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Abstract

Given side information that an Ising tree-structured graphical model is homogeneous and has no

external field, we derive the exact asymptotics of learning its structure from independently drawn

samples. Our results, which leverage the use of probabilistic tools from the theory of strong large

deviations, refine the large deviation (error exponents) results of Tan, Anandkumar, Tong, and Willsky

[IEEE Trans. on Inform. Th., 57(3):1714–1735, 2011] and strictly improve those of Bresler and Karzand

[Ann. Statist., 2020]. In addition, we extend our results to the scenario in which the samples are observed

in random noise. In this case, we show that they strictly improve on the recent results of Nikolakakis,

Kalogerias, and Sarwate [Proc. AISTATS, 1771–1782, 2019]. Our theoretical results demonstrate keen

agreement with experimental results for sample sizes as small as that in the hundreds.
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I. INTRODUCTION

The learning of graphical models [1] from data samples is an important and fundamental task

in statistical inference and learning. Graphical models provide a robust framework for capturing
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the statistical dependencies among a large collection of random variables and derive their power

from their ability to provide a diagrammatic representation of a multivariate distribution in the

form of a graph. The edges of the graphical model encode conditional independence relations

amongst a set of random variables. Graphical models have found extensive applications in image

denoising [2], iterative decoding [3], natural language processing [4], and optimization [5].

See [1] for a comprehensive exposition of learning and inference in graphical models.

The task of learning graphical models entails using a set of independently drawn samples

to infer the underlying set of edges of the graph. The most basic algorithm is the Chow-Liu

algorithm [6] which finds the tree-structured graphical model that is closest in the Kullback-

Leibler (KL) divergence sense (more precisely, the reverse I-projection [7] sense) to the empirical

distribution of the samples. Equivalently, the Chow-Liu algorithm is a maximum likelihood (ML)

rule—one that maximizes the likelihood of the observed samples over all candidate tree models. If

the samples are known to be generated from a particular tree-structured model, then an early result

by Chow and Wagner [8] shows that the Chow-Liu algorithm is consistent in the sense that as the

number of samples tends to infinity, the set of edges of the tree is recovered with overwhelming

probability. Using large deviations theory [9], and in particular Sanov’s theorem [10, Ch. 11],

Tan, Anandkumar, Tong, and Willsky [11] quantified the decay rate of the error probability in

terms of a quantity known as the error exponent.

While the error exponent is a useful quantification of the ease or difficulty of learning tree-

structured graphical models [12], empirical evidence provided in [11] shows that the estimates

of the error probability when the number of samples is small is poor. Motivated by practical

scenarios in which the number of samples is relatively small, in this paper, we adopt a new

framework for estimating the probability of error in learning trees. We adopt the probabilistic

theory of strong large deviations [13], [14] to obtain the exact asymptotics of learning a certain

simple class of Ising tree models—namely, that with no external field and are homogeneous.

Using these two pieces of side information, we develop a new and optimal rule for learning tree

models. We show that the approximations of the error probability are not only easily computable,

they are also extremely accurate at small samples sizes (of the order of hundreds of samples).

Thus, our framework serves as a powerful and useful refinement of the results of [11] and more

recent work by Bresler and Karzand [15]. In fact, we show that the exponent we obtain is at least

3 times larger than that of [15, Sec. 7.2]. An auxiliary contribution here is the quantification of the

improvement of the tie-breaking rule in the implementation of the maximum weight spanning
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tree (MWST) procedure to learn the tree given edge weights over a naı̈ve, conservative, and

pessimistic rule in which a decoding error is immediately declared whenever two pairs of nodes

have the same weight. This is analogous to the quantification of the advantage of tie-breaking

in the random coding union (RCU) bound for channel coding [16].

En route to using the theory of strong large deviations to obtain estimates of the error

probability for learning the above mentioned class of Ising models, we also find that our newly-

developed analytical tools are also useful in estimating the error probability of learning tree

models with noisy samples, a setting recently studied in a series of works by Nikolakakis,

Kalogerias, and Sarwate [17]–[19]. This problem setup in which we observe noisy samples

is particularly pertinent in scenarios in which measurement errors are introduced in systems

with limited precision, e.g., a sensor network with faulty receivers or a biological system with

diagnostic errors in differentiating malignant and benign biological cells. We show that for the

class of Ising models under consideration, the error exponent of our learning rule is optimal. Thus,

our decoding rule and accompanying analysis result in significantly improved error probability

and sample complexity estimates compared to that by Nikolakakis, Kalogerias, and Sarwate [17]–

[19]. Again, we show through numerical experiments that our easily computable approximations

of the error probability are in keen agreement with the empirical observations. We note that this

setting is in contrast to recent work on robust tree learning in adversarial noise [20]; in our

work, random noise is added to clean samples.

The rest of this paper is structured as follows: In Sec. II, we describe some preliminaries

on graphical models and state the problem precisely. In Sec. III, we review the ML proce-

dure for learning tree models with and without side information [6], and the error exponent

analysis in [11]. In Sec. IV, we present our main contribution—an exact asymptotic result for

learning trees with side information. In Sec. V, we leverage the preceding analysis to study

the performance of tree learning when the samples are observed in noise. Simulation results to

corroborate the theory are presented in Sec. VI. Finally, we wrap up the discussion and present

various avenues for further research in Sec. VII.

II. PRELIMINARIES AND PROBLEM STATEMENT

An undirected graphical model, also known as a Markov random field, is a multivariate prob-

ability distribution that factorizes according to the structure of the given undirected graph [21].

Specifically, a p-dimensional random vector x := [x1, . . . , xp] is said to be Markov on an
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undirected graph G = (V, E) with vertex (or node) set V = {1, . . . , p} and edge set E ⊂
(
V
2

)

if its distribution P (x) satisfies the (local) Markov property P (xi|xV\i) = P (xi|xnbd(i)) where

nbd(i) := {j ∈ V : {i, j} ∈ E} is the neighborhood of node i.

This paper focuses on tree-structured graphical models P , where the underlying graph of P

is an acyclic and connected graph, denoted by TP = (V, EP ) with |E| = p− 1. Tree-structured

graphical models factorize as [21]

P (x) =
∏

i∈V

Pi(xi)
∏

{i,j}∈EP

Pi,j(xi, xj)

Pi(xi)Pj(xj)
,

where Pi and Pi,j are the marginals on node i ∈ V and edge {i, j} ∈ EP , respectively. For an

undirected tree, we may assume, without loss of generality, that node 1 is the root node, and

arrange all the nodes at different levels on a plane, with node 1 at level-0. Then, the graphical

model P can be alternatively factored as [6]

P (x) = P1(x1)

p∏

i=2

Pi|pa(i)(xi|xpa(i)), (1)

where pa(i) denotes the unique parent node of node i and Pi|pa(i) is the conditional distribution

of node (or variable) i given node pa(i).

A. System Model

In our study, we consider binary random variables with alphabet X = {0, 1}. We further

assume that the tree-structured graphical model P , for p > 2 nodes, has the following properties:

P1 (Zero external field): The marginals are uniform, i.e., Pi(0) = Pi(1) = 0.5, for 1 ≤ i ≤ p.

P2 (Homogeneity): For every edge {i, j} ∈ EP , we have Pi,j(0, 1) = Pi,j(1, 0) = θ/2, where θ

lies in the open interval (0, 0.5).

Since the multiplicative group {+1,−1} is isomorphic to the additive group {0, 1} [22], it is

seen that property P1 corresponds to Ising models with zero external field, and is a common

assumption in related literature on learning tree-structured graphical models [15], [17], [18].

Properties P1 and P2 help to make the analysis tractable and serve to capture the essential features

of a simplified tree model. In a related work, lower bounds on the sample complexity for learning

Ising models, satisfying properties P1 and P2, were presented in [23]. Multiple applications of

the Ising model to real-world problems, ranging from understanding the statistical mechanics

of social dynamics to modeling price trends in financial markets, were discussed in [17]. The
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problem of high-dimensional Ising model selection was analyzed in [24], while also discussing

a concrete example of the application of the Ising model to U.S. senate voting network.

Let T p denote the set of all distinct trees with p nodes, and let D(T p, θ) denote the set of

all tree distributions P satisfying properties P1 and P2. Note that property P2 implies a positive

correlation between nodes connected by an edge. Therefore, if {i, j} ∈ EP , then xi and xj are

more likely to be similar (rather than dissimilar), and we have Pi,j(0, 0) + Pi,j(1, 1) = 1− θ >

θ = Pi,j(0, 1)+Pi,j(1, 0). In the following, we will denote the set of all probability distributions

over the alphabet X p by P(X p), and we take the natural base for logarithms.

B. Problem Statement

We consider the problem of tree learning with side information where we are given n i.i.d.

p-dimensional samples x
n := {x1, . . . ,xn} from an unknown tree-structured graphical model P

satisfying P1 and P2. The side information to the tree learning algorithm is the knowledge that

P satisfies P1 and P2. For 1 ≤ k ≤ n, each sample or observation xk := [xk,1, . . . , xk,p] is a

vector of p dimensions, where xk,j ∈ X = {0, 1} for 1 ≤ j ≤ p.

Given x
n, the ML estimator of the unknown distribution P is

PML(x
n) := argmax

Q∈D(T p,θ)

n∑

k=1

logQ(xk). (2)

We denote the tree graph of the ML estimate PML(x
n) by TML(x

n) = (V, EML(x
n)) with vertex

set V and edge set EML(x
n). Given P ∈ D(T p, θ), we are interested in the error event

AP (n) := {EML(x
n) 6= EP}, (3)

where the edge set EML(x
n), corresponding to the tree model returned by the ML estimator, is

not same as the edge set EP corresponding to the true graphical model P .

The following proposition shows that for the error event AP (n) is same as the event that the

true tree distribution P is not correctly estimated.

Proposition 1. When P ∈ D(T p, θ), and the learning algorithm has knowledge of θ, then

AP (n) = {PML(x
n) 6= P}.

Proof: See Appendix A.

We remark that for general tree models, estimating the structure of the tree is not same as

estimating the underlying distribution P (as the parameters still have to be estimated). However,
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for our model, the properties P1 and P2 of the graphical model imply that the edge set uniquely

characterizes the probability distribution.

III. MAXIMUM LIKELIHOOD ESTIMATION AND ERROR EXPONENT ANALYSIS

We first study the algorithm for learning the ML tree distribution PML(x
n) given a set of n

samples x
n drawn i.i.d. from a tree distribution P ∈ D(X p, T p). Define the type of xn to be the

empirical distribution

P̂xn(x) :=
1

n

n∑

k=1

1{xk = x}, x ∈ X p, (4)

where 1{·} denotes the indicator function. For notational convenience, in the rest of the paper

we will denote the empirical distribution P̂xn by P̂ . Combining (2) and (4), we observe that

PML(x
n) = argmax

Q∈D(T p,θ)

∑

x∈X p

P̂ (x) logQ(x). (5)

Define the KL divergence, or relative entropy, between distributions Q1 and Q2 over alphabet

X p as

D(Q1‖Q2) :=
∑

x∈X p

Q1(x) log
Q1(x)

Q2(x)
.

Then D(Q1‖Q2) can be equivalently expressed as

D(Q1‖Q2) = −H(Q1)−
∑

x∈X p

Q1(x) logQ2(x), (6)

where H(Q1) := −∑
x∈X p Q1(x) logQ1(x) is the entropy of Q1. From (5) and (6), it follows

that PML(x
n) can be equivalently expressed as

PML(x
n) = argmin

Q∈D(T p,θ)

D(P̂‖Q). (7)

The minimization over Q in (7) is known as the reverse I-projection [7] of P̂ onto D(T p, θ),

the set of tree distributions satisfying properties P1 and P2 (parametrized by θ).

Let P̂i,j denote the marginal of P̂ on the pair of nodes (i, j), with i 6= j, and define Âi,j as

Âi,j := P̂i,j(0, 0) + P̂i,j(1, 1). (8)

The following theorem shows that PML(x
n) can be efficiently computed using an MWST

algorithm, such as Prim’s algorithm [25], where the weight of the edge between nodes i and j

is equal to Âi,j .
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Theorem 1. We have

PML(x
n) = argmax

Q∈D(T p,θ)

∑

{i,j}∈EQ

Âi,j, (9)

where EQ denotes the edge set of the tree distribution Q. Equivalently, EML(x
n) is the edge set

of the MWST over a complete weighted graph where the weight of the edge {i, j} is Âi,j .

Proof: See Appendix B.

Note that the simplified rule for finding EML(x
n), given by Thm. 1, does not require explicit

knowledge of θ (see Prop. 1), but merely exploits the fact that θ lies in the interval (0, 0.5).

A. Error Exponent using Maximum Likelihood Estimation

Given n samples, xn, drawn i.i.d. from the distribution P ∈ D(T p, θ), the error event AP (n),

given by (3), occurs when the ML estimator fails to correctly learn the edge set EP . The error

exponent (also called the inaccuracy rate) [11], [26], captures the exponential decay of the error

probability with the number of samples, and is formally defined as

KP := lim
n→∞

−1

n
log P (AP (n)) , (10)

where the limit was shown to exist by Tan, Anandkumar, Tong, and Willsky [11]. Here, we

assume that the number of nodes p are fixed, while the number of samples n drawn from

D(T p, θ) tends to infinity. We provide an exact explicit characterization for KP in Thm. 2.

Theorem 2. For P ∈ D(T p, θ), we have

KP = − log
(
1− θ

(
1−

√
4θ(1− θ)

))
. (11)

Proof: See Appendix C.

Note that the error exponent KP is independent of the number of nodes p and the edge set

EP , and depends only on the parameter θ.

B. Comparison with the classical Chow-Liu algorithm

For scenarios where the tree learning algorithm is not aware of any additional tree property

(such as properties P1 and P2 in our system model), an elegant solution to learning a general

tree was presented by Chow and Liu in [6]. In particular, they showed that the edge set obtained

using the Chow-Liu algorithm, denoted ECL(x
n), is equal to the edge set of the MWST over a
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complete weighted graph where the weight of the edge {i, j} is I(P̂i,j), where I(P̂i,j) denotes

the empirical mutual information between the pair of nodes {i, j},

I(P̂i,j) :=
∑

(xi,xj)∈X 2

P̂i,j(xi, xj) log
P̂i,j(xi, xj)

P̂i(xi)P̂j(xj)
.

The paper by Tan, Anandkumar, Tong, and Willsky [11] extended this line of work, and

characterized the error exponent obtained using the Chow-Liu algorithm. Let P be a tree-

structured graphical model over 3 nodes with edge set EP = {{1, 2}, {2, 3}}, and define

QCL
∗ := argmin

Q∈P(X 3)

{D(Q‖P ) : I(Q1,2) ≤ I(Q1,3)} , (12)

QCL
∗∗ := argmin

Q∈P(X 3)

{D(Q‖P ) : I(Q2,3) ≤ I(Q1,3)} . (13)

Then, the error exponent using the Chow-Liu algorithm, denoted KCL
P , can be expressed as [11]

KCL
P = min

{
D(QCL

∗ ‖P ), D(QCL
∗∗ ‖P )

}
. (14)

The following proposition shows that for P ∈ D(T 3, θ), the Chow-Liu error exponent is equal

to the error exponent given by (11).

Proposition 2. For P ∈ D(T 3, θ) with EP = {{1, 2}, {2, 3}}, we have

KCL
P = − log

(
1− θ

(
1−

√
4θ(1− θ)

))
= KP . (15)

Proof: See Appendix D.

From the correlation decay property for tree models with p > 3 nodes having uniform

marginals over a binary alphabet [18, Lem. A.2], and the fact that the dominant error event1 is the

in the learning problem occurs at various 3-node sub-trees corresponding to nodes {i, j, k} ⊂ V
satisfying {{i, j}, {j, k}} ⊂ EP (see Appendix C), it follows that KCL

P = KP for general

P ∈ D(T p, θ). This observation that KCL
P = KP implies that from the error exponent perspective,

somewhat surprisingly, there is no advantage in knowing that the tree-structured graphical model

satisfies properties P1 and P2. However, we show via numerical simulations in Fig. 2(b) in

Section VI-B that when the sample size is extremely small, knowledge that the graphical model

satisfies P1 and P2 yields smaller error probabilities over the vanilla Chow-Liu procedure. We

also provide an intuitive reason for why this is the case in Sec. VI-B.

1We say that the event (more precisely, the sequence of events) B1(n) is dominant among a finite set of events {Bi(n)}
k
i=1

if E1 = min{Ei : 1 ≤ i ≤ k} where Ei := limn→∞ − 1
n
log P(Bi(n)) is the exponent of the probability of Bi(n).
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C. Comparison with related work

Compared to the model in Sec. II-A, a more general tree model P over a binary alphabet was

analyzed by Bresler and Karzand in [15]. They assumed that the marginals of P are uniform,

but allowed for different correlations along the edges in EP , i.e., for {i, j} ∈ EP it was assumed

that Pi,j(0, 1) = Pi,j(1, 0) = θi,j/2 where η1 ≤ |1−2 θi,j| ≤ η2 for some 0 < η1 ≤ η2 < 1. Thus,

our model is a special case of that in [15], with θi,j = θ < 0.5 for all {i, j} ∈ EP .

The result in [15, Sec. 7.2] can be specialized to our system model to provide a non-asymptotic

upper bound on the error probability P (AP (n)) as follows

P (AP (n)) ≤ 2p2 exp
(
− nKBK

P

)
, (16)

where KBK
P denotes the Bresler-Karzand exponent. This exponent, when specialized to our system

model in which side information in the form of P1 and P2 is assumed, can be expressed as

follows [15, Sec. 7.2]

KBK
P :=

θ (1− 2θ)2

8
. (17)

The following proposition compares KBK
P with the optimal or true error exponent KP .

Proposition 3. For any θ ∈ (0, 0.5) and P ∈ D(T p, θ), we have

KBK
P <

KP

3
. (18)

Proof: See Appendix E.

Compared to asymptotic characterizations of the error probability (e.g., in Sec. IV to follow),

the upper bound in (16) has the advantage that it holds for all finite sample size n ≥ 1. On the

other hand, Prop. 3 implies that the bound given by (16) is rather loose asymptotically.

IV. STRONG LARGE DEVIATIONS: EXACT ASYMPTOTICS

In the previous section, we showed that the error probability for learning a tree model

P ∈ D(T p, θ) decays exponentially with the number of samples n, and gave an explicit

characterization of the error exponent in Thm. 2. In this section, we provide an exact and explicit

characterization of the sub-exponential prefactor, resulting in a refined approximation for the

error probability. Numerical results presented in Sec. VI show that the resulting approximation

provides a good fit for the empirical error probability obtained via Monte-Carlo simulations,

even for relatively small values of n (in the hundreds for a 10-node tree).
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The mainstay of our analysis is a strong large deviations theorem [13], [14] that provides an

asymptotic expansion of the logarithm of the probability of rare events of the form {∑n

i=1 Ui ≥
nα} for i.i.d. random variables Ui, 1 ≤ i ≤ n, where α is strictly larger than the mean of

U1. Under certain conditions, the asymptotic expansion is of the form P (
∑n

i=1 Ui ≥ nα) =

exp (−nΛ(α)− (1/2) logn+ γ(α) + o(1)), where Λ(·) is the large deviations function and γ(·)
is a real-valued function. If we define gα(n) := exp (−nΛ(α)− (1/2) logn+ γ(α)), then gα(n)

is an asymptotically exact approximation for P (
∑n

i=1 Ui ≥ nα) in the following sense:

lim
n→∞

P (
∑n

i=1 Ui ≥ nα)

gα(n)
= 1 ⇐⇒ lim

n→∞
log

(
P (

∑n

i=1 Ui ≥ nα)

gα(n)

)
= 0.

In contrast to strong large deviations, the (ordinary) large deviations analysis [9] only approxi-

mates P (
∑n

i=1 Ui ≥ nα) with the function hα(n) := exp (−nΛ(α)), and hence

lim
n→∞

1

n
log

(
P (

∑n

i=1 Ui ≥ nα)

hα(n)

)
= 0.

We will approximate the error probability P (AP (n)) with an explicitly defined function gP (n)

that not only satisfies P (AP (n)) = gP (n)
(
1 + o(1)

)
, but also satisfies the sharper relation

P (AP (n)) = gP (n)
(
1 + o(n−1)

)
. From a given P ∈ D(T p, θ), we know from Appendix C that

the error is dominated by events of the form
{
Âi,k ≥ Âi,j

}
, where {{i, j}, {j, k}} ⊂ EP . The

following lemma gives exact asymptotics for learning the graphical model of a 3-node tree.

Lemma 1. Let P ∈ D(T 3, θ) and EP = {{1, 2}, {2, 3}}. Define

f̃(n) :=
exp(−nKP )√

2πσ2n

[
1 +

1− 3σ2

8σ2n

]
, (19)

f(n) :=
f̃(n)

1− z

[
1− z(1 + z)

2(1− z)2σ2n

]
, (20)

z :=

√
θ

1− θ
, (21)

where the exponent KP is given by (11) and σ2 = θ
√

4θ(1− θ) exp(KP ). Then, we have

P(Â1,3 = Â1,2) = f̃(n)
(
1 + o(n−1)

)
, (22)

P
(
Â1,3 ≥ Â1,2

)
= f(n)

(
1 + o(n−1)

)
. (23)

Proof: See Appendix F.

Note that when P ∈ D(T 3, θ) with EP = {{1, 2}, {2, 3}}, the event
{
Â2,3 > Â1,2 = Â1,3

}

does not guarantee an error in learning the tree structure. This is because it is still possible
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that EML(x
n) = EP , if the MWST algorithm breaks ties uniformly at random, and chooses the

edge {1, 2} over {1, 3}. In this case, given that event
{
Â2,3 > Â1,2 = Â1,3

}
has occurred,

the probability of error in learning EP is equal to 1/2. Similarly, the probability of error given

that
{
Â2,3 = Â1,2 = Â1,3

}
is 2/3. This observation, regarding randomly breaking ties in the

MWST algorithm, can be used to obtain a sharp estimate for the error probability P(AP (n))

even for relatively small number of samples n. We remark that in the context of transmission

of information over noisy channels, a similar idea using tie-breaking was employed in [16,

Thm. 1] to provide an improved upper bound on the error probability. This technique, employing

tie-breaking while estimating the error probability, assumes importance in scenarios where the

probability of ties has roughly the same order as the total error probability.

The above learning algorithm can be made conservative via post-processing, whereby an error

is declared if there exists an edge {i1, i2} /∈ EML(x
n) such that Âi1,i2 = min{i,j}∈EML(xn) Âi,j .

For a 3-node tree with EP = {{1, 2}, {2, 3}}, the error asymptotics with this conservative rule

is given, using (23), as follows2

P(AP (n)) = P
(
{Â1,3 ≥ Â1,2} ∪ {Â1,3 ≥ Â2,3}

)
= 2f(n)

(
1 + o(n−1)

)
.

The following proposition shows that the above error asymptotics is strictly worse than the error

asymptotics obtained for a tie-breaking MWST algorithm.

Proposition 4. When P ∈ D(T 3, θ), and ties are randomly broken in an MWST algorithm, then

P(AP (n)) =
(
2f(n)− f̃(n)

)(
1 + o(n−1)

)
, (24)

where f̃(n) and f(n) are given by (19) and (20), respectively.

Proof: See Appendix G.

The following theorem generalizes the result in Prop. 4 to p ≥ 3 nodes.

Theorem 3. For P ∈ D(T p, θ), let TP = (V, EP ) be the tree graph of the graphical model P .

For 1 ≤ i ≤ p, let di denote the degree of node i in TP , and define

ζP :=

p∑

i=1

di(di − 1)

2
. (25)

2The exponent of P
({

Â1,3 ≥ Â1,2

}
∩
{
Â1,3 ≥ Â2,3

})
(i.e., the exponential rate of the decrease of this probability to zero)

is strictly larger than the exponent of P
(
Â1,3 ≥ Â1,2

)
and P

(
Â1,3 ≥ Â2,3

)
(see Appendix G).
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When ties are randomly broken in an MWST algorithm, then we have

P(AP (n)) = ζP
(
2f(n)− f̃(n)

)(
1 + o(n−1)

)
. (26)

Proof: See Appendix H.

We remark that the key step to generalize Prop. 4 to Thm. 3 is to incorporate the multiplicative

factor ζP , which accounts for the number of 3-node sub-trees of TP that contribute to dominant

errors [19, App. A.1] in the ML learning algorithm. Note that while f(n) and f̃(n) do not depend

on the particular choice of P , the multiplicative factor ζP depends on the tree structure TP via the

degrees of the respective nodes in TP . Thm. 3 provides an explicit function gP (n) = ζP
(
2f(n)−

f̃(n)
)
, that closely approximates the error probability as P

(
AP (n)

)
= gP (n)

(
1 + o(n−1)

)
. We

also remark that it is not difficult to extend Thm. 3 to the case in which the homogeneity property

P2 does not hold (each 3-node sub-tree would have its own θi,j and θj,k), but then the result

would be more cumbersome to state.

V. EXTENDING EXACT ASYMPTOTICS TO NOISY SAMPLES SETTING

This section considers the scenario where the observed samples are noise-corrupted versions

of the samples generated from the underlying tree-structured graphical model. This setup, where

we only have access to noisy samples, has practical applications, including scenarios where

measurement errors are introduced in systems with limited precision.

We consider a hidden Markov random field with hidden layer x = [x1, . . . , xp] ∼ P ∈
D(T p, θ), and observed (noisy) sample y = [y1, . . . , yp] ∼ P (q), where y is the output when

each component of x is passed through a memoryless binary symmetric channel (BSC) with

crossover probability 0 ≤ q < 0.5. The output distribution P (q) is expressed as follows

P (q)(y) =
∑

x∈X p

qδx,y(1− q)p−δx,yP (x), y ∈ Yp = {0, 1}p, (27)

where δx,y :=
∑n

k=1 1{xk 6= yk} denotes the Hamming distance between x and y. Note that

P (q) = P for q = 0.

In the noisy sample setting, the problem is to learn the edge set EP of the underlying tree

model P , using n noisy samples yn := {y1, . . . ,yn}, where the distribution of each noisy sample

is given by (27). As in the noiseless case, the side information to the tree learning algorithm is

the knowledge that the underlying graphical model P satisfies properties P1 and P2.



13

Given n noisy samples y
n, the empirical distribution of yn, denoted P̂

(q)
yn , is given by

P̂
(q)
yn (y) :=

1

n

n∑

k=1

1{yk = y}, y ∈ Yp. (28)

For notational convenience, we will denote the empirical distribution P̂
(q)
yn by P̂ (q). Let P̂

(q)
i,j

denote the marginal of P̂ (q) on the pair of nodes (i, j) and define

Â
(q)
i,j := P̂

(q)
i,j (0, 0) + P̂

(q)
i,j (1, 1). (29)

For a given graphical model P with edge set EP , we denote the estimated edge set (using n noisy

samples y
n) as Ê (q)(yn). We use a learning algorithm that returns Ê (q)(yn) as the edge set of an

MWST over a complete weighted graph where the weight of {i, j} is equal to Â
(q)
i,j . The following

proposition shows that this algorithm yields the ML estimate of EP when P ∈ D(T 3, θ).

Proposition 5. When P ∈ D(T 3, θ), an ML estimate of EP , using n noisy samples yn, is obtained

as the edge set of an MWST over a complete weighted graph where the weight of {i, j} is equal

to Â
(q)
i,j given by (29).

Proof: See Appendix I.

A. Error Exponent: Noisy Samples

Given n noisy samples, yn, drawn i.i.d. from P (q), we want to analyze the error probability

P
(
Ê (q)(yn) 6= EP

)
. Towards this, we first quantify the error exponent, denoted K

(q)
P , associated

with the error probability P
(
Ê (q)(yn) 6= EP

)
. Formally, we have

K
(q)
P := lim

n→∞
−1

n
log P

(
Ê (q)(yn) 6= EP

)
. (30)

The following theorem provides an exact explicit characterization of K
(q)
P .

Theorem 4. We have

K
(q)
P = − log

(
1− 4

(β1 + β2

2
−
√

β1β2

))
, (31)

where

β1 :=
(
(1− q)3 + q3

) θ(1− θ)

2
+ q(1− q)

(
1− θ(1− θ)

2

)
, (32)

β2 :=
(
(1− q)3 + q3

) θ2
2

+ q(1− q)

(
1− θ2

2

)
. (33)
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Proof: See Appendix J.

Comparing Thm. 2 and Thm. 4, we observe that K
(q)
P = KP when q = 0. Thus, the error

exponent using noisy samples, given by (31), generalizes the exponent for the noiseless setting.

Prop. 5, together with the fact that 3-node error events are dominant [19, Sec. 4, App. A.1],

implies that K
(q)
P in (31) is the optimal error exponent for learning trees with noisy samples.

B. Exact Asymptotics: Noisy Samples

We now proceed with the main result of this section, where we present the exact asymptotics

for the error probability for the scenario where we only have access to noise-corrupted samples

for learning the underlying tree structure. This result generalizes the exact asymptotics using

noiseless samples presented in Sec. IV.

Theorem 5. Let P ∈ D(T p, θ), and let P (q) be given by (27). When y
n are n i.i.d. samples

distributed according to P (q), then we have

P
(
Ê (q)(yn) 6= EP

)
= ζP

(
2f (q)(n)− f̃ (q)(n)

)(
1 + o(n−1)

)
, (34)

where ζP is given by (25), and

f̃ (q)(n) :=
exp

(
− nK

(q)
P

)
√
2πµ2n

[
1 +

1− 3µ2

8µ2n

]
, (35)

f (q)(n) :=
f̃ (q)(n)

1− z

[
1− z(1 + z)

2(1− z)2µ2n

]
, (36)

µ2 := 4
√

β1β2 exp
(
K

(q)
P

)
, (37)

z :=

√
β2

β1
, (38)

where K
(q)
P , β1, and β2 are given by (31), (32), and (33), respectively.

Proof: See Appendix K.

Similar to the noiseless case, the functions f (q)(n) and f̃ (q)(n) do not depend on the particular

choice of P , while the multiplicative factor ζP depends on the tree structure TP via the degree

of respective nodes in TP . Thm. 5 provides us with an explicitly defined function g
(q)
P (n) =

ζP
(
2f (q)(n) − f̃ (q)(n)

)
that closely approximates the error probability as P

(
Ê (q)(yn) 6= EP

)
=

g
(q)
P (n)

(
1 + o(n−1)

)
. Note that when q = 0, we have f (0)(n) = f(n) and f̃ (0)(n) = f̃(n), and

thus the exact error asymptotics in Thm. 5 generalizes the result (26) for the noiseless setting.
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C. Related Result for Noisy Samples

In [17], [18], Nikolakakis, Kalogerias, and Sarwate extended Bresler and Karzand’s result [15]

to provide bounds on the number of noisy samples required to achieve a given target probability

for learning an Ising tree model. Similar to [15], the model in [17] is more general compared to

that described in Sec. II-A, as it allows different correlations along the edges of the underlying

tree. As our model in Sec. II-A is a special case of the model in [17], the results in [17] can

be specialized to our system model. In particular, [17, Thm. 1] (or equivalently [18, Thm. 3.1])

can be adapted to provide a non-asymptotic upper bound on P
(
Ê (q)(yn) 6= EP

)
as follows:

P
(
Ê (q)(yn) 6= EP

)
≤ 2p2 exp

(
− nK

NKS(q)
P

)
. (39)

Here, K
NKS(q)
P denotes the Nikolakakis-Kalogerias-Sarwate exponent, given by [17, Eq. (14)]

and restated here as follows:

K
NKS(q)
P :=

(1− 2q)4θ2(1− 2θ)2

8 (1− (1− 2q)4(1− 2θ))
. (40)

In Sec. VI-A, we numerically compare K
NKS(q)
P in (40) to K

(q)
P in (31) and show that the exponent

K
NKS(q)
P is much smaller than the true exponent K

(q)
P . This implies that the upper bound in (39)

is rather loose in relation to the exact asymptotics given by (34).

VI. NUMERICAL RESULTS

This section presents numerical results, and illustrates that our theoretical results for the

noiseless and noisy sample scenarios are in keen agreement with the empirical observations.

A. Comparison of different exponents

It is well known that the error exponent captures the asymptotics behavior of the error

probability [10], and so formulations with imprecise exponents are expected to provide inaccurate

approximations for error probabilities when the sample size is relatively large. Fig. 1(a) compares

the error exponent KP in (11) for the noiseless scenario, with the corresponding exponent KBK
P

in (17) based on the work by Bresler-Karzand [15, Sec. 7.2]. As stated in Prop. 3 and also shown

in Fig. 1, KBK
P is significantly smaller than the true exponent KP , and hence the upper bound

on the error probability given by (16) can only provide a weak estimate of the error probability.

Fig. 1(b) compares the exponent using noisy samples K
(q)
P in (31) with the corresponding

exponent K
NKS(q)
P in (40), based on the work by Nikolakakis-Kalogerias-Sarwate [17, Thm. 1],



16

0 0.1 0.2 0.3 0.4 0.5
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0 0.1 0.2 0.3 0.4 0.5
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

Fig. 1. (a) compares the error exponent KP with KBK
P , the Bresler-Karzand exponent [15, Sec. 7.2], for the noiseless setting,

while (b) compares the error exponent K
(q)
P with K

NKS(q)
P , the Nikolakakis-Kalogerias-Sarwate exponent [17, Thm. 1], [18,

Thm. 3.1], for the noisy samples setting.

[18, Thm. 3.1], for BSC crossover probabilities q = 0.01 and q = 0.1. As expected, the exponents

in Fig. 1(b) are smaller than exponents for the noiseless setting in Fig. 1(a), and it is observed

that the exponent decreases with an increase in q. Fig. 1(b) demonstrates a large gap between

K
(q)
P and K

NKS(q)
P , implying that the upper bound given by (39) is rather loose.

B. Comparison of theoretical and simulation results: 3-node tree

Fig. 2 compares the exact asymptotics for learning a 3-node tree for the noiseless and noisy

sample setting with corresponding simulation results. The theoretical result for the noiseless

samples setting (q = 0) is obtained using Thm. 3 with error probability approximated by

ζP
(
2f(n)− f̃(n)

)
in (26) (i.e., we ignore the multiplicative factor (1+ o(n−1))). The theoretical

result for the noisy samples setting (q > 0) is obtained using Thm. 5 with error probability

approximated by ζP
(
2f (q)(n)− f̃ (q)(n)

)
in (34). For the noiseless samples case, the simulation

results are obtained using synthetically generated data samples with distribution P satisfying

properties P1 and P2 (Sec. II-A). For the noisy samples setting, the generated samples have

distribution P (q) in (27). For each parameter setting, the number of iterations for obtaining the

simulated error probability was chosen to ensure that at least 200 errors occurred. Simulation

results labeled with Âi,j (resp. I(P̂i,j)) imply that the estimated tree is the output of an MWST
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Fig. 2. Comparison of the theoretical error asymptotics for the noiseless and noisy sample setting for a 3-node tree (p = 3)

via Thm. 3 and Thm. 5, respectively, with corresponding simulation results. Simulation results labeled with Âi,j (resp. I(P̂i,j))

imply that the estimated tree is the output of an MWST algorithm whose input is a complete graph with edge {i, j} weighted

with Âi,j (resp. I(P̂i,j)), and so on for Â
(q)
i,j and I(P̂

(q)
i,j ).

algorithm whose input is a complete graph with edge {i, j} weighted with Âi,j (resp. I(P̂i,j)),

and so on for Â
(q)
i,j and I

(
P̂

(q)
i,j

)
. When we use the mutual information quantities I(P̂i,j) and

I
(
P̂

(q)
i,j

)
, we are running the vanilla Chow-Liu algorithm [6], i.e., we are not leveraging the side

information that P1 and P2 hold.

Fig. 2(a) and (b) compare the theoretical and simulated results for θ = 0.1 and θ = 0.4,

respectively. These figures demonstrate that the theoretical estimates of the error probabilities,

given by Thm. 3 and Thm. 5, closely match the simulation results. In comparison, the upper

bounds on the error probability given by (16) and (39) evaluate to more than 1 for the parameters

chosen for Fig. 2, and hence are not plotted. The Chow-Liu algorithm [6] is seen to perform

almost similarly to the ML algorithm. However, the former is marginally worse than the latter

when n is small for θ = 0.4, exhibiting the benefit of side information. Roughly speaking, this is

because errors in the Chow-Liu algorithm for a 3-node tree satisfying P1 and P2 arise when the

empirical binary entropy of the estimated parameter of the non-edge, say H(θ̂1,3), is not larger

than that of a true edge, say H(θ̂1,2). This is dominated by the event {H(θ̂1,2) = H(θ̂1,3)}.

By the symmetry of the binary entropy function around 1/2, we see that that is equivalent to

{θ̂1,2 = θ̂1,3} ∪ {θ̂1,2 = 1− θ̂1,3}. In contrast, the ML algorithm with side information using Âi,j
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Fig. 3. Comparison of the theoretical asymptotics with simulation results for the noiseless (q = 0) and noisy sample setting

(q = 0.02) for 10-node trees with θ = 0.4. Figures (a), (b), and (c) correspond to star (ζP = 36), Markov chain (ζP = 8),

and hybrid (ζP = 18) tree structures, respectively.

or Â
(q)
i,j only errs when {θ̂1,2 = θ̂1,3} holds. Hence, there is a slight benefit of the ML algorithm

over the Chow-Liu algorithm especially when n is small and θ is close to 1/2.

C. Comparison of theoretical and simulation results: 10-node trees

Fig. 3 compares the theoretical and simulated error asymptotics with θ = 0.4 for 10-node trees

whose structures are (a) star, (b) Markov chain, and (c) hybrid, where we follow the definitions

of these tree structures as given in [12]. Also, the extremal properties of the star and Markov

chain tree structure were highlighted in [12]. Similar to the observations in [12], we note from

Thm. 3 and Thm. 5, that for a p-node tree, the error probability is asymptotically maximal (resp.

minimal) for a star (resp. Markov chain) tree structure, due to the corresponding structure having

a maximal (resp. minimal) value of ζP in (25) (see Appendix L). For the simulation results, the

estimated tree is the output of an MWST algorithm whose input is a complete graph with edge

{i, j} weighted with Âi,j (resp. Â
(q)
i,j ) for the noiseless (resp. noisy) samples setting. Again, the

simulated error probability is obtained by averaging over a number of iterations such that at least

200 errors occurred. Fig. 3 shows an overall agreement between the theoretical and simulation

results, even for moderate values of n. In contrast, the upper bounds on the error probability
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given by (16) and (39) evaluate to more than 1 for the parameters chosen for Fig. 3, and hence are

not plotted. An interesting observation one can make from Fig. 3(b) is that for the Markov chain,

the simulated error probability is generally higher than the theoretical prediction. This is because

the theoretical analysis only captures dominant error events; however, for the chain, there are

many non-dominant error events that contribute to the simulated error probability and this effect

is more pronounced at small sample sizes. In contrast, for the star, all “single-edge error events”

(i.e., error events in which the true and estimated edge sets differ by one edge) are dominant,

and hence the theoretical results are close to simulation results for sample sizes n ≥ 600. The

behavior of the hybrid tree naturally lies in between those of the extremal structures.

VII. REFLECTIONS

This paper has taken a first step in refining estimates of the error probability in learning

graphical models. We have taken a strong large deviations approach to compute the exact

asymptotics for learning trees given noiseless and noisy samples. For the noiseless and noisy

cases respectively, we have significantly improved on the error exponents derived by Bresler-

Karzand [15] and Nikolakakis-Kalogerias-Sarwate [17]. The theoretical results show keen agree-

ment with numerical simulations at relatively small sample sizes. We believe the analytical

techniques developed here are novel in statistical learning and may be broadly applicable to

other learning problems with discrete solutions such as ranking and feature subset selection.

There are a few promising avenues for future research. What we have done thus far pertains

to the low-dimensional setting in which p is fixed and n grows. Because of the asymptotic tools

used, our results cannot be directly extended to the more practically relevant high-dimensional

setting in which p grows simultaneously with n. Another direction of research would be to

use the analytical tools herein to analyze the probability of error for learning other classes of

graphical models such as random graphs [24], latent tree models [27], or more general Ising

models [28]. Finally, we would like to explore if the suite of strong large deviation techniques

employed here can be used to sharpen upper [29] and lower bounds [30] for the active learning

of graphical models or error estimates of other machine learning tasks.

APPENDIX A

PROOF OF PROPOSITION 1

We have to show {EML(x
n) 6= EP} = {PML(x

n) 6= P} in order to prove Prop. 1.
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• {PML(x
n) 6= P} ⊂ {EML(x

n) 6= EP}: From (1), P1, and P2 (in Sec. II-A), it follows that

the underlying distribution can be explicitly stated based on the knowledge of the edge set.

Therefore, the correct determination of the edge set implies the correct determination of

the underlying distribution, and so {EML(x
n) = EP} ⊂ {PML(x

n) = P}, and the claim is

proved by contraposition.

• {EML(x
n) 6= EP} ⊂ {PML(x

n) 6= P}: As |EML(x
n)| = |EP | = p − 1, the condition

EML(x
n) 6= EP implies that there exists an edge {i, j} ∈ EP , such that {i, j} /∈ EML(x

n).

Let PML(i,j) and Pi,j denote the marginals on edge {i, j} for PML(x
n) and P , respectively.

As {i, j} /∈ EML(x
n), combining properties P1 and P2 (Sec. II-A) and the correlation

decay property for tree models with uniform marginal distribution on each node over a

binary alphabet [18, Lem. A.2], it follows that PML(i,j)(0, 0) + PML(i,j)(1, 1) < 1 − θ =

Pi,j(0, 0) + Pi,j(1, 1). This implies PML(i,j) 6= Pi,j , and hence {PML(x
n) 6= P}.

APPENDIX B

PROOF OF THEOREM 1

From (5), we have

PML(x
n) = argmax

Q∈D(T p,θ)

∑

x∈X p

P̂ (x) logQ(x),

(a)
= argmax

Q∈D(T p,θ)

∑

x∈X p

P̂ (x)

(
logQ1(x1) +

p∑

i=2

logQi|pa(i)

(
xi|xpa(i)

))
,

(b)
= argmax

Q∈D(T p,θ)

p∑

i=2

( ∑

x∈X p

P̂ (x) logQi|pa(i)

(
xi|xpa(i)

))
,

= argmax
Q∈D(T p,θ)

p∑

i=2

( ∑

(xi,xpa(i))∈X 2

P̂i,pa(i)(xi, xpa(i)) logQi|pa(i)

(
xi|xpa(i)

))
,

(c)
= argmax

Q∈D(T p,θ)

p∑

i=2

(
Âi,pa(i) log(1− θ) +

(
1− Âi,pa(i)

)
log θ

)
,

= argmax
Q∈D(T p,θ)

p∑

i=2

Âi,pa(i) log
(1− θ

θ

)
,

(d)
= argmax

Q∈D(T p,θ)

p∑

i=2

Âi,pa(i) = argmax
Q∈D(T p,θ)

∑

{i,j}∈EQ

Âi,j ,
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where (a) follows from (1), (b) follows from the fact that Q1(0) = Q1(1) = 0.5 (property P1),

(c) follows from (8) and the facts that Qi|pa(i)(0|0) = Qi|pa(i)(1|1) = 1 − θ, and Qi|pa(i)(0|1) =
Qi|pa(i)(1|0) = θ (property P2), and (d) follows from the fact that 1− θ > θ.

APPENDIX C

PROOF OF THEOREM 2

We will first prove the following lemma, which will be applied to prove Thm 2.

Lemma 2. Let P̃ ∈ P(X 3) be defined as P̃ (x1, x2, x3) = P̃1(x1)P̃2|1(x2|x1)P̃3|2(x3|x2) with

uniformly distributed P̃1, and P̃2|1(0|1) = P̃2|1(1|0) = θ1 < 0.5, and P̃3|2(0|1) = P̃3|2(1|0) =

θ3 < 0.5. Let xn denote the n i.i.d. samples drawn from P̃ , let P̂ denote the type of xn, and let

Âi,j be given by (8) for 1 ≤ i < j ≤ 3. Then, we have

lim
n→∞

−1

n
log P

(
Â1,3 ≥ Â1,2

)
= − log

(
1− θ3

(
1−

√
4θ1(1− θ1)

))
. (41)

Proof: From Sanov’s theorem [10, Thm. 11.4.1], it follows that

lim
n→∞

−1

n
log P

(
Â1,3 ≥ Â1,2

)

= min
Q∈P(X 3)

{
D(Q‖P̃ ) : Q1,3(0, 0) +Q1,3(1, 1) ≥ Q1,2(0, 0) +Q1,2(1, 1)

}
, (42)

where Qi,j denotes the marginal of Q for the pair of nodes (i, j). The constraint Q1,3(0, 0) +

Q1,3(1, 1) ≥ Q1,2(0, 0) +Q1,2(1, 1) is equivalent to the following constraint

Q(0, 1, 0) +Q(1, 0, 1) ≥ Q(0, 0, 1) +Q(1, 1, 0). (43)

Let Q∗ denote that Q ∈ P(X 3) which satisfies (43) and minimizes D(Q‖P̃ ). Let g be the map

g : X 3 → R defined as follows

g(0, 1, 0) = g(1, 0, 1) = 1, g(0, 0, 1) = g(1, 1, 0) = −1,

g(0, 0, 0) = g(1, 1, 1) = g(0, 1, 1) = g(1, 0, 0) = 0.
(44)

Then, by using a Lagrange multiplier, Q∗ can be obtained to be the tilted distribution [31],

Q∗(x) =
P̃ (x) exp (λg(x))∑

y∈X 3 P̃ (y) exp (λg(y))
, x ∈ X 3, (45)

where λ is chosen to satisfy (43), and is given by

λ =
1

2
log

(
P̃ (0, 0, 1)

P̃ (0, 1, 0)

)
. (46)
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Now, for any two real numbers a > 0 and b > 0, we define

∆(a, b) :=
a + b

2
−

√
ab, (47)

and hence ∆(a, b) is the difference between the arithmetic and geometric means of a and b, and

∆(a, b) ≥ 0 with equality if and only if a = b. Now, using (42) we have

lim
n→∞

−1

n
logP

(
Â1,3 ≥ Â1,2

)
= D(Q∗‖P̃ ),

= − log
(
1− 4∆

(
P̃ (0, 0, 1), P̃ (0, 1, 0)

))
, (48)

= − log
(
1− θ3

(
1−

√
4θ1(1− θ1)

))
,

where (48) follows using (45) and (46).

We apply Lem. 2 to P̃ ∈ D(T 3, θ) to obtain the following proposition.

Proposition 6. For P̃ ∈ D(T 3, θ), we have

KP̃ = − log
(
1− θ

(
1−

√
4θ(1− θ)

))
.

Proof: Without loss of generality, assume that EP̃ = {{1, 2}, {2, 3}}. It follows from Thm. 1

that when n i.i.d. samples drawn from P̃ are used for learning the tree structure, the error

event {EML(x
n) 6= EP̃} occurs when Â1,3 ≥ Â1,2 or Â1,3 ≥ Â2,3. From symmetry, we have

P
(
Â1,3 ≥ Â1,2

)
= P

(
Â1,3 ≥ Â1,2

)
, and hence

KP̃ = lim
n→∞

−1

n
log P

(
Â1,3 ≥ Â1,2

)
= − log

(
1− θ

(
1−

√
4θ(1− θ)

))
, (49)

where the last equality follows from Lem. 2.

For a general p-node tree distribution P ∈ D(T p, θ), it follows from [19, App. A.1] that the

dominant error event in the learning problem occurs at various 3-node sub-trees corresponding

to the tree distribution P , and takes one the following forms:
{
Âi,k ≥ Âi,j

}
or

{
Âi,k ≥ Âj,k

}
,

where {{i, j}, {j, k}} ⊂ EP . This observation is also related to the correlation decay property

for tree models with uniform marginals over binary alphabet [18, Lem. A.2]. For a given p,

the number of such 3-node sub-trees is fixed, and hence it follows from Prop. 6 that the error

exponent in learning P is given by KP = − log
(
1− θ

(
1−

√
4θ(1− θ)

))
.

Before concluding this appendix, we highlight the intuition regarding the dominant error

occurring at 3-node sub-trees mentioned above. Towards this, consider the example where p = 4,

P ∈ D(T 4, θ) with EP = {{1, 2}, {2, 3}, {3, 4}}. In this case, it follows from Lem. 2 that

lim
n→∞

−1

n
log P

(
Â1,3 ≥ Â1,2

)
= − log

(
1− θ

(
1−

√
4θ(1− θ)

))
. (50)
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We will characterize exactly the exponent corresponding to the error event
{
Â1,4 ≥ Â1,2

}
, using

Lem. 2, and show that it is strictly higher than the exponent in (50). Note that the probability

P
(
Â1,4 ≥ Â1,2

)
can be characterized by analyzing the marginal distribution P1,2,4(x1, x2, x4). Due

to the Markov property, we have P4|1,2(x4|x1, x2) = P4|2(x4|x2) where P4|2(0|1) = P4|2(1|0) =
2θ(1− θ). Therefore, applying Lem. 2 and taking θ1 = θ, θ3 = 2θ(1− θ), we obtain

lim
n→∞

−1

n
log P

(
Â1,4 ≥ Â1,2

)
= − log

(
1− θ3

(
1−

√
4θ(1− θ)

))
. (51)

Similarly, it can be shown that the exponent corresponding to the error event
{
Â1,4 ≥ Â2,3

}

is also given by the right side of (51), which is a strictly increasing function of θ3. Thus, the

exponent in (51) is strictly greater than that in (50) because θ3 = 2θ(1−θ) > θ for 0 < θ < 0.5,

thereby showing that the error event
{
Â1,4 ≥ Â1,2

}
(or

{
Â1,4 ≥ Â2,3

}
) does not dominate the

overall expression for the error probability.

APPENDIX D

PROOF OF PROPOSITION 2

For P ∈ D(T 3, θ) with EP = {{1, 2}, {2, 3}}, we have P1,2 = P2,3, and so comparing (12)

and (13), it follows that D(QCL
∗ ‖P ) = D(QCL

∗∗ ‖P ), and hence

KCL
P = min

Q∈P(X 3)
{D(Q‖P ) : I(Q1,2) ≤ I(Q1,3)} . (52)

Further, the marginals of P are uniformly distributed, and it follows from symmetry that any

distribution Q that minimizes (52) also has uniform marginals. Now, if we define γ1,2 :=

Q1,2(0, 1)+Q1,2(1, 0) and γ1,3 := Q1,3(0, 1)+Q1,3(1, 0), then we have I(Q1,2) = 1−H(γ1,2) and

I(Q1,3) = 1−H(γ1,3), where H(·) is the binary entropy function, and Q has uniform marginals.

As H(·) is symmetric about 0.5, the constraint I(Q1,2) ≤ I(Q1,3) is satisfied if and only if one

of the following linear constraints is satisfied:

(i) 0.5 > γ1,2 ≥ γ1,3.

(ii) 0.5 > γ1,2, γ1,3 ≥ 1− γ1,2.

(iii) 0.5 < γ1,2 ≤ γ1,3.

(iv) 0.5 < γ1,2, γ1,3 ≤ 1− γ1,2.

(v) 0.5 = γ1,2 = γ1,3.
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As P1,2(0, 1) + P1,2(1, 0) = θ < 0.5 and P1,3(0, 1) + P1,3(1, 0) = 2θ(1 − θ) < 0.5, it follows

that the constraint on Q that minimizes D(Q‖P ) is γ1,3 ≤ γ1,2 < 0.5, and hence (52) can be

equivalent expressed as

KCL
P = min

Q∈P(X 3)
{D(Q‖P ) : Q1,3(0, 1) +Q1,3(1, 0) ≤ Q1,2(0, 1) +Q1,2(1, 0) < 0.5} . (53)

Finally, comparing (53) with (42), and applying (49), we obtain (15).

APPENDIX E

PROOF OF PROPOSITION 3

We define ϑ := θ(1−
√
4θ(1− θ)), and using (11) we obtain

KP = log

(
1

1− ϑ

)
> log(1 + ϑ),

(i)
>

2ϑ

2 + ϑ

(ii)
>

2ϑ

2.5
>

3θ(1−
√

4θ(1− θ))

4
, (54)

where (i) follows by applying [32, Eq. (3)], and (ii) follows because ϑ < 0.5. On the other

hand, using (17) we have

KBK
P =

θ(1− 4θ + 4θ2)

8
=

θ(1−
√

4θ(1− θ))(1 +
√

4θ(1− θ))

8
,

(iii)
<

θ(1−
√
4θ(1− θ))

4

(iv)
<

KP

3
,

where (iii) follows because
√
4θ(1− θ) < 1, and (iv) follows from (54).

APPENDIX F

PROOF OF LEMMA 1

For n i.i.d. discrete random variables {Ui}ni=1 taking integer values whose differences have

greatest common divisor equal to 1, Blackwell and Hodges [14] gave exact asymptotic expan-

sions for the probabilities P (
∑n

i=1 Ui = nα) and P (
∑n

i=1 Ui ≥ nα), under the condition that

P (
∑n

i=1 Ui = nα) > 0 for every admissible n, and where α > E[U1]. We will apply this result

by appropriately defining U1 and α. We first prove (22). For P ∈ D(T 3, θ), each random sample

belongs to the alphabet X 3, and we define U1 as follows:

U1 =





1 if x ∈ {(0, 1, 0), (1, 0, 1)} ,

−1 if x ∈ {(0, 0, 1), (1, 1, 0)} ,

0 if x ∈ {(0, 0, 0), (1, 1, 1), (0, 1, 1), (1, 0, 0)} .
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Then, we have

{
Â1,3 = Â1,2

}
=

{
P̂ (0, 1, 0) + P̂ (1, 0, 1)− P̂ (0, 0, 1)− P̂ (1, 1, 0) = 0

}
,

=

{ n∑

i=1

Ui = 0

}
.

As P ∈ D(T 3, θ), EP = {{1, 2}, {2, 3}}, and 0 < θ < 0.5, we have

P (0, 0, 1) + P (1, 1, 0) = θ(1− θ) > θ2 = P (0, 1, 0) + P (1, 0, 1).

It follows that if we choose α = 0, then we have (i) 0 > E[U1], and (ii) P
(∑n

i=1 Ui = 0
)
> 0

for every admissible n. Thus, the variables satisfy the required conditions for applying the exact

asymptotic theorems presented in [14].

Note that U1 takes values in the ternary alphabet U = {−1, 0, 1}, and we denote the probability

distribution of U1 as Q(u), u ∈ U . Now, as α = 0, it is sufficient for us to consider the moment

generating function of U1 defined as

φ(t) := EQ

[
etU1

]
= Q(−1) e−t +Q(0) +Q(1) et,

and let τ be the value of t which minimizes φ(t), i.e. τ = argmint∈R φ(t). Then, τ is uniquely

determined as the solution of φ′(τ) = 0, which gives us

eτ =

√
Q(−1)

Q(1)
=

√
1− θ

θ
, (55)

φ(τ) = Q(0) +
√
4Q(−1)Q(1) = (1− θ) + θ

√
4θ(1− θ) = exp(−KP ), (56)

where (56) follows from (11). Now, we define a random variable V1 taking values in U having

an exponentially tilted distribution [31], denoted Q̃, and defined as follows

Q̃(u) :=
Q(u)eτu

φ(τ)
, u ∈ U .

Note that EQ̃[V1] = φ′(τ)/φ(τ) = 0. Let σ2, µ3, and µ4 denote the second, third, and fourth

central moments of V1, respectively. Then, we have

σ2 =
φ′′(τ)

φ(τ)
=

Q(−1)e−τ +Q(1)eτ

φ(τ)
= θ

√
4θ(1− θ) exp(KP ),

µ3 =
φ′′′(τ)

φ(τ)
=

φ′(τ)

φ(τ)
= 0, µ4 =

φ′′′′(τ)

φ(τ)
=

φ′′(τ)

φ(τ)
= σ2.

From the strong large deviations theorem [14, Thm. 3], we have

P

( n∑

i=1

Ui = 0

)
=

[φ(τ)]n√
2πσ2n

[
1 +

1

8n

(
µ4

σ4
− 3− 5µ2

3

3σ6

)] (
1 + o(n−1)

)
. (57)
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Using the fact that P (
∑n

i=1 Ui = 0) = P
(
Â1,3 = Â1,2

)
, and substituting the values of φ(τ), σ2,

µ3, and µ4, in (57), we obtain

P

( n∑

i=1

Ui = 0

)
= f̃(n)

(
1 + o(n−1)

)
= P

(
Â1,3 = Â1,2

)
, (58)

where f̃(n) is given by (19), thereby completing the proof of (22).

Next, we proceed to prove (23). The strong large deviations theorem given in [14, Thm. 4]

states that the exact asymptotics of P (
∑n

i=1 Ui ≥ 0) is given by

P

( n∑

i=1

Ui ≥ 0

)
=

f̃(n)

1− z

[
1− 1

2n

(
(zµ3/σ

2) + z(1 + z)/(1− z)

(1− z)σ2

)] (
1 + o(n−1)

)
, (59)

where z = e−τ =
√
θ/(1− θ). As µ3 = 0, the expression in (59) simplifies to

P

( n∑

i=1

Ui ≥ 0

)
=

f̃(n)

1− z

[
1− z(1 + z)

2(1− z)2σ2n

] (
1 + o(n−1)

)
, (60)

and the proof of (23) is complete by using (20), (60), and noting that P
(
Â1,3 ≥ Â1,2

)
=

P (
∑n

i=1 Ui ≥ 0).

APPENDIX G

PROOF OF PROPOSITION 4

For P ∈ D(T 3, θ), we assume without loss of generality that EP = {{1, 2}, {2, 3}}. Here,

if
{
Â1,3 > Â1,2

}
or

{
Â1,3 > Â2,3

}
, an MWST algorithm will pick the incorrect edge {1, 3} ∈

EML(x
n). Hence,

{
EML(x

n) 6= EP
}

surely occurs if
{
Â1,3 > Â1,2

}
or

{
Â1,3 > Â2,3

}
occur.

However, in the case of tie-breaking, we have the following scenarios:

• EML(x
n) 6= EP with probability 1/2 when

{
Â2,3 > Â1,2 = Â1,3

}
or

{
Â1,2 > Â2,3 = Â1,3

}
.

• EML(x
n) 6= EP with probability 2/3 when

{
Â1,2 = Â2,3 = Â1,3

}
.

Therefore, the probability of error P(AP (n)) is given by

P(AP (n)) = P
({

Â1,3 > Â1,2

}
∪
{
Â1,3 > Â2,3

})
+

1

2
P
(
Â2,3 > Â1,2 = Â1,3

)

+
1

2
P
(
Â1,2 > Â2,3 = Â1,3

)
+

2

3
P
(
Â1,2 = Â2,3 = Â1,3

)
. (61)

The individual probability components in (61) satisfy the following relations:

P
({

Â1,3 > Â1,2

}
∪
{
Â1,3 > Â2,3

})
= P

(
Â1,3 > Â1,2

)
+ P

(
Â1,3 > Â2,3

)

− P
({

Â1,3 > Â1,2

}
∩
{
Â1,3 > Â2,3

})
, (62)
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P
(
Â1,2 > Â2,3= Â1,3

)
=P

(
Â2,3= Â1,3

)
−P

({
Â2,3= Â1,3

}
∩
{
Â1,2 ≤ Â1,3

})
(63)

P
(
Â2,3 > Â1,2= Â1,3

)
=P

(
Â1,2= Â1,3

)
−P

({
Â1,2= Â1,3

}
∩
{
Â2,3 ≤ Â1,3

})
. (64)

From (22), (23), and the symmetry in EP , it follows that the exponents corresponding to

probabilities P
(
Â1,3 > Â1,2

)
, P

(
Â1,3 > Â2,3

)
, P

(
Â1,3 = Â1,2

)
, and P

(
Â1,3 = Â2,3

)
are equal

to KP defined in (11). On the other hand, the exponents corresponding to the probabilities

P
({

Â1,3 > Â1,2

}
∩
{
Â1,3 > Â2,3

})
, P

({
Â2,3 = Â1,3

}
∩
{
Â1,2 ≤ Â1,3

})
, P

({
Â1,2 = Â1,3

}
∩

{
Â2,3 ≤ Â1,3

})
, and P

(
Â1,2 = Â2,3 = Â1,3

)
are strictly greater than KP .3 Using (61), (62), (63),

and (64), and collecting the terms with the smallest exponent KP , we have

P(AP (n)) =

(
P
(
Â1,3 > Â1,2

)
+ P

(
Â1,3 > Â2,3

)

+
1

2
P
(
Â1,3 = Â1,2

)
+

1

2
P
(
Â1,3 = Â2,3

))(
1 + o(n−1)

)
. (65)

Using Lem. 1, and the symmetry in EP , we have

P
(
Â1,3 > Â1,2

)
=

(
f(n)− f̃(n)

)(
1 + o(n−1)

)
= P

(
Â1,3 > Â2,3

)
, (66)

P
(
Â1,3 = Â1,2

)
= f̃(n)

(
1 + o(n−1)

)
= P

(
Â1,3 = Â2,3

)
, (67)

and the proposition is proved by combining (65), (66), and (67).

APPENDIX H

PROOF OF THEOREM 3

We know that the dominant error in learning a tree distribution P ∈ D(T p, θ) occurs at 3-node

sub-trees of TP (see Appendix C), and the corresponding error event has the following form:
{
Âi,k ≥ Âi,j

}
or

{
Âi,k ≥ Âj,k

}
where {{i, j}, {j, k}} ⊂ EP . The exponent corresponding to

these dominant error events is the smallest among the set of all error events, and is given by KP

in (11). The exact error asymptotics for such a 3-node sub-tree is given by Prop. 4, and hence

the exact asymptotics for general P ∈ D(T p, θ) is given by

P(AP (n)) = κP

(
2f(n)− f̃(n)

)
(1 + o(n−1)), (68)

where κP denotes the number of distinct 3-node sub-trees of TP for which the corresponding

error exponent is KP . Comparing (26) and (68), observe that it only remains to show that κP =

3We have limn→∞ − 1
n
log P

(
{Â1,3 ≥ Â1,2

}
∩ {Â1,3 ≥ Â2,3}

)
= − log

(
1− θ

[
2− θ − 3θ1/3(1− θ)2/3

])
> KP .
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∑p

i=1 di(di − 1)/2. To characterize κP , we count the number of distinct 3-node sub-trees of TP

having the following form: a sub-tree with vertex set {i, j, k} ⊂ V satisfying {{i, j}, {j, k}} ⊂
EP . Towards this, for j ∈ V = {1, . . . , p}, we recall that nbd(j) = {i ∈ V : {i, j} ∈ EP} denotes

the neighborhood of j and additionally define

Sj := {{i, j, k} : i ∈ nbd(j), k ∈ nbd(j), i 6= k}.

Now, if {i1, i2, i3} ⊂ V is a 3-node sub-tree of TP with {{i1, i2}, {i2, i3}} ⊂ EP , then we have

{i1, i2, i3} ∈ Si2 . Similarly, for j ∈ V , each element of Sj contains the nodes of a 3-node sub-tree

contributing to dominant errors with exponent KP . Therefore, we have

κP =
∣∣∪j∈V Sj

∣∣ . (69)

Note that |nbd(j)| = dj , where dj denotes the degree of node j, and so for j ∈ V , we have

|Sj| =
(
dj
2

)
=

dj(dj − 1)

2
. (70)

As the graph is a tree, it follows that Si ∩ Sj = ∅ for i 6= j, and hence from (69), (70), we get

κP =
∑

j∈V

|Sj | =
p∑

j=1

dj(dj − 1)

2
= ζP , (71)

and the proof is complete by substituting (71) in (68).

APPENDIX I

PROOF OF PROPOSITION 5

According to Prop. 1, a graphical model belonging to D(T p, θ) is uniquely characterized by

its edge set. For p = 3, we have |D(T 3, θ)| = 3, and we denote the elements of D(T p, θ) as

U , V , and W , with corresponding edge sets EU =
{
{1, 2}, {2, 3}

}
, EV =

{
{1, 3}, {2, 3}

}
, and

EW =
{
{1, 2}, {1, 3}

}
. Given n noisy samples y

n, let LU (y
n), LV (y

n), and LW (yn) denote

the log-likelihood functions assuming that the underlying graphical model is U , V , and W ,

respectively. Then, we have

LU(y
n) =

∑

y∈Y3

P̂ (q)(y) logU (q)(y); U (q)(y) =
∑

x∈X 3

qδx,y(1− q)p−δx,yU(x),

LV (y
n) =

∑

y∈Y3

P̂ (q)(y) log V (q)(y); V (q)(y) =
∑

x∈X 3

qδx,y(1− q)p−δx,yV (x),

LW (yn) =
∑

y∈Y3

P̂ (q)(y) logW (q)(y); W (q)(y) =
∑

x∈X 3

qδx,y(1− q)p−δx,yW (x),
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where δx,y denotes the Hamming distance between x and y. The ML algorithm will choose U

as the underlying graphical model if LU (y
n) > max

{
LV (y

n), LW (yn)
}

.

We first analyze the condition LU(y
n) > LV (y

n). Towards this, we can readily verify that

U (q)(0, 0, 0) = U (q)(1, 1, 1) = V (q)(1, 1, 1) = V (q)(0, 0, 0) and U (q)(0, 1, 1) = U (q)(1, 0, 0) =

V (q)(1, 0, 0) = V (q)(0, 1, 1). Also, we have

U (q)(0, 0, 1) =
(
(1− q)3 + q3

) θ(1− θ)

2
+ q(1− q)

(
1− θ(1− θ)

2

)
= U (q)(1, 1, 0),

U (q)(0, 1, 0) =
(
(1− q)3 + q3

) θ2
2

+ q(1− q)

(
1− θ2

2

)
= U (q)(1, 0, 1).

Further, we can verify that V (q)(1, 1, 0) = V (q)(0, 0, 1) = U (q)(0, 1, 0) and V (q)(1, 0, 1) =

V (q)(0, 1, 0) = U (q)(0, 0, 1). Combining the above relations, we observe that the condition

LU(y
n) > LV (y

n) is equivalent to the following

(
P̂ (q)(0, 0, 1) + P̂ (q)(1, 1, 0)

)
log

U (q)(0, 0, 1)

U (q)(0, 1, 0)
>

(
P̂ (q)(0, 1, 0) + P̂ (q)(1, 0, 1)

)
log

U (q)(0, 0, 1)

U (q)(0, 1, 0)
.

As 0 < θ < 0.5 and 0 ≤ q < 0.5, we have (1− q)3 + q3 > q(1− q) and 1− θ > θ, and hence it

follows that U (q)(0, 0, 1) > U (q)(0, 1, 0). Thus, we have

LU (y
n) > LV (y

n) ⇐⇒ P̂ (q)(0, 0, 1) + P̂ (q)(1, 1, 0) > P̂ (q)(0, 1, 0) + P̂ (q)(1, 0, 1)

⇐⇒ P̂
(q)
1,2 (0, 0) + P̂

(q)
1,2 (1, 1) > P̂

(q)
1,3 (0, 0) + P̂

(q)
1,3 (1, 1)

⇐⇒ Â
(q)
1,2 > Â

(q)
1,3.

Similarly, it can be shown that LU(y
n) > LW (yn) if and only if Â

(q)
2,3 > Â

(q)
1,3. Therefore, the

ML algorithm chooses the edge set EU =
{
{1, 2}, {2, 3}

}
when Â

(q)
1,2 > Â

(q)
1,3 and Â

(q)
2,3 > Â

(q)
1,3.

It follows from symmetry that the ML algorithm chooses the edge set
{
{i, j}, {j, k}

}
when

Â
(q)
i,j > Â

(q)
i,k and Â

(q)
j,k > Â

(q)
i,k . This is equivalent to the ML algorithm choosing the edge set of

an MWST over a complete weighted graph where the weight of the edge between nodes i and

j is equal to Â
(q)
i,j .

APPENDIX J

PROOF OF THEOREM 4

Towards proving the theorem, we first prove the following lemma for p = 3.

Lemma 3. When p = 3, P ∈ D(T 3, θ), and P (q) is given by (27), then the error exponent K
(q)
P

is given by (31).
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Proof: Without loss of generality, assume that EP =
{
{1, 2}, {2, 3}

}
. When n i.i.d. samples

are drawn from P (q), the error event
{
E (q)(yn) 6= EP

}
occurs when either Â

(q)
1,3 ≥ Â

(q)
1,2 or

Â
(q)
1,3 ≥ Â

(q)
2,3. From symmetry, we have P

(
Â

(q)
1,3 ≥ Â

(q)
1,2

)
= P

(
Â

(q)
1,3 ≥ Â

(q)
1,2

)
, and hence

K
(q)
P = lim

n→∞
−1

n
logP

(
Â

(q)
1,3 ≥ Â

(q)
1,2

)
. (72)

As Â
(q)
i,j = P̂

(q)
i,j (0, 0) + P̂

(q)
i,j (1, 1), it follows from Sanov’s theorem [10, Thm. 11.4.1] that

K
(q)
P = min

Q∈P(Y3)

{
D(Q‖P (q)) : Q1,3(0, 0) +Q1,3(1, 1) ≥ Q1,2(0, 0) +Q1,2(1, 1)

}
. (73)

The constraint Q1,3(0, 0) +Q1,3(1, 1) ≥ Q1,2(0, 0) +Q1,2(1, 1) is equivalent to the following:

Q(0, 1, 0) +Q(1, 0, 1) ≥ Q(0, 0, 1) +Q(1, 1, 0). (74)

Let Q∗ denote that Q ∈ P(Y3) which satisfies (74) and minimizes D(Q‖P (q)), and let g be the

map g : Y3 → R given by (44). Then, using a Lagrange multiplier, Q∗ can be obtained as the

exponentially tilted distribution

Q∗(y) =
P (q)(y) exp (λg(y))∑

ỹ∈Y3 P (q)(ỹ) exp (λg(ỹ))
, y ∈ Y3, (75)

where λ is chosen to satisfy (74). Using (27), it can be verified that P (q)(0, 0, 1) = β1 (see (32))

and P (q)(0, 1, 0) = β2 (see (33)), and it follows that

λ =
1

2
log

(
P (q)(0, 0, 1)

P (q)(0, 1, 0)

)
=

1

2
log

(
β1

β2

)
. (76)

Now, using the fact that K
(q)
P = D(Q∗‖P (q)), and substituting (76) in (75), we obtain

K
(q)
P = − log

(
1− 4

(β1 + β2

2
−
√

β1β2

))
(77)

as desired.

The above lemma shows that Thm. 4 holds when P has 3 nodes. For p > 3 nodes, it is

known that the dominant error event in the learning problem using noisy samples occurs at

various 3-node sub-trees corresponding to nodes {i, j, k} ⊂ V satisfying {{i, j}, {j, k}} ⊂ EP
(see [19, Sec. 4, App. A.1]). This observation is related to the correlation decay property for

tree models with uniform marginals over a binary alphabet [18, Lem. A.2]. For a general p-node

tree, the number of such sub-trees resulting in dominant error is equal to ζP in (25), and Lem. 3

shows that the exponent corresponding to this dominant error term is given by (77). As the error

exponent only depends on the dominant error term, it follows that the error exponent using noisy

samples, when P ∈ D(T p, θ) and p > 3, is also given by (77).
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APPENDIX K

PROOF OF THEOREM 5

The following lemma states the result for the special case of p = 3 nodes.

Lemma 4. When P ∈ D(T 3, θ), and y
n are n i.i.d. samples distributed according to P (q) in (27),

then we have

P
(
Ê (q)(yn) 6= EP

)
=

(
2f (q)(n)− f̃ (q)(n)

)(
1 + o(n−1)

)
, (78)

where f̃ (q)(n) and f (q)(n) are given by (35) and (36), respectively.

Proof: For a 3-node tree, we assume without loss of generality that EP =
{
{1, 2}, {2, 3}

}
.

When an implementation of the MWST algorithm (such as Prim’s algorithm [25]) randomly

breaks ties during the construction of the MWST, then similar to the noiseless samples setting

analyzed in (61), we have that

P
(
Ê (q)(yn) 6= EP

)
= P

({
Â

(q)
1,3 > Â

(q)
1,2

}
∪
{
Â

(q)
1,3 > Â

(q)
2,3

})
+

1

2
P
(
Â

(q)
2,3 > Â

(q)
1,2 = Â

(q)
1,3

)

+
1

2
P
(
Â

(q)
1,2 > Â

(q)
2,3 = Â

(q)
1,3

)
+

2

3
P
(
Â

(q)
1,2 = Â

(q)
2,3 = Â

(q)
1,3

)
. (79)

Now, collecting the error events corresponding to the smallest exponent, we obtain

P
(
Ê (q)(yn) 6= EP

)
=

(
P
(
Â

(q)
1,3 > Â

(q)
1,2

)
+ P

(
Â

(q)
1,3 > Â

(q)
2,3

)

+
1

2
P
(
Â

(q)
1,3 = Â

(q)
1,2

)
+

1

2
P
(
Â

(q)
1,3 = Â

(q)
2,3

))(
1 + o(n−1)

)
. (80)

By symmetry, we have P
(
Â

(q)
1,3 > Â

(q)
2,3

)
= P

(
Â

(q)
1,3 > Â

(q)
1,2

)
and P

(
Â

(q)
1,3 = Â

(q)
2,3

)
= P

(
Â

(q)
1,3 = Â

(q)
1,2

)
,

and hence from (80), we get

P
(
Ê (q)(yn) 6= EP

)
=

(
2P

(
Â

(q)
1,3 ≥ Â

(q)
1,2

)
− P

(
Â

(q)
1,3 = Â

(q)
2,3

))(
1 + o(n−1)

)
. (81)

Note that the observed sample y has distribution P (q), and takes values in alphabet Y3 = {0, 1}3.
Now, if we define the random variable U1 as

U1 =





1, if y ∈ {(0, 1, 0), (1, 0, 1)} ,

−1 if y ∈ {(0, 0, 1), (1, 1, 0)} ,

0 if y ∈ {(0, 0, 0), (1, 1, 1), (0, 1, 1), (1, 0, 0)} ,
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and consider n i.i.d. variables {Ui}ni=1, then we observe that

{
Â

(q)
1,3 ≥ Â

(q)
1,2

}
=

{
P̂ (q)(0, 1, 0) + P̂ (q)(1, 0, 1)− P̂ (q)(0, 0, 1)− P̂ (q)(1, 1, 0) ≥ 0

}

=

{ n∑

i=1

Ui ≥ 0

}
. (82)

It can be verified that P̂ (q)(0, 0, 1) = P̂ (q)(1, 1, 0) = β1, given by (32), while P̂ (q)(0, 1, 0) =

P̂ (q)(1, 0, 1) = β2, given by (33). As β1 > β2, it follows that E[U1] < 0. Further, we have

P
(∑n

i=1 Ui = 0
)
> 0 for every admissible n, and hence the conditions for applying the strong

large deviations results in [14] are satisfied. Note that U1 takes values in the alphabet U =

{−1, 0, 1}, and we denote the probability distribution of U1 as Q(u), u ∈ U . Consider the

moment generating function of U1 defined as

φ(t) := EQ

[
etU1

]
= Q(−1) e−t +Q(0) +Q(1) et,

and let τ be the value of t which minimizes φ(t), i.e. τ = argmint∈R φ(t). Then, τ is uniquely

determined as the solution of φ′(τ) = 0, which gives us

eτ =

√
Q(−1)

Q(1)
=

√
β1

β2
, (83)

φ(τ) = Q(0) +
√
4Q(−1)Q(1) =

(
1− (2β1 + 2β2)

)
+ 4

√
β1β2 = exp

(
−K

(q)
P

)
, (84)

where (84) follows from (31). Now, define a random variable V1 taking values in U having

a tilted distribution, denoted Q̃, and defined as Q̃(u) := Q(u) eτu/φ(τ), u ∈ U . Note that

EQ̃[V1] = φ′(τ)/φ(τ) = 0. Let µ2, µ3, and µ4 denote the second, third, and fourth central

moments of V1, respectively. Then, we have

µ2 =
φ′′(τ)

φ(τ)
=

Q(−1)e−τ +Q(1)eτ

φ(τ)
= 4

√
β1β2 exp(K

(q)
P ),

µ3 =
φ′′′(τ)

φ(τ)
=

φ′(τ)

φ(τ)
= 0, µ4 =

φ′′′′(τ)

φ(τ)
=

φ′′(τ)

φ(τ)
= µ2.

From the strong large deviations theorem [14, Thm. 3], we have

P

( n∑

i=1

Ui = 0

)
=

[φ(τ)]n√
2πµ2n

[
1 +

1

8n

(
µ4

µ2
2

− 3− 5µ2
3

3µ3
2

)] (
1 + o(n−1)

)
. (85)

Using the fact that P
(∑n

i=1 Ui = 0
)
= P

(
Â

(q)
1,3 = Â

(q)
1,2

)
, and substituting the values of φ(τ), µ2,

µ3, and µ4, in (85), we obtain

P
(
Â

(q)
1,3 = Â

(q)
1,2

)
= f̃ (q)(n)

(
1 + o(n−1)

)
, (86)
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where f̃ (q)(n) is given by (35). From the strong large deviations theorem, as stated in [14,

Thm. 4], we have

P

( n∑

i=1

Ui ≥ 0

)
=

f̃ (q)(n)

1− z

[
1− 1

2n

(
(zµ3/µ2) + z(1 + z)/(1 − z)

(1− z)µ2

)] (
1 + o(n−1)

)
, (87)

where z = e−τ =
√
β2/β1. Now, combining (82) and (87), and the fact that µ3 = 0, we obtain

P
(
Â

(q)
1,3 ≥ Â

(q)
1,2

)
= f (q)(n)

(
1 + o(n−1)

)
, (88)

where f (q)(n) is given by (36). Finally, we obtain (78) by combining (81), (86), and (88).

The above lemma provides exact asymptotics using noisy samples, when the underlying

graphical is over 3-nodes. For p > 3 nodes, it is known that the dominant error event in

the learning problem using noisy samples occurs at various 3-node sub-trees corresponding to

nodes {i, j, k} ⊂ V satisfying {{i, j}, {j, k}} ⊂ EP (see [19, Sec. 4, App. A.1]). The exponent

corresponding to these dominant error events is the smallest among the set of all error events,

and is given by K
(q)
P in (31). The exact error asymptotics for such a 3-node sub-tree is given

by (78), and hence the exact asymptotics for a general p-node tree, with underlying graphical

model P ∈ D(T p, θ), is given by

P
(
Ê (q)(yn) 6= EP

)
= ζP

(
2f (q)(n)− f̃ (q)(n)

)(
1 + o(n−1)

)
,

where ζP in (25) is the number of such 3-node sub-trees contributing to dominant error events,

with corresponding exponent K
(q)
P .

APPENDIX L

EXTREMAL TREE STRUCTURES: STAR AND MARKOV CHAIN

We show for a p-node tree-structured graphical model P ∈ D(T p, θ), the star and the Markov

chain tree structures are extremal in the following sense.

Proposition 7. For P ∈ D(T p, θ) with p > 3, the value of ζP in (25) is maximized (resp.

minimized) when the underlying tree structure is a star (resp. Markov chain).

Proof: For a given P ∈ D(T p, θ), let i1, . . . , ip be a permutation of 1, . . . , p such that

di1 ≥ di2 ≥ · · · ≥ dip , where dj denotes the degree of node j. Note that star and Markov chain

tree structures are characterized (up to isomorphism) by the following property: di1 = p− 1 for
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a star, while di1 = 2 for a Markov chain. For proving their extremal nature, we will use the

following inequality, where for any given real numbers v1 ≥ v2 > 1,

v1(v1 − 1) + v2(v2 − 1) < (v1 + 1)v1 + (v2 − 1)(v2 − 2). (89)

– If the underlying tree is not a star, then there exists a node j 6= i1 with 1 < dj < p − 1.

If {j, k} ∈ EP . Using (25) and (89), we observe that when edge {j, k} is replaced by the edge

{i1, k}, then ζP is increased for the modified tree structure. This process of increasing ζP can

be repeated until the resulting tree structure is a star, i.e., di1 = p− 1 and di2 = . . . = dip = 1.

– On the other hand, if the underlying tree is not a Markov chain, then di1 > 2. Let {i1, k} ∈ EP
with k 6= ip. Then, by replacing the edge {i1, k} with the edge {k, ip}, and using (25) and (89),

we observe that the value of ζP is decreased for the modified tree structure. This process of

decreasing ζP can be repeated until the resulting tree structure is a Markov chain.

Note that the star and the Markov chains structures coincide for a 3-node tree. We additionally

note that Prop. 7, together with Thm. 3 and Thm. 5, imply that for a fixed θ, the star and Markov

chain structures are extremal in terms of the error probabilities in learning them. This observation

holds for all 0 < θ < 0.5 whereas the corresponding result concerning extremal structures in [12]

holds for a rather restrictive set of correlation parameters.
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