)
sampled by d-WHSBM(n, k, pn, qn,Φ

∗) with pn > qn. Then,
there is a constant c1 > 0 such that the ground-truth cluster
matrix X∗ is the unique optimal solution to the SDP (9) with
probability greater than 1 − 6n−11, provided that the tuning
parameter λ satisfies the inequality

1

4
p−n +

3

4
q+
n ≤ λ ≤

3

4
p−n +

1

4
q+
n , (13)

and model parameters satisfy

s2
min

(
smin − 2

d− 2

)2

(pn − qn)
2

≥ c1

(
n− 2

d− 2

)
pn (smin log n+ n) .

(14)

Note that (14) has no explicit dependencies on the number of
communities k but only through smin. The proof of Theorem
IV.1 will be elaborated in Section VII-B.

Remark IV.1 (Condition (13) on λ). To understand the
condition on the choice of the tuning parameter λ as in
(13), we need to take a closer look at a specific part in the
proof of Theorem IV.1: a lower bound on (Q3) in (25). One
can make an observation that it suffices to take λ such that
(p−n − λ) (1−Xij) ≥ c (p−n − q+

n )
∣∣X∗ij −Xij

∣∣ for X∗ij = 1,
i.e., for pairs of nodes (i, j) belonging to the same cluster, and
(λ− q+

n )Xij ≥ c (p−n − q+
n )
∣∣X∗ij −Xij

∣∣ for X∗ij = 0, i.e.,
for pairs of nodes (i, j) belonging to different communities,
for some constant c > 0 from (25). Therefore, we need to
choose λ such that (p−n − λ) ∧ (λ− q+

n ) ≥ c (p−n − q+
n ). In

other words, λ should lie between the minimum within-cluster
similarity p−n and the maximum cross-cluster similarity q+

n

to balance the false positives and the false negatives in the
variable X. Even though we made a particular choice c = 1

4
herein which yields the condition (13), the constant c can be
any number in

(
0, 1

2

]
as the absolute constant c1 in Theorem

IV.1 can be manipulated to be sufficiently large. In conclusion,
the condition (13) can be replaced by the weaker one such as
λ ∈ [cp−n + (1− c)q+

n , (1− c)p−n + cq+
n ] for any 0 < c ≤ 1

2 .

B. Comparison with Literature

We next discuss interesting remarks implied by Theorem
IV.1 and also provide comparisons with existing results.

Remark IV.2 (Sparsity). We consider the case (a) pn = pαn
and qn = qαn for some constants p > q > 0, where the
factor αn stands for sparsity level of edge weights, which
may depend on n. We can deduce that CRTMLE is strongly
consistent if αn = Ω

((
nd−2 (smin log n+ n)

)
/s2d−2

min

)
from

Theorem IV.1. Now, we impose two additional assumptions on
parameters: (b) the number of communities k is constant of n;
(c) the ground-truth communities are approximately balanced,
i.e., smax/smin = O(1). We remark that this case is studied
in [5], and we have smin = Θ(n) and thus it follows that
CRTMLE is strongly consistent if αn = Ω

(
log n/nd−1

)
. It

coincides with the strong consistency guarantee of Hypergraph
Spectral Clustering with Local Refinement (HSCLR) [5].

Remark IV.3 (Number of communities). Suppose that model
parameters satisfy the assumption (a) from Remark IV.2 with
sparsity level αn = 1 (this regime is known as the dense
regime). We also assume that (b) the communities are equal-
sized, i.e., smin = smax. The d-WHSBM with parameters
obeying (b) is called the balanced d-WHSBM and denoted by
d-WHSBMbal(n, k, pn, qn,Φ

∗). Different from Remark IV.2,
assume that the number of communities k may scale in n.
Let s = n/k be the size of each cluster. Then, Theorem IV.1
implies that CRTMLE is strongly consistent when s2d−2 =
Ω
(
nd−2 (s log n+ n)

)
for this case. From this result, it is easy

to see that CRTMLE exactly recovers the hidden partition if
s = Ω(

√
n) (equivalently, k = n

s = O(
√
n)), and we find that

this result agrees with the performance of the spectral method
proposed in [25]. We emphasize that Thm IV.1 is applicable
to the weighted case, while the performance analysis in [25]
only considers the binary-edge case of d-WHSBM.

Remark IV.4 (Order-wise unbalanced community sizes).
Most strong consistency results under variants of hypergraph
SBM have been limited to the case in which community sizes
are approximately balanced. To the best of our knowledge, this
is the first study on the strong consistency for the hypergraph
SBM without any such assumptions on cluster sizes. In
particular, if the assumption (a) from Remark IV.2 is assumed
with αn = 1, CRTMLE achieves the strong consistency when
smin = Ω(

√
n) regardless of smax by Theorem IV.1. In Sec-

tion VI, we further demonstrate the robustness of CRTMLE
against the unbalancedness of community sizes empirically,
and compare its performance with other spectral methods.

Remark IV.5 (Comparison with the best known result for the
graph case). One can see that the key condition (14) reads
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pn−qn√
pn

&
( √

n
smin

)d−2

max
{ √

n
smin

,
√

logn
smin

}
. Now, we consider

the binary-edge case of the graph SBM. The best known result
for the exact recovery is pn−qn√

pn
& max

{ √
n

smin
·
√

qn
pn
,
√

logn
smin

}
[13] in this model. Under the parameter regime pn/qn = Θ(1),
which encompasses the most challenging regime of the SBMs,
our result matches with the best known result.

Remark IV.6 (Tightness). Our proposed algorithm is both
computationally feasible and information-theoretically optimal
under the assumptions (a), (b) and (c) in Remark IV.2, since
it has been proven in [28] that there is no strongly consistent
estimator when αn = o

(
log n/nd−1

)
and CRTMLE achieves

the strong consistency if αn = Ω
(
log n/nd−1

)
. On the other

hand, it is still an open problem whether smin = Ω(
√
n) gives

the order-wise computational limit in the setting assumed in
Remark IV.4 even for the graph case [13], [20], [18], [57], [9].
We argue in Section V-B that it is possible to exactly recover
the hidden clique of size s = Ω(

√
n) within poly-time in the

planted clique model for hypergraphs. Even though it has been
conjectured that s = o(

√
n) is a computationally-hard regime

[7], [60], [34], proving this conjecture rigorously still remains
open. Furthermore, no general thresholds, i.e., converse result
of Theorem IV.1 or the information-theoretic limit, are known
for general parameter regimes of (n, k, pn, qn,Φ

∗).

C. Estimating the Tuning Parameter in the Balanced Case

Our algorithm CRTMLE requires an extraneous input λ. For
its success, we need to make a suitable choice of the tuning
parameter λ so that it obeys the bound (13). In this section, we
consider the balanced case of the d-WHSBM (smin = smax)
and provide an algorithm (Algorithm 2) to specify the tuning
parameter λ in a completely data-driven way by estimating the
model parameters (k, pn, qn) with strong theoretical guaran-
tees. Let d-WHSBMbal(n, k, pn, qn,Φ

∗) denote the balanced
model and s denote the size of communities.

Algorithm 2 is built upon the observation that the eigenval-
ues of E[A] are given by

λi := λi(E[A])

=


(s− 1) (p−n − q+

n ) + (n− 1)q+
n when i = 1;

(s− 1) (p−n − q+
n )− q+

n when 2 ≤ i ≤ k;

−p−n when k + 1 ≤ i ≤ n.
(15)

Similar idea is utilized to setup the tuning parameter of SDP
for graph clustering in the SBM [18].

Algorithm 2 Estimation of λ from the Observed Data
1: Data: The observed similarity matrix A ∈ Rn×n.
2: Compute and sort the eigenvalues of A; denote them by
λ̂i := λi(A) for each i ∈ [n].

3: Let k̂ := arg max
{
λ̂i − λ̂i+1 : i ∈ {2, 3, · · · , n− 1}

}
(broken tie uniformly at random).

4: Set ŝ := n
k̂

, p̂−n := ŝλ̂1+(n−ŝ)λ̂2

n(ŝ−1) and q̂+
n := λ̂1−λ̂2

n .

5: Output: An estimator λ̂ :=
p̂−n+q̂+n

2 of λ.

Theorem below guarantees that the errors of the estimators
k̂, ŝ, p̂−n and q̂+

n from Algorithm 2 are sufficiently small and
the estimator λ̂ of λ satisfies the desired condition (13) in
Theorem IV.1. Now we state the formal result below, deferring
the proof to Appendix A.

Theorem IV.2 (Accuracy of Estimators from Algorithm 2).
Let A denote the similarity matrix of H = ([n],W) generated
by d-WHSBMbal(n, k, pn, qn,Φ

∗). Suppose that the condition
(14) holds with a sufficiently large constant c2 > 0. Then,
the estimators computed in Algorithm 2 satisfy the following
properties with probability exceeding 1− 4n−11:

1. k̂ = k and ŝ = s,

2. max
{∣∣p̂−n − p−n ∣∣ , ∣∣q̂+

n − q+
n

∣∣} ≤ 2c5
s

√
n

(
n− 2

d− 2

)
pn,

3. λ̂ ∈
[

1

4
p−n +

3

4
q+
n ,

3

4
p−n +

1

4
q+
n

]
.

Here, the constant c5 in Cor. VII.1 is specified with α = 1.

Merging Algorithm 1 and 2, we get a complete polynomial-
time algorithm, which identifies the hidden partition of [n]
w.h.p. in the balanced d-WHSBM without any prior knowl-
edge of model parameters (k, pn, qn).

V. MODEL EXTENSIONS

In this section, we study two important variations of the
d-WHSBM to reflect circumstances where edge weights are
partially observed or outlier nodes may exist, and we analyze
our algorithm under these modified models.

A. Clustering Partially Observed Weighted Hypergraphs

We consider the case where multi-way relations among the
nodes are partially observed. A standard and extensively used
model for clustering partially-observed unweighted graphs is
a random graph model with missing data, also known as
the SBM with partial observations [57], [16], [18], [64].
We extend this model to the weighted hypergraph case as
follows: First, consider a weighted hypergraph H = ([n],W)
sampled by d-WHSBM(n, k, pn, qn,Φ

∗). Each entry of W is
observed independently with probability εn. We let Wobs :=(
W obs
e : e ∈ E

)
denote the observed weighted d-uniform hy-

pergraph, i.e., for each e ∈ E , the associated weight W obs
e is

given by W obs
e = We ∈ [0, 1] if the entry We is observed,

and W obs
e = × otherwise. We refer to this model as the d-

WHSBM with partial observations with parameters n, k ∈ N,
0 ≤ qn < pn ≤ 1, εn ∈ [0, 1] and Φ∗ : [n]→ [k].

Our main goal is to recover the latent membership structure
with partial observations. This clustering problem with missing
data can be solved efficiently via the following two-stage pro-
cedure. First, set to zero all the unobserved entries of Wobs and
let W′ denote the weighted d-uniform hypergraph obtained by
zeroing-out the unobserved entries of Wobs. Then, we perform
CRTMLE on H′ := ([n],W′). The zero-imputed weighted d-
uniform hypergraph H′ = ([n],W′) of Hobs can be viewed
as a data generated by the d-WHSBM(n, k, pnεn, qnεn,Φ

∗),
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TABLE II
COMPARISON WITH EXISTING RESULTS ON EXACT RECOVERY UNDER THE SBM WITH PARTIAL OBSERVATIONS.

Paper Condition on (pn, qn, εn, smin) Algorithm

[57] (pn − qn) εn &
√
n

smin
“Low-rank + Sparse” Decomposition

[16] (1− 2τn)
√
εn &

√
n logn
smin

“Low-rank + Sparse” Decomposition

[18] (pn − qn)
√

εn
pn

& max
{ √

n
smin

,
(logn)2√

smin

}
Convexified MLE

This paper
(pn − qn)

√
εn
pn

& max
{ √

n
smin

,
√

logn
smin

}
Convexified MLE(Corollary V.1)

so that the theoretical guarantee of this two-stage method is
obtained from Theorem IV.1 immediately.

Corollary V.1 (Performance Guarantee under the d-WHSBM
with Missing Data). Let H′ = ([n],W′) be the zero-imputed
data of a sample Hobs =

(
[n],Wobs

)
drawn from the d-

WHSBM with partial observations and A′ denote its simi-
larity matrix. Then, the SDP (9) applied to A′ with a tuning
parameter λ obeying

1

4
p−n εn +

3

4
q+
n εn ≤ λ ≤

3

4
p−n εn +

1

4
q+
n εn,

recovers the ground-truth cluster matrix X∗ exactly with
probability at least 1− 6n−11, when

(pn − qn)

√
εn
pn
≥ c2

( √
n

smin

)d−2

max

{ √
n

smin
,

√
log n

smin

}
,

where c2 > 0 is an absolute constant. Here, p−n and q+
n refer to

the minimum within-cluster similarity and the maximum cross-
cluster similarity, respectively. (See Section IV-A for details.)

To the best of our knowledge, there has been no provable
computationally-feasible method for clustering partially ob-
served hypergraphs for general parameters. Nonetheless, there
are some eminent works on clustering graphs with missing
data. Their common framework is the graph SBM with partial
observations. Since Cor. V.1 is applicable to this model, we
may compare it with previous works. See Table II for a
summary of comparison with literature. In this table, we let
τn := max {1− pn, qn} and thus 1 − 2τn is a lower bound
of the density gap pn − qn. One can see that our analytical
result is either as good as or order-wise stronger than existing
works when smin . n/ log n. If smin & n/ log n, our result is
order-wise better than ones in [16], [18].

B. Effect of Outlier Nodes

In this subsection, we show that CRTMLE is robust against
the presence of outlier nodes in the balanced d-WHSBM.

1) Robustness Against Outlier Nodes in the Balanced Case:
The robustness of CRTMLE against the unbalancedness of
cluster sizes is a crucial benefit, compared to spectral methods,
as summarized in Remark IV.4. Another strength of convex
relaxation methods is the robustness against outlier nodes [55],
which will be elaborated in this subsection for the balanced
case. There are several existing works studying the effect of
outliers [20], [18], [13] for graph clustering, but not many for
hypergraph clustering.

First, consider a new framework for hypergraph clustering

that allows the presence of outlier nodes. Let V := [n] = I∪O
be the set of n nodes, where I is the set of inlier nodes,
while O denotes the set of outlier nodes. These nodes are
endowed with the following latent membership structure: each
inlier node i ∈ I is labeled with community assignment
Φ∗(i) ∈ [k], while every outlier node o ∈ O is simply
labeled by Φ∗(o) = k + 1. We denote k hidden clusters
and their sizes by C∗a := (Φ∗)

−1
(a) and sa := |C∗a |,

a ∈ [k], respectively. Also, we use the convention that
C∗k+1 := (Φ∗)

−1
(k + 1) = O and sk+1 :=

∣∣C∗k+1

∣∣ =

n −
∑k
a=1 sa, and emphasize that C∗k+1 is not indeed an

underlying community. Let smin := min {sa : a ∈ [k]} and
smax := max {sa : a ∈ [k]}. We assume that all communities
are equal-sized, i.e., s = smin = smax.

We first extend the Φ∗-homogeneity of each d-regular edge
e ∈ E and say that a d-regular edge e ∈ E is Φ∗-homogeneous
if e ⊆ C∗a for some a ∈ [k], and Φ∗-heterogeneous otherwise.
We describe our main framework involving five model param-
eters, n, k ∈ N, 0 ≤ qn < pn ≤ 1 and Φ∗ : [n] → [k + 1].
A weighted d-uniform hypergraph H = ([n], (We : e ∈ E)) is
generated as follows: We ∈ [0, 1] is assigned to each e ∈ E
independently such that E[We] = pn if e is Φ∗-homogeneous,
and E[We] = qn otherwise. We call this model the balanced
d-WHSBM with outlier nodes. It can also be referred to as
the weighted d-uniform hypergraph planted clustering model
(d-WHPCM) by adopting terminologies from [20].

For subsequent discussion, we modify a matrix representa-
tion of the latent membership structure from Section III, which
reflects the presence of outlier nodes. Define the ground-truth
membership matrix Z∗ ∈ {0, 1}n×k defined by Z∗ia = 1 if
Φ∗(i) = a and Z∗ia = 0 otherwise. Note that Zi∗ = 0 if and
only if i ∈ [n] is an outlier node. Then, we can represent
the membership structure by the ground-truth cluster matrix
X∗ := Z∗ (Z∗)

>, where X∗ii = 1 for i ∈ I, X∗ii = 0 for
i ∈ O, and for every i 6= j, X∗ij = 1 if and only if i and j
belong to the same community.

We now assert that the SDP (10) is robust against the outlier
nodes under the balanced case. In this case, the constraints
of (10) become 〈In,X∗〉 = ks and 〈1n×n,X∗〉 = ks2.
So, with the exact knowledge of the number of communities
k and their size s, we can implement the SDP (10). With
this alternative SDP, we obtain a provable polynomial-time
algorithm which identifies the hidden communities from an
observed data generated by the d-WHPCM. The proof of the
following result closely follows the proof of Thm IV.1, so we
omit the details.
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Theorem V.1 (Performance Guarantee in the d-WHPCM).
Let A be the similarity matrix of a sample H drawn from
d-WHPCM(n, k, pn, qn,Φ

∗). Then, there is a universal con-
stant c4 > 0 (replacing c1 > 0 in (14)) such that the ground-
truth cluster matrix X∗ is the unique optimal solution to the
SDP (10) with prob. greater than 1−6n−11, when parameters
obey the condition (14).

2) Planted Clique Problem for Hypergraphs: One promi-
nent planted problem is the standard planted clique problem
[8]. We now generalize this problem for hypergraphs: the task
of finding a hidden clique of size s, that has been planted in an
Erdös-Rényi (ER) model for random d-uniform hypergraphs.

Definition V.1 (The Planted Clique Model for Hypergraphs).
Let C ⊆ [n] a hidden subset of size s ≤ n. A d-uniform
hypergraph H = ([n], E(H)), where E(H) ⊆ E , is generated
as follows: each d-regular edge e ∈ E appears independently
as an hyperedge of H with prob. 1 if e ⊆ C, and 1

2 otherwise.

Observe that the binary-edge case of the d-WHPCM, with
k = 1, pn = 1 and qn = 1

2 , retrieves the above model. Hence,
Theorem V.1 ensures the exact recovery of the hidden clique
for the size s = Ω(

√
n) regardless of the value of d, and we

remark that this result is consistent with the state-of-the-art
bound for the graph case [8], [18], [20], [13].

VI. EMPIRICAL RESULTS

In this section, we provide simulation results demonstrating
the robustness of our proposed algorithm against the unbal-
ancedness of community sizes (Section VI-A) as well as the
presence of outliers (Section VI-B). We also conduct a set
of simulations to show the performance and robustness of
the proposed algorithm for a real application of hypergraph
clustering in computer vision, the subspace clustering [4] in
Section VI-C.

From all these experimental results, we are able to confirm
that CRTMLE outperforms the state-of-the-arts for hypergraph
clustering, especially as community sizes become more unbal-
anced or the number of outliers increases.

We compare the performance of our algorithm with several
state-of-the-art algorithms including TTM [39], NH-Cut [67],
HOSVD [44], HSCLR [5], and hMETIS [48]. All of these
algorithms hinge upon either spectral property of the similarity
matrix or the graph partitioning method, whereas our algorithm
is based on the SDP relaxation.

A. Robustness Against the Unbalancedness of Community
Sizes

Let us fix the size of hyperedges as d = 3 and use Bernoulli
distribution with mean pn for generating homogeneous hyper-
edges, and qn for heterogeneous hyperedges, where

pn = p · n log n(
n
d

) and qn = q · n log n(
n
d

) ,

with some constants p > q > 0 which we will specify. We
set (n, p) ∈ {144, 288, 432, 576} × {10, 15, 20, 25}, where q
is fixed to 5, and set the number of clusters to be k ∈ {3, 4}.
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Fig. 1. Empirical performance (the average fractional errors over 50 trials)
of the proposed algorithm CRTMLE (most left) compared to other state-of-
the-art algorithms for hypergraph clustering for the number of communities
k = 3. The community sizes become more unbalanced from (a) to (c). A
lighter color implies a lower fractional error.
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Fig. 2. Empirical performance (the average fractional errors over 50 trials)
of the proposed algorithm CRTMLE (most left) compared to other state-of-
the-art algorithms for hypergraph clustering for the number of communities
k = 4. The community sizes become more unbalanced from (a) to (c). A
lighter color implies a lower fractional error.

1) k = 3: three different combinations of community sizes
{n/3, n/3, n/3}, {n/6, n/3, n/2}, {n/12, n/3, 7n/12}
are considered to represent the different levels of unbal-
ancedness.

2) k = 4: two different combinations {n/4, n/4, n/4, n/4}
and {n/12, n/6, n/3, 5n/12} are considered for the bal-
anced and unbalanced community sizes, respectively.

We run each algorithm 50 trials on randomly generated
hypergraphs and measure the fractional errors of each algo-
rithm. When implementing CRTMLE (Alg. 1), we set the
tuning parameter λ =

p−n+q+n
2 , where p−n and q+

n are the
minimum within-cluster similarity and the maximum cross-
cluster similarity, respectively, as defined in Section IV-A. The
experimental results are summarized in Figure 1 for the case
k = 3, and in Figure 2 for the case k = 4, respectively. In
the figures, a lighter color implies a lower fractional error. We
can observe that CRTMLE shows comparable performance
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Fig. 3. Empirical performance (the average fractional errors over 50 trials)
of the proposed algorithm CRTMLE (most left) compared to other state-of-
the-art algorithms for hypergraph clustering for the number of communities
k = 3. A lighter color implies a lower fractional error. As the number of
outlier nodes (n0: x-axis) increases, the fractional error increases for all the
algorithms, but CRTMLE is the most robust algorithm against the outlier
nodes.

with other algorithms when the community sizes are balanced,
but shows the best performance among all the algorithms
in most parameter regimes where the community sizes are
unbalanced. Especially, the performances of other algorithms
degrade as the community sizes become more unbalanced,
while CRTMLE has almost consistent performance regardless
of the unbalancedness of the community sizes. This result
matches with Remark IV.4, where we explain that CRTMLE
is robust against the heterogeneity in community sizes.

B. Robustness Against the Presence of Outlier Nodes

In the next simulation, we add no outlier nodes for the case
of equal-sized communities with k = 3 and n = 300. A similar
setting with previous ones in Section VI-A is assumed, except
that (no, p) ∈ {60, 90, 120, 150}×{10, 15, 20, 25}, and q = 1.
As expected, all methods excepting CRTMLE degrade as the
number of outlier nodes increases, but CRTMLE is the most
robust one against the outlier nodes, as shown in Figure 3.

C. An Application of Hypergraph Clustering: Subspace Clus-
tering

For the last experiment, we apply the hypergraph clustering
to solve the subspace clustering problem [4], which has wide
applications in computer vision. In subspace clustering, each
cluster is formed by points that (closely) lie on the same
subspace. The goal is to recover these clusters by measuring
some similarities between d data points and applying the
hypergraph clustering on the generated weighted hypergraphs.
The weights of the hypergraph We ∈ [0, 1], e ∈ E , indicate the
“fitness” of the d points {i1, i2, · · · , id} by a hyperplane and
the higher We implies the better the d points can be fitted by
a subspace. In this experiment, we use the simulation setup
similar to [39], [42]. In an ambient space of dimension 3,
we randomly generate three 1-dimensional subspaces (lines)
and sample a fixed number of data points from each subspace.
After that, a zero-mean Gaussian noise vector is added to every
data point, where the covariance matrix of the noise vector is
σI3. The noise parameter σ indicates the level of difficulty in
subspace clustering. A uniform hypergraph with d = 3 is then
generated by calculating polar curvature of every three data
points, which quantifies how close the three points can be fitted
to a line. We then compare the performance of CRTMLE with
other four state-of-the-art hypergraph clustering algorithms
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Fig. 4. Empirical performance (the average fractional errors over 50 trials) of
the proposed algorithm CRTMLE (most left) compared to other state-of-the-
art algorithms for subpace clustering for the number of subspaces k = 3. The
cluster sizes (the number of points in each subspace) become more unbalanced
from (a) to (c). A lighter color implies a lower fractional error. The CRTMLE
is the most robust algorithm against the unbalancedness of cluster sizes.

in recovering k = 3 clusters for n ∈ {36, 72, 96, 144}
and the varying noise level σ. We run each algorithm for
50 trials and plot the average of fractional errors for three
different combinations of community sizes {n/3, n/3, n/3},
{n/6, n/3, n/2}, and {n/12, n/3, 7n/12} in Fig. 4. The result
shows a similar trend with the first simulation: CRTMLE
has comparable (or sometimes worse) performance to other
algorithms for equal-sized case, but it is robust against the
unbalancedness of cluster sizes and thus performs better as
the unbalancedness becomes significant.

VII. PROOF OF MAIN RESULT

A. Concentration Bounds of Spectral Norm

Before we get into the proof of Theorem IV.1, we derive a
sharp concentration bound on the spectral norm ‖A− E[A]‖
in a specific parameter regime of the assortative d-WHSBM,
which will be elaborated below. It plays a crucial role in
proving the main results. In spectral method and SDP analysis,
it has been a technical challenge to obtain a tight probabilistic
bound on the spectral norm of random matrices. Since standard
random matrix theory used in concentration results of the adja-
cency matrix of graph SBM mainly assumes the independence
between entries, they cannot be directly employed for the
similarity matrix A under the d-WHSBM, which has strong
dependencies across entries due to its construction. In [51], the
authors employ the matrix Bernstein inequality [62] to resolve
such a dependency issue occured in a variation of the graph
Laplacian matrix. Unfortunately, this approach is not strong
enough to settle the desired tight bound on A for a wider range
of parameter regimes considered in this paper. To be specific,
utilizing the matrix Bernstein inequality on the decomposition
A =

∑
e∈EWeMe, where Me :=

∑
i,j∈e:i6=j eie

>
j for e ∈ E ,

gives ‖A−E[A]‖ = O
(√

n
(
n−2
d−2

)
pn · log n

)
. This results in
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a weaker (sub-optimal) result than what we will demonstrate
to prove Theorem IV.1.

One of our technical contribution is in providing a tighter
spectral norm bound on A via the Friedman-Kahn-Szemerédi
argument, which is used in order to bound the second largest
eigenvalue of the adjacency matrices of random regular graphs
[36], [33], [27]. Similar approach is emerged in [5] for bound-
ing the spectral norm of A0, a processed similarity matrix,
which is obtained by zeroing-out every row and column of A
whose sum is larger than a certain threshold. More precisely,
A0 is obtained by zeroing-out both the ith row and column
of A if

∑n
j=1 Aij > cthr · 1

n

∑n
i=1

∑n
j=1 Aij , where cthr > 0

is a threshold constant. We do not proceed such a trimming
step and can still prove a concentration bound directly for A,
tighter than one obtained from matrix Bernstein inequality by
a logarithmic factor. Moreover, our result does not assume any
block structure in the underlying model, but only assumes that
a random weight We ∈ [0, 1] is independently assigned to each
e ∈ E and the maximum expectation of weights is bounded
as max {E[We] : e ∈ E} ≤ µn with n

(
n−2
d−2

)
µn = Ω(log n).

Theorem VII.1. Suppose that a random weight We ∈ [0, 1]
is independently assigned to each d-regular edge e ∈ E ,
whereH = ([n], (We, e ∈ E)) is a weighted d-uniform random
hypergraph, and let A be the similarity matrix of H. Also, we
assume that max {E[We] : e ∈ E} ≤ µn, where {µn} is a
sequence in (0,∞) such that n

(
n−2
d−2

)
µn ≥ α log n for some

constant α > 0. Then, there is a universal constant c5 > 0
(depending on α) such that with probability at least 1−4n−11,
the similarity matrix A obeys the spectral norm bound

‖A− E[A]‖ ≤ c5

√
n

(
n− 2

d− 2

)
µn. (16)

The proof of Theorem VII.1 is deferred to Appendix B. We
remark that the extra

√
log n factor from the bound obtained

by matrix Bernstein inequality was removed in (16). Also note
that our bound (16) is a generalization of Theorem 5.2 in [54],
which provides a sharp spectral bound of the adjacency matrix
for the graph case. By using Theorem VII.1, we can obtain the
corresponding result for the assortative d-WHSBM directly.

Corollary VII.1. Let A denote the similarity matrix of H =
([n],W) sampled by d-WHSBM(n, k, pn, qn,Φ

∗) with pn >
qn. Suppose that there is an absolute constant α > 0 such
that n

(
n−2
d−2

)
pn ≥ α log n. Then, there is an absolute constant

c5 > 0 (depending on α) such that with probability exceeding
1− 4n−11, the similarity matrix A satisfies the bound

‖A− E[A]‖ ≤ c5

√
n

(
n− 2

d− 2

)
pn. (17)

B. Proof of Theorem IV.1

We first introduce additional notations and settings that will
be needed in the proof of Theorem IV.1. Let νn :=

(
n−2
d−2

)
pn ≥

max {E[Aij ] : i, j ∈ [n]}. Define the normalized membership

matrix corresponding to the ground-truth community assign-
ment Φ∗ by a matrix U ∈ Rn×k:

Uia :=

{
1√
sa

if Φ∗(i) = a;

0 otherwise.

Let T be the linear subspace of Rn×n spanned by elements
of the form U∗a · x> and y · U>∗a for a ∈ [k], where x
and y are arbitrary vectors in Rn, and T⊥ be its orthogonal
complement. The subspace T of Rn×n can be expressed
explicitly by T =

{
UA> + BU> : A,B ∈ Rn×k

}
. The

orthogonal projection PT onto T is given by PT (X) =
UU>X+XUU>−UU>XUU> and the orthogonal projec-
tion PT⊥ onto T⊥ is given by PT⊥(X) = (I − PT ) (X) =(
In −UU>

)
X
(
In −UU>

)
.

Recall that X ⊆ Rn×n refers to the feasible region of the
semi-definite program (9). To prove Theorem IV.1, it suffices
to show that for any X ∈ X \ {X∗},

∆(X) := 〈A− λ1n×n,X∗ −X〉 > 0.

Using the orthogonal projections PT and PT⊥ , we propose to
decompose the quantity ∆(X) as

∆(X) = 〈PT (A− E[A]) ,X∗ −X〉︸ ︷︷ ︸
(Q1)

+ 〈PT⊥ (A− E[A]) ,X∗ −X〉︸ ︷︷ ︸
(Q2)

+ 〈E[A]− λ1n×n,X∗ −X〉︸ ︷︷ ︸
(Q3)

.

The subsequent arguments on bounding the terms (Q1), (Q2)
and (Q3) is akin to ones in [20], [17], except that the entries
of A are not independent anymore for the hypergraph case
so that it requires our new spectral bound (Corollary VII.1).
Choose a sufficiently large constant c1 > 1 and a universal
constant c5 = c5(1) > 0 which is specified in Corollary VII.1
with α = 1. Below we establish lower bounds on the terms
(Q1), (Q2) and (Q3):

1) Lower bound of (Q1): The following lemma provides a
sharp concentration bound on the l∞ norm of PT (A− E[A]):

Lemma VII.1. Under the d-WHSBM(n, k, pn, qn,Φ
∗) with

pn > qn satisfying the condition (14), the following bound
holds with probability at least 1− 2n−11:

‖PT (A− E[A])‖∞

≤ 3(d− 1)

(
9

c1
+

√
26

c1

)(
smin − 2

d− 2

)
(pn − qn).

(18)

The detailed proof of Lemma VII.1 is deferred to Appendix
C-A. Invoking Lemma VII.1 and Hölder’s inequality together
give with probability exceeding 1− 2n−11,

(Q1) ≥− ‖PT (A− E[A])‖∞ · ‖X
∗ −X‖1

≥− 3(d− 1)

(
9

c1
+

√
26

c1

)(
smin − 2

d− 2

)
(pn − qn) ‖X∗ −X‖1 .

(19)
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2) Lower bound of (Q2): The ground-truth cluster matrix
X∗ = Z∗ (Z∗)

> has a rank-k SVD given by X∗ = UΣU>,
where Σ ∈ Rk×k is the diagonal matrix with entries Σaa = sa,
a ∈ [k]. Then, the sub-differential of the nuclear norm ‖ · ‖∗
at X∗ is expressed as

∂ ‖X∗‖∗ =
{
B ∈ Rn×n : PT (B) = UU>, ‖PT⊥(B)‖ ≤ 1

}
.

(20)
See Example 2 in [65] or [59] for characterization of sub-
gradients of the nuclear norm. Therefore, PT⊥

(
A−E[A]
‖A−E[A]‖

)
+

UU> ∈ ∂ ‖X∗‖∗ from (20). It follows that for any X ∈ X ,

0 = Trace(X)− Trace(X∗)
(a)
= ‖X‖∗ − ‖X

∗‖∗
(b)
≥
〈
UU> + PT⊥

(
A− E[A]

‖A− E[A]‖

)
,X−X∗

〉
,

(21)

where the step (a) holds since both X and X∗ are positive
semi-definite matrices and (b) follows from the definition of
sub-gradient. Hence, we obtain a lower bound on (Q2),

(Q2) = 〈PT⊥(A− E[A]),X∗ −X〉
(c)
≥ −‖A− E[A]‖ ·

〈
UU>,X∗ −X

〉
(d)
≥ −‖A− E[A]‖ ·

∥∥UU>
∥∥
∞ · ‖X

∗ −X‖1
(e)
≥ − 1

smin
‖A− E[A]‖ · ‖X∗ −X‖1 ,

(22)

where (c) is a consequence of (21), (d) holds by the Hölder’s
inequality, and the step (e) is due to the fact that

[
UU>

]
ij

=

1/sΦ∗(i) ≤ 1/smin whenever Φ∗(i) = Φ∗(j); 0 otherwise.
Also, the condition (14) leads to the inequality n

(
n−2
d−2

)
pn ≥

log n, ∀n ∈ N. Thus, the centered similarity matrix obeys the
following bound with probability at least 1− 4n−11:

‖A− E[A]‖
(f)
≤ c5

√
n

(
n− 2

d− 2

)
pn

(g)
≤ c5

√
1

c1
· smin

(
smin − 2

d− 2

)
(pn − qn) ,

(23)

where the step (f) follows from Corollary VII.1 and (g) is due
to the condition (14). We thus conclude by using (22) and (23)
that with probability exceeding 1− 4n−11,

(Q2) ≥ −c5
√

1

c1

(
smin − 2

d− 2

)
(pn − qn) ‖X∗ −X‖1 . (24)

Here, we choose a sufficiently large constant c1 such that 3(d−
1)
(

9
c1

+
√

26
c1

)
+ c5√

c1
≤ 1

8 .

3) Lower bound of (Q3): First notice that E[Aij ] ≥ p−n if
i 6= j and X∗ij = 1; E[Aij ] ≤ q+

n if i 6= j and X∗ij = 0

(Actually, E[Aij ] = q+
n for i 6= j in [n] with X∗ij = 0). Then,

(Q3) =
∑

i,j∈[n]:i 6=j

(E[Aij ]− λ)
(
X∗ij −Xij

)
+

n∑
i=1

(−λ) (X∗ii −Xii)︸ ︷︷ ︸
= 0

(h)
≥
∑
i 6=j:

X∗ij=1

(
p−n − λ

)
(1−Xij) +

∑
i6=j:

X∗ij=0

(
λ− q+

n

)
Xij

(i)
≥ 1

4

(
p−n − q+

n

) ∑
i,j∈[n]:i6=j

∣∣X∗ij −Xij

∣∣
(j)
=

1

4

(
smin − 2

d− 2

)
(pn − qn) ‖X∗ −X‖1 ,

(25)

where both the step (h) and (j) are due to the fact Xii =
1, ∀i ∈ [n] for any feasible X, which is deduced from the
constraints Trace(X) = n and Xij ∈ [0, 1], ∀i, j ∈ [n], and
(i) follows from the condition (13).

To sum up, combining the above bounds on (Q1), (Q2) and
(Q3), we may conclude by a union bound that with probability
at least 1− 6n−11,

∆(X) = (Q1) + (Q2) + (Q3)

≥ 1

8

(
smin − 2

d− 2

)
(pn − qn) ‖X∗ −X‖1 ,

thereby showing that ∆(X) > 0 for all X ∈ X \ {X∗}.

VIII. CONCLUSION

In this paper, we developed an efficient hypergraph cluster-
ing method (CRTMLE) on a basis of the truncate-and-relax
strategy, and proved its strong consistency guarantee under the
assortative d-WHSBM with growing number of communities
of order-wise unbalanced sizes. Our results are consistent with
state-of-the-art results in various parameter regimes of the
model, and settle the first strong consistency result for the case
in which there are multiple communities of unbalanced sizes
with different orders. Also, we manifested the robustness of
CRTMLE against the unbalancedness of cluster sizes and the
presence of outlier nodes, both theoretically and empirically.

APPENDIX A
PROOF OF THEOREM IV.2

Let F denote the event that the spectral norm bound (17) in
Corollary VII.1 holds with α = 1. Note that Corollary VII.1
states that P{F} ≥ 1−4n−11, since the condition (14) directly
yields the inequality n

(
n−2
d−2

)
pn ≥ log n. It then follows that,

on the event F ,

max
{∣∣∣λ̂i − λi∣∣∣ : i ∈ [n]

} (a)
≤ ‖A− E[A]‖ ≤ c5

√
nνn, (26)

where (a) holds by the Weyl’s inequality [11], νn :=
(
n−2
d−2

)
pn,

and c5 = c5(1) > 0. We henceforth assume that we are on the
event F .
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A. Estimation of k and s
The triangle inequality and the bound (26) imply that

λ̂i − λ̂i+1 =
(
λ̂i − λi

)
−
(
λ̂i+1 − λi+1

)
≤
∣∣∣λ̂i − λi∣∣∣+

∣∣∣λ̂i+1 − λi+1

∣∣∣ ≤ 2c5
√
nνn

(27)

for every i ∈ [n− 1] \ {1, k}, and

λ̂k − λ̂k+1 ≥ λk − λk+1 −
∣∣∣λ̂k − λk∣∣∣− ∣∣∣λ̂k+1 − λk+1

∣∣∣
(b)
≥ s

(
s− 2

d− 2

)
(pn − qn)− 2c5

√
nνn,

(28)

where the step (b) follows by (15). Then, one has

nνn = n

(
n− 2

d− 2

)
pn

(c)
≤ 1

c2
s2

(
s− 2

d− 2

)2

(pn − qn)
2
,

where the step (c) is due to the condition (14). Therefore, it’s
straightforward that

s

(
s− 2

d− 2

)
(pn − qn) ≥

√
c2
√
nνn > 8c5

√
nνn, (29)

since c2 > 0 is chosen sufficiently large. Putting (29) together
with inequalities (27) and (28), we have

λ̂k − λ̂k+1 ≥ s
(
s− 2

d− 2

)
(pn − qn)− 2c5

√
nνn

> 2c5
√
nνn ≥ λ̂i − λ̂i+1

(30)

for all i > 1 with i 6= k. This guarantees k̂ = k and ŝ = s.

B. Estimation of p−n and q+
n

From the triangle inequality and (26), the estimation error
of p̂−n obeys

∣∣p̂−n − p−n ∣∣ (d)
=

∣∣∣∣∣∣
s
(
λ̂1 − λ1

)
+ (n− s)

(
λ̂2 − λ2

)
n(s− 1)

∣∣∣∣∣∣
≤ s

n(s− 1)

∣∣∣λ̂1 − λ1

∣∣∣+
n− s
n(s− 1)

∣∣∣λ̂2 − λ2

∣∣∣
≤ 2c5

√
nνn
s

,

(31)

where the step (d) is owing to ŝ = s. Similarly, we can deduce
the following estimation error of q̂+

n :∣∣q̂+
n − q+

n

∣∣ =
1

n

∣∣∣(λ̂1 − λ1

)
−
(
λ̂2 − λ2

)∣∣∣
≤ 2c5

√
νn
n
≤ 2c5

√
nνn
s

.
(32)

C. Estimation of λ
The error bounds (31) and (32) yield

λ̂ =
p−n + q+

n

2
+
p̂−n − p−n

2
+
q̂+
n − q+

n

2

≤ p−n + q+
n

2
+ 2c5

√
nνn
s

(e)
≤ p−n + q+

n

2
+

1

4

(
s− 2

d− 2

)
(pn − qn)

=
3

4
p−n +

1

4
q+
n ,

(33)

where the inequality (e) holds by (29). The above bound (33)
gives the desired upper bound on the estimator λ̂ of λ. In a
similar manner, we can derive the desired lower bound of λ̂.

APPENDIX B
PROOF OF THEOREM VII.1

The proof of Theorem VII.1 is technically involved as it
is built upon a celebrated combinatorial argument, which is
often utilized in order to derive spectral bounds for random
matrices [36], [33], [27], [5], [54], [23]. We begin the proof
from a basic idea that we use to bound

‖A− E[A]‖ = sup
x∈Sn−1

|〈(A− E[A])x, x〉| . (34)

Here, we provide a brief overview of three major steps.
1) Discretization of the unit n-sphere Sn−1: First, we reduce

(34) to the problem of bounding the supremum of the
quadratic form 〈(A− E[A])x, x〉 over x ∈ N , where N
is a finite subset of the unit n-sphere so that Sn−1 can be
covered by closed balls of the same radii with centers in
N . See Lemma B.1 for validation of such a manipulation.
The quantity 〈(A− E[A])x, x〉 can be decomposed as
the sum of two parts. The first part corresponds to the
pairs (i, j) ∈ [n] × [n] such that |xixj | is small, called
light couples, while another part corresponds to the pairs
such that |xixj | is large, the heavy couples.

2) Managing the light couples: To control the contribution
of light couples at each point of N , we use the standard
Bernstein’s inequality. Then, we completes bounding the
supremum over N by employing the union bound.

3) Managing the heavy couples: Finally, in order to manip-
ulate the contribution of heavy couples, we show that the
similarity matrix A has the discrepancy property, which
essentially says that the sum of edge weights between any
two subsets of vertices does not deviate much from its
expectations. Then, we use the fact that the discrepancy
property of a given matrix ensures a small contribution
of the heavy couples to the quadratic form.

Lemma B.1. Suppose that 0 < ε < 1
2 and M is an n×n real

symmetric matrix. Then, for any ε-net N on the unit n-sphere
Sn−1, we have the bound

sup {|〈Mx, x〉| : x ∈ N}

≤ ‖M‖ ≤ 1

1− 2ε
sup {|〈Mx, x〉| : x ∈ N} .

(35)

The detailed proof of Lemma B.1 is deferred to Appendix
C-B. On the other hand, some volumetric arguments yield the
following result.

Lemma B.2 (Corollary 4.2.13 in [63]; Lemma 6.8 in [27]).
Let E ⊂ Sn−1 be a subset of the unit n-sphere and ε > 0.
Then, there exists an ε-net N of E such that |N | ≤

(
1 + 2

ε

)n
.

Now, we take ε = 1
4 and apply Lemma B.2. It guarantees

the existence of an 1
4 -net N of Sn−1 with |N | ≤ 9n. Also,

the following inequality holds due to Lemma B.1:

‖A− E[A]‖ ≤ 2 sup
{∣∣x>(A− E[A])x

∣∣ : x ∈ N
}
. (36)
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Thus, it suffices to upper-bound the RHS of (36). Before we
elaborate the bounding argument of the RHS, we delineate
a key step in the Friedman-Kahn-Szemerédi argument, which
is the separation of x>Ax =

∑n
i=1

∑n
j=1 xixjAij into two

pieces. First, we write θn :=
(
n−2
d−2

)
µn ≥ maxi,j∈[n] E[Aij ].

Given any x ∈ Sn−1, the light couples and the heavy couples
of nodes are given by

L(x) :=

{
(i, j) ∈ [n]× [n] : |xixj | ≤

√
θn
n

}
and

H(x) := ([n]× [n]) \ L(x),

respectively, and the n× n real matrices L(x) and H(x) are
given by [L(x)]ij = xixj if (i, j) ∈ L(x); 0 otherwise, and
H(x) := xx> − L(x). Fix any point x ∈ N and apply the
triangle inequality to obtain

sup
x∈N

∣∣x> (A− E[A])x
∣∣ ≤

sup
x∈N

∣∣∣∣∣∣
∑

(i,j)∈L(x)

xixjAij − x>E[A]x

∣∣∣∣∣∣︸ ︷︷ ︸
(T1)

+ sup
x∈N

∣∣∣∣∣∣
∑

(i,j)∈H(x)

xixjAij

∣∣∣∣∣∣︸ ︷︷ ︸
(T2)

.

(37)

A. Bound of (T1)

By the triangle inequality, we have

(T1) ≤ sup
x∈N

∣∣∣∣∣∣
∑

(i,j)∈L(x)

xixj (Aij − E[Aij ])

∣∣∣∣∣∣︸ ︷︷ ︸
(E1)

+ sup
x∈N

∣∣∣∣∣∣
∑

(i,j)∈H(x)

xixjE[Aij ]

∣∣∣∣∣∣︸ ︷︷ ︸
(E2)

.

1) (E1): For every x ∈ N , we have the identity∑
(i,j)∈L(x)

xixj (Aij − E[Aij ])

=
∑
e∈E

(We − E[We])

 ∑
(i,j)∈L(x):
i 6=j, {i,j}⊆e

xixj


︸ ︷︷ ︸

Ye

,

Then, Ye, e ∈ E , are independent and mean-zero random
variables. To apply the standard Bernstein’s inequality,
we need the following observations.

• |Ye| ≤
∑

(i,j)∈L(x):
i 6=j, {i,j}⊆e

|xixj | ≤ d2
√

θn
n from the defi-

nition of light couples.

• An upper-bound on the sum of second moments of Ye’s
can be computed as:

∑
e∈E

E[Y 2
e ] =

∑
e∈E

Var[We]

 ∑
(i,j)∈L(x):
i6=j, {i,j}⊆e

xixj


2

(a)
≤ d2

∑
e∈E

∑
(i,j)∈[n]×[n]:
i 6=j, {i,j}⊆e

E[We]x
2
ix

2
j

(b)
≤ d2θn ·

∑
(i,j)∈[n]×[n]:i 6=j

x2
ix

2
j

≤ d2θn

(
n∑
i=1

x2
i

)2

= d2θn,

where the step (a) is due to Cauchy-Schwarz inequality
and the step (b) follows from the property that We ∈
[0, 1] for all e ∈ E .

By the two-sided Bernstein’s inequality, we have

P

{∣∣∣∣∣∑
e∈E

Ye

∣∣∣∣∣ > β1

√
nθn

}
≤ 2 exp

− 1
2β

2
1

d2
(

1 + β1

3

)n


for any constant β1 > 0. The union bound yields

P
{

(E1) > β1

√
nθn

}
≤ |N | · 2 exp

− β2
1

2d2
(

1 + β1

3

)n


≤ 2 exp


2 log 3− β2

1

2d2
(

1 + β1

3

)
n

 .

So, if we choose a constant β1 > 0 such that 2 log 3 −
β2
1

2d2(1+
β1
3 )
≤ −11, then with prob. at least 1 − 2e−11n,

we have (E1) ≤ β1

√
nθn.

2) (E2): From the definition of heavy couples, the following
inequalities hold for any x ∈ Sn−1,∣∣∣∣∣∣

∑
(i,j)∈H(x)

xixjE[Aij ]

∣∣∣∣∣∣ ≤
∑

(i,j)∈H(x)

E[Aij ]
x2
ix

2
j

|xixj |

≤
√
nθn

∑
(i,j)∈H(x)

x2
ix

2
j ≤

√
nθn.

Hence, it’s clear that

(E2) = sup
x∈N

∣∣∣∣∣∣
∑

(i,j)∈H(x)

xixjE[Aij ]

∣∣∣∣∣∣ ≤
√
nθn.

By combining above two bounds together, we can ensure that
with probability exceeding 1− 2n−11,

(T1) ≤ (E1) + (E2) ≤ (β1 + 1)
√
nθn. (38)
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B. Bound of (T2)

Before we elaborate the bounding argument of (T2), we
organize some preliminaries.

• Let h : (−1,∞) → R be a function defined by h(x) :=
(1 + x) log(1 + x)− x.

• Given any two matrices A,B ∈ Rm×n, the Hadamard
product A◦B of A and B is defined as an m×n matrix
with entries [A ◦B]ij = AijBij for i ∈ [m] and j ∈ [n].

• For any m × n matrix M and S ⊂ [m], T ⊂ [n], we
define eM(S, T ) :=

∑
i∈S
∑
j∈T Mij .

• For any matrix Q ∈ Rn×n, we define fQ : Rn×n → R
by fQ(X) := 〈Q,X〉 =

∑
i,j∈[n] QijXij .

Now, we summarize some concentration properties of random
symmetric matrices that are used in the celebrated Friedman-
Kahn-Szemerédi argument.

Definition B.1 (Uniform Upper Tail Property [27]). Let M be
an n×n random symmetric matrix with non-negative entries.
With the linear map fQ : Rn×n → R defined above, we write

µ := E [fQ(M)] = fQ (E[M]) ;

σ̃2 := E [fQ◦Q(M)] = fQ◦Q (E[M]) .

The matrix M is said to have the uniform upper tail property
UUTP(c0, γ0) with parameters c0 > 0 and γ0 ≥ 0 if the
following holds: for any a, t > 0 and n×n symmetric matrix
Q with Qij ∈ [0, a], ∀i, j ∈ [n], we have

P {fQ(M)− µ ≥ γ0µ+ t} ≤ exp

{
−c0

σ̃2

a2
h

(
at

σ̃2

)}
.

Definition B.2 (Discrepancy Property [33], [27]). Let M be
an n×n real matrix with non-negative entries. We say that M
obeys the discrepancy property DP(δ, κ1, κ2) with parameters
δ > 0, κ1 > 0 and κ2 ≥ 0 if for all non-empty S, T ⊆ [n], at
least one of the following properties hold:

(a) eM(S, T ) ≤ κ1δ · |S||T |;
(b) eM(S, T ) log eM(S,T )

δ·|S||T | ≤ κ2 (|S| ∨ |T |) log en
|S|∨|T | .

The following lemma says the uniform upper tail property
of a real symmetric random matrix whose entries are non-
negative implies the discrepancy property w.h.p..

Lemma B.3 (Lemma 6.4 in [27]). Let M be an n × n
symmetric random matrix with non-negative entries. Suppose
that E[Mij ] ≤ δ, ∀i, j ∈ [n] for some δ > 0 and M obeys
the UUTP(c0, γ0) for some c0 > 0, γ0 ≥ 0. Then, for any
K > 0, M satisfies the DP(δ, κ1, κ2) with probability at least
1 − n−K , where κ1 = κ1(c0, γ0,K) := e2(1 + γ0)2 and
κ2 = κ2(c0, γ0,K) := 4

c0
(1 + γ0)(K + 4).

Due to the ensuing result, whenever the similarity matrix A
has the discrepancy property, we can show that the contribution
of the heavy couples to (37) is not significant.

Lemma B.4 (Lemma 6.6 in [27]). Let M be an n×n symmet-
ric matrix with non-negative entries such that

∑n
j=1 Mij ≤ λ,

∀i ∈ [n] and
∑n
i=1 Mij ≤ λ, ∀j ∈ [n]. Suppose M obeys the

DP(δ, κ1, κ2) with δ = Cλ
n , for some constants C, κ1 > 0 and

κ2 ≥ 0. Then for any x ∈ Sn−1,

∣∣fH(x)(M)
∣∣ =

∣∣∣∣∣∣
∑

(i,j)∈H(x)

xixjMij

∣∣∣∣∣∣ ≤ σ(C, κ1, κ2)
√
λ,

where σ(C, κ1, κ2) := 64κ2

(
1 + 2

κ1 log κ1

)
+ 32C(1 + κ1) +

16.

We claim that (T2) = supx∈N
∣∣fH(x)(A)

∣∣ = O(
√
nθn)

with probability at least 1− 2n−11. Its proof consists of two
main stages, which we elaborate below.

1) The similarity matrix A obeys the uniform upper tail
property: First, we fix any a, t > 0 and any n× n symmetric
matrix Q with entries Qij ∈ [0, a] for all i, j. Recall that
µQ := E[fQ(A)] and σ̃2

Q := E[fQ◦Q(A)]. Then, we get

fQ(A)− µQ =
∑

i,j∈[n]:i6=j

Qij (Aij − E[Aij ])

=
∑
e∈E

(We − E[We]) ·

 ∑
i,j∈e:i6=j

Qij


︸ ︷︷ ︸

Ze

.

Note that Ze, e ∈ E , are independent and mean-zero. We then
use the Bennett’s inequality on the sum

∑
e∈E Ze by involving

the following preliminary calculations:
• |Ze| ≤

∑
i,j∈e:i 6=jQij ≤ d2a for all e ∈ E .

• Let σ2
Q :=

∑
e∈E E[Z2

e ]. Then, we obtain the bound

σ2
Q =

∑
e∈E

 ∑
i,j∈e:i 6=j

Qij

2

Var[We]

(c)
≤
∑
e∈E

 ∑
i,j∈e:i 6=j

Q2
ij

 ∑
i,j∈e:i 6=j

1

Var[We]

(d)
≤ d2

∑
e∈E

 ∑
i,j∈e:i 6=j

Q2
ij

E[We]

= d2
∑

i,j∈[n]:i 6=j

Q2
ij

 ∑
e∈E:{i,j}⊆e

E[We]

 = d2 · σ̃2
Q,

(39)

where the step (c) is due to the Cauchy-Schwarz inequal-
ity and (d) comes from the property We ∈ [0, 1], ∀e ∈ E .

The Bennett’s inequality implies that for any γ0 ≥ 0, we have

P {fQ(A)− µQ ≥ γ0µQ + t}

≤ exp

[
−

σ2
Q

(d2a)
2h

(
d2a

σ2
Q

(γ0µQ + t)

)]
.

(40)

Meanwhile, the following bound holds for any γ0 ≥ 0,

σ2
Q

(d2a)
2h

(
d2a

σ2
Q

(γ0µQ + t)

)
(e)
≥

σ2
Q

(d2a)
2h

(
d2a

σ2
Q

t

)
(f)
≥

σ̃2
Q

d2a2
h

(
at

σ̃2
Q

)
,

(41)
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where the step (e) holds by the observation that the function h
is non-decreasing on [0,∞) and (f) attributes to the fact that
for fixed a, t > 0, the function λ ∈ (0,∞) 7→ λ

d4a2h
(
d2a
λ t
)

is
non-increasing and (39). Combining the inequalities (40) and
(41) together gives the bound

P {fQ(A)− µQ ≥ γ0µQ + t} ≤ exp

[
− 1

d2
·
σ̃2
Q

a2
h

(
at

σ̃2
Q

)]
,

which implies the UUTP
(

1
d2 , γ0

)
of the similarity matrix A

for every γ0 ≥ 0. From now on, we set γ0 = 1.
2) All row and column sums of A is of order O(nθn) w.h.p.:

Now, we will show that max {
∑n
i=1 Aij : j ∈ [n]} = O(nθn)

w.h.p.. We fix any j ∈ [n] and observe that

n∑
i=1

Aij =
∑

i∈[n]\{j}

 ∑
e∈E:{i,j}⊆e

We


=
∑
e∈Ej

 ∑
i∈e\{j}

We

 = (d− 1)
∑
e∈Ej

We,

where Ej := {e ∈ E : j ∈ e}. Translating both sides gives

n∑
i=1

(Aij − E[Aij ]) = (d− 1)
∑
e∈Ej

(We − E[We]) .

Here, we remark that

• |We − E[We]| ≤ 1 for all e ∈ Ej .
• We have the bound∑

e∈Ej

E[(We − E[We])
2
]

(g)
≤
∑
e∈Ej

E[We]

≤ µn · |Ej | =
nθn
d− 1

,

where (g) makes use of the property We ∈ [0, 1], ∀e ∈ Ej .
Then, the one-sided Bernstein’s inequality yields

P

{
n∑
i=1

(Aij − E[Aij ]) > (d− 1)β2 · nθn

}

≤ exp

(
−

1
2β

2
2

β2

3 + 1
d−1

nθn

) (42)

for any constant β2 > 0. Since nθn ≥ α log n for every n ∈ N,
the inequality (42) reduces to

P

{
n∑
i=1

(Aij − E[Aij ]) > (d− 1)β2 · nθn

}

≤ exp

(
−

1
2αβ

2
2

β2

3 + 1
d−1

log n

)
.

By taking β2 > 0 with 1
2αβ

2
2 ≥ 12

(
β2

3 + 1
d−1

)
, one has

n∑
i=1

(Aij − E[Aij ]) ≤ (d− 1)β2 · nθn

with probability exceeding 1− n−12. Consequently, we have

n∑
i=1

Aij =

n∑
i=1

(Aij − E[Aij ]) +

n∑
i=1

E[Aij ]

≤ [(d− 1)β2 + 1]nθn

with probability greater than 1−n−12, ∀j ∈ [n]. It follows by
the union bound that with probability larger than 1− n−11,

max

{
n∑
i=1

Aij : j ∈ [n]

}
≤ [(d− 1)β2 + 1]nθn. (43)

Due to Lemma B.3 and the uniform upper tail property of
A, the similarity matrix A has the DP(θn, κ1, κ2) with prob.
at least 1 − n−11, where κ1 = 4e2 and κ2 = 120d2. Note
that the absolute constant β2 > 0 depends only on α and d.
Now, let E1 be the event that A satisfies the DP(θn, κ1, κ2)
and E2 denote the event that A obeys the bound (43) on row
and column sums. Notice that P{E1 ∩ E2} ≥ 1 − 2n−11. By
employing Lemma B.4 on the event E1 ∩ E2 with parameters
λ = [(d− 1)β2 + 1]nθn, δ = θn, C = [(d− 1)β2 + 1]

−1,
κ1 = 4e2, and κ2 = 120d2, it proves our claim about (T2):

(T2) = sup
x∈N

∣∣fH(x)(A)
∣∣ ≤ σ√[(d− 1)β2 + 1]nθn, (44)

with probability higher than 1− 2n−11, where σ is specified
as σ = 7680d2

(
1 + 1

4e2(1+log 2)

)
+ 32

(d−1)β2+1 (1 + 4e2) + 16.
By applying the union bound together with (38) and (44),

with probability at least 1− 4n−11,

sup
x∈N

∣∣x> (A− E[A])x
∣∣

≤
[
1 + β1 + σ

√
((d− 1)β2 + 1)

]√
nθn.

Finally, the bound (36) yields with prob. exceeding 1−4n−11,

‖A− E[A]‖ ≤ 2
[
1 + β1 + σ

√
((d− 1)β2 + 1)

]
︸ ︷︷ ︸

c5

√
nθn

and note that the universal constant c5 depends only on α.

APPENDIX C
PROOF OF TECHNICAL LEMMAS

A. Proof of Lemma VII.1

First, we have by the triangle inequality that

‖PT (A− E[A])‖∞
≤ 3

(∥∥UU> (A− E[A])
∥∥
∞ ∨

∥∥(A− E[A])UU>
∥∥
∞

)
.

(45)

Owing to
∥∥UU> (A− E[A])

∥∥
∞ =

∥∥(A− E[A])UU>
∥∥
∞,

it suffices to derive a bound on
∥∥UU> (A− E[A])

∥∥
∞.

Suppose that the node i ∈ [n] belongs to the ath community,
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i.e., Φ∗(i) = a. Then, for each j ∈ [n], the (i, j)th entry of
UU> (A− E[A]) can be expressed as[

UU> (A− E[A])
]
ij

=
1

sa

∑
l∈C∗a\{j}

(Alj − E[Alj ])

=
1

sa

∑
l∈C∗a\{j}

 ∑
e∈E:{l,j}⊆e

(We − E[We])


=

1

sa

∑
e∈Eaj

|(e ∩ C∗a) \ {j}| · (We − E[We])︸ ︷︷ ︸
Ve

,

where Eaj := {e ∈ E : j ∈ e, (e ∩ C∗a) \ {j} 6= ∅} for a ∈ [k]
and j ∈ [n]. The random variables Ve, e ∈ Eaj , are independent
and mean-zero. We can make some remarkable observations:
• |Ve| ≤ d− 1 for all e ∈ Eaj .
• The sum of second moments of Ve’s is bounded by:∑

e∈Eaj

E[V 2
e ]

(a)
≤ (d− 1)2

∑
e∈Eaj

Var[We]

(b)
≤ (d− 1)2

∑
e∈Eaj

E[We]

(c)
≤ (d− 1)2

∑
l∈C∗a\{j}

 ∑
e∈E:{l,j}⊆e

E[We]


≤ (d− 1)2sa

(
n− 2

d− 2

)
pn︸ ︷︷ ︸

νn

(46)

where the step (a) attributes to the property V 2
e ≤ (d −

1)2 (We − E[We])
2 for every e ∈ Eaj , (b) is due to the

property that We ∈ [0, 1], ∀e ∈ E , and the step (c) is
obtained from the set relation

Eaj = {e ∈ E : j ∈ e, e ∩ (C∗a \ {j}) 6= ∅}

=
⋃

l∈C∗a\{j}

{e ∈ E : {l, j} ⊆ e} .

The two-sided Bernstein’s inequality gives with probability at
least 1− 2n−13,

sa

∣∣∣[UU> (A− E[A])
]
ij

∣∣∣
(d)
≤ 9(d− 1) log n+ (d− 1)

√
26saνn log n,

where the step (d) is due to the bound (46). Thus, it follows
that for every i, j ∈ [n],∣∣∣[UU> (A− E[A])

]
ij

∣∣∣ ≤ (d− 1)

(
9 log n

smin
+

√
26νn log n

smin

)
(47)

with probability exceeding 1−2n−13. It’s straightforward from
the condition (14) that

(log n)
2 ≤ 1

c1
νnsmin log n. (48)

Employing the inequality (48) to (47), one has with probability
greater than 1− 2n−13,∣∣∣[UU> (A− E[A])

]
ij

∣∣∣
≤ (d− 1)

(
9
√
c1

+
√

26

)√
νn log n

smin

(e)
≤ (d− 1)

(
9

c1
+

√
26

c1

)(
smin − 2

d− 2

)
(pn − qn) ,

where (e) is due to the condition (14). From the union bound,
with probability at least 1− 2n−11,∥∥UU> (A− E[A])

∥∥
∞

≤ (d− 1)

(
9

c1
+

√
26

c1

)(
smin − 2

d− 2

)
(pn − qn) .

(49)

Finally, putting (45) and (49) together completes the proof.

B. Proof of Lemma B.1

The spectral norm of an n×n real symmetric matrix can be
written as ‖M‖ = supx∈Sn−1 |〈Mx, x〉|. So, the lower bound
part of the inequality (35) is obvious. Now, it remains to show
the upper bound part of (35). We fix any point x ∈ Sn−1 and
take a x0 ∈ N such that ‖x− x0‖2 ≤ ε. It follows by the
triangle inequality that

|〈Mx, x〉| − |〈Mx0, x0〉|
≤ |〈Mx, x〉 − 〈Mx0, x0〉|
= |〈Mx, x− x0〉+ 〈M(x− x0), x0〉|
≤ ‖M‖ · ‖x‖2 · ‖x− x0‖2 + ‖M‖ · ‖x− x0‖2 · ‖x0‖2
≤ 2ε ‖M‖ .

Thus, we obtain that for any x ∈ Sn−1,

|〈Mx, x〉| − 2ε ‖M‖ ≤ sup {|〈My, y〉| : y ∈ N} . (50)

By taking supremum to left-hand side of (50) over x ∈ Sn−1,
we may conclude that

(1− 2ε) ‖M‖ ≤ sup {|〈My, y〉| : y ∈ N} . (51)

Dividing 1 − 2ε from both sides of (51), we get the upper
bound on the spectral norm ‖M‖ of an n× n real symmetric
matrix M. This completes the proof of Lemma B.1.
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