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Generalized Zero-Shot Domain Adaptation for
Unsupervised Cross-Domain PolSAR Image

Classification
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Abstract—Cross-domain polarimetric synthetic aperture radar
interpretation is urgently needed, due to the rapid data growth and
label scarcity. However, the class distribution shift problems hinder
the reuse of labeled samples among cross-domain images. Most of
the existing domain adaptations can only handle the cross-domain
case of same categories between source and target domains, while
the categories of the target domain are usually more abundant than
those of the source domain. To improve the usability of labeled
samples among cross-domain images, an unsupervised generalized
zero-shot domain adaptation (uGZSDA) based on scattering com-
ponent semantics (SCSs) is proposed. By using SCSs and limited
labeled samples (seen categories) in the source domain, more land
cover types (seen and unseen categories) in the unlabeled target do-
main can be inferred. First, a stacked autoencoder (SAE) extracts
source/target-domain features, and SCSs of typical land covers are
constructed by cross-domain databases and statistical scattering
components. Second, combining SAE features and source-domain
samples, the most likely seen class samples in the target domain
are selected by probability sorting, and the SAE is retrained by
obtained selected seen samples. Third, the unseen class samples in
the target domain are inferred by the retrained SAE, classification
probability, and semantic similarity. Finally, the selected seen and
inferred unseen class samples in the target domain are used to
further retrain the SAE, and the target domain is classified by the
retrained SAE and the classifier. The proposed uGZSDA is verified
among 16 cross-domain PolSAR datasets. Using SCS and two to
three types of seen samples from the source domain, the accuracies
of seven types of land covers in the unlabeled target domain can
reach 76–83.96%.

Index Terms—Generalized zero-shot learning (GZSL),
polarimetric synthetic aperture radar (PolSAR) image, scattering
component semantics (SCS), stacked autoencoder (SAE),
unsupervised domain adaptation (uDA).
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I. INTRODUCTION

POLARIMETRIC synthetic aperture radar (PolSAR) can
provide rich polarimetric scattering information for ob-

served land covers under full-time and all-weather condi-
tions [1], [2]. With the rapid growth of PolSAR data, it is
particularly urgent to maximize the role of limited labeled sam-
ples in cross-domain (cross-dataset, cross-temporal, and cross-
source) PolSAR interpretation [3]–[5]. Specifically, an increas-
ing number of spaceborne, airborne, and UAV-borne synthetic
aperture radar (SAR) sensors, e.g., Radarsat-2, Gaofen-3, and
UAVSAR, provide abundant PolSAR data. However, accurately
labeled samples are usually rare, and labeling the samples always
needs professional knowledge in PolSAR interpretation [6],
[7]. In addition, due to the differences of sensors, imaging
geometries, and land cover distributions, the class distribution
shift (CDS) problems [5], [8] between cross-domain data hin-
der the large-scale machine-learning-based applications in Pol-
SAR images. It is acknowledged that the traditional supervised
learning and deep learning methods can hardly deal with the
cross-domain data with CDS [3]–[5]. Cross-domain task mainly
includes cross-dataset (cross-region) [12], cross-temporal [13],
and cross-source [14]. Generally, as long as there are imaging
parameter differences or scene differences between the source
domain and the target domain, they can be defined as cross-
domain problems [3], [9]. Therefore, exploiting and reusing
existing labeled samples to classify newly acquired data is
one of the most concerned hotspots and difficulties in PolSAR
interpretation [3], [9].

As a particular case of transfer learning, an unsupervised
domain adaptation (uDA) can transfer supervised information
of the existing source domain to those of the unlabeled target
domain by reducing the CDS problems [5], [10], [11]. The
uDA is increasingly concerned and applied to solve the label
scarcity problem in remote sensing analysis [15]–[18]. However,
most of the aforementioned uDAs only focus on those cases
where source and target domains are with exactly the same land
covers [19], as shown at the top of Fig. 1. In many practical re-
mote sensing applications, there are usually unseen or unknown
categories in the newly acquired target-domain data [20], such
as the cases at the bottom of Fig. 1. For the unlabeled target
data, it is necessary to reuse the existing labeled samples (seen
classes) from the source domain to improve the interpretation
accuracy and identify the unseen classes that have not been
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Fig. 1. Illustration of typical uDA and seen and unseen classes in cross-domain
PolSAR classification scenarios.

trained and labeled in the source domain. In this case, most
of the existing domain adaptations cannot meet this practical
application requirement [19], [20].

Recently, zero-shot domain adaptation (ZSDA) and general-
ized zero-shot domain adaptation (GZSDA) have been devel-
oped and concerned [21]–[23] in the computer vision field as
promising solutions to the above problems. They have demon-
strated the ability to infer and identify unseen categories in
the target domain by using the seen samples and semantic
information [24]–[28]. However, both ZSDA and GZSDA need
labeled seen samples from source and target domains. Recently,
these domain adaptations that can recognize unseen classes have
been concerned in the optical remote sensing field [19].

Many of the existing cross-domain methods designed for
natural images and optical remote sensing data cannot be directly
applied to PolSAR interpretation [5], [9]. Moreover, it is usually
more common for the newly obtained target domain to not
contain any annotations in PolSAR applications. The difficulties
of cross-domain PolSAR interpretation mainly come from three
aspects.

1) More imaging factors affect and exacerbate the distribu-
tion shifts between cross-domain data, including sensors,
incidence angles, ascending and descending orbits, oper-
ating bands, speckle, imaging seasons, and so on [3], [29].

2) For uDA and unsupervised generalized zero-shot learn-
ing domain adaptation (uGZSDA) problems, feature ex-
pressions should be applicable for any unlabeled target
domain, i.e., the cross-domain features should overcome
distribution shifts and be extensible for both source/target
domains.

3) Due to the lack of generalized semantic expressions that
can be applied to various PolSAR data, it is difficult to
realize the zero-shot learning (ZSL) and generalized ZSL
(GZSL) framework to recognize unseen classes in PolSAR
interpretation [30].

For the PolSAR CDS problems, Wang et al. [29] analyzed
characteristic differences of Gaofen-3, Radarsat-2, and ALOS
2-PALSAR2 data at same sites, and similar work has been
presented in [5] to show the effects of the PolSAR CDS problem.
With various labeled samples from the source domain and a

small number of labeled samples from the target domain, Fang
et al. [7] and Sun et al. [31] proposed semisupervised domain
adaptation for cross-domain PolSAR classification. Even fewer
uDA methods have been developed for SAR interpretation,
Dong et al. [32] first proposed component-ratio-based dis-
tance (CRD) for cross-source PolSAR classification; it classifies
the unlabeled target domain to the same land covers in the
source domain. Moreover, Qin et al. [33] proposed relational-
based transductive transfer learning for PolSAR time-series
images. Additionally, Zhang et al. [34] proposed an unsuper-
vised multilevel domain adaptation for multiband SAR image
classification.

In general, there is a lack of methods to identify unseen
categories in unlabeled target-domain PolSAR data. Although
unsupervised methods can classify certain land covers in Pol-
SAR images [35], [36], their applications are limited by the
model complexity and the uncertainty of the clusters. Supervised
classification methods usually rely on specific labeled samples.
However, accurately labeled samples are particularly difficult
to obtain in PolSAR [3], [37]; it is necessary to further make
the utmost of limited labeled samples in more unlabeled target
domains and achieve a more robust and practical unsupervised
cross-domain PolSAR classification framework. Inspired by
these demands, to further improve the reuse efficiency of Pol-
SAR labeled samples and expand application scopes, a uGZSDA
is proposed in this article. The uGZSDA can infer new classes
and seen classes in the unlabeled target domain only by the
limited seen samples from the source domain. This research is
of great significance to sample reuse, the generalization of Pol-
SAR features, and scattering semantic expression of land covers
for cross-domain PolSAR analysis. Limited studies have been
conducted on SAR domain adaptations [3], [5], [11], and there
are even no publications concerned on the ZSDA/GZSDA in Pol-
SAR interpretation, to the authors’ knowledge. The uGZSDA is
a novel uDA framework that can classify and infer the unlabeled
target domain with unseen classes based on limited seen samples
from the source domain. The main contributions and advantages
of this work are as follows.

1) A novel uDA framework, uGZSDA, is proposed for cross-
domain PolSAR interpretation. It classifies and infers
more abundant land cover types in the unlabeled target
domain, reusing a few types of labeled samples from
the source domain. It overcomes the limitation that the
existing uDA methods can only deal with the case of same
seen classes of source and target domains. The uGZSDA
further extends the practical range of cross-domain Pol-
SAR sample reuse.

2) This article develops the generalized semantic expressions
for PolSAR typical land cover types, which are the infer-
ence basis of unseen categories. The proposed semantic
expressions help to infer the land cover categories of
unlabeled PolSAR data from cross-domain sources and
scenes.

3) The performance of the proposed method has been
validated in 16 datasets from Radarsat-2 and Gaofen-3,
including seven types of land covers, which demonstrate
the robustness and effectiveness of the proposed uGZSDA.
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Fig. 2. Comparison of uDA and uGZSDA effects. (a) uDA case. (b) uGZSDA
case.

The rest of this article is organized as follows. In Section II, the
PolSAR image CDS problems and related works are described.
In Section III, the proposed uGZSDA framework is presented.
Section IV describes the datasets, the experimental setting, the
experimental results, and discussion. Finally, Section V con-
cludes this article.

II. UGZSDA PROBLEMS AND RELATED WORKS

In this section, the uGZSDA problem formulation is first
illustrated. Then, CDS of typical cross-domain PolSAR data
is illustrated, followed by a brief overview of previous studies
related to statistical scattering components [5].

A. uGZSDA Problem Formulation

Most of the existing uDA methods can only deal with the
cross-domain case of the same categories between source and
target domains [19], [22]. They cannot handle the newly acquired
unlabeled target domain with more abundant categories than
those in the labeled source domain [23], [38]. These prevent
the reuse of labeled samples and the transfer of the training
model. This article focuses on a more realistic cross-domain
classification problem arising from real-world scenarios, where
categories in the unlabeled target domain are greater than or
equal to those in the source domain (seen classes). It is ex-
pected to recognize newly obtained unlabeled target-domain
data, including any classes (seen and unseen classes), once the
model is learned. This is a uGZSDA problem. The class-level
semantic representations that are independent of specific images
are usually indispensable in the uGZSDA for inferring unseen
classes of the unlabeled target domain.

To facilitate our presentation in the following sections, Fig. 2
further illustrates the differences between the common uDA and
the proposed uGZSDA. The uGZSDA deals with both the seen
and unseen classes in cross-domain scenarios. These can not
only reuse the labeled samples from the source domain, but

Fig. 3. Domain shifts between source and target domains in uGZSDA set-
ting. (a) Source-domain data and corresponding typical polarimetric features.
(b) Target-domain data and corresponding typical polarimetric features.

also make the target-domain results more in line with the actual
scenarios and needs. More specifically, the uGZSDA problem is
formulated as follows. Given a labeled dataset DS = (xSi, ySi),
i = 1 : nS , from the source domain S, ySi ∈ yS , yS denotes the
seen classes’ label space in the source domain. For the unlabeled
target domain DT = xTj , j = 1 : nT , which contains both the
seen and unseen classes. The goal of the uGZSDA is to predict
target labels yT (the class types are more than yS , yS ∈ yT ),
based on the reuse of labeled source training data and semantic
representations. The uGZSDA integrates the problems in both
uDA and GZSL: the domain shift problems between DS and
DT , and how to infer the unseen classes in DT . Typical uDA
cannot realize the unseen classes inferring, and GZSL usually
cannot overcome the cross-domain shifts.

B. CDS Between Cross-Domain PolSAR Data

Fig. 3 shows the CDS problem in uGZSDA setting by three
groups of typical polarimetric features, including Yamaguchi de-
compositions (Ps/span, Pv/span, and Pd/span), H/alpha/A
decompositions (H , α, and A), and eigenvalues of coherency
matrix (λ1, λ2, and λ3). There are large distribution deviations of
the corresponding categories in cross-domain PolSAR data and
certain intersections between different categories. These CDS
problems seriously hinder valuable labeled samples reuse among
cross-domain data [5]. In addition, there are strong interferences
and interleaving between the unseen class features in the target
domain and seen class features in the source domain. That is, it
is infeasible to identify the new classes of the target domain by
samples from the source domain. To realize the uGZSDA, not
only the CDS problem between the source and target domains
should be overcome, but also the unseen classes should be
inferred according to the polarimetric distribution characteristics
and semantic spaces [24], [30].

C. Statistical Scattering Components

In our previous research [5], [11], statistical scattering compo-
nents (SSCs) are proposed as the feature base for cross-domain
PolSAR interpretation. Based on the widely applicable polari-
metric scattering mechanism, the SSC obtains the histogram
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Fig. 4. Flowchart of the proposed uGZSDA framework.

statistics of land covers’ scattering components (e.g., Yamaguchi
decompositions) at the patch level. Thus, the SSC can effectively
associate the scattering and statistical component information
with the essential attributes of PolSAR land covers. It performs
well for cross-domain PolSAR applications, including, but not
limited to, Gaofen-3, Radarsat-2, AIRSAR, Pi-SAR, UAVSAR,
and Sentinel-1. As a feature paradigm expression, the SSC is
acquired in an unsupervised way, including polarimetric decom-
positions extraction, Wishart clustering, histogram statistics, and
dimensionality reduction. The SSC helps to realize uDA in
cross-domain PolSAR tasks.

Both theoretical and practical verifications show that the
SSC expression is associated with the essential scattering and
statistical characteristics of PolSAR land covers. This unsuper-
vised feature expression manner is used to form the semantic
expression of PolSAR land covers. The semantic expression of
typical PolSAR land covers can be obtained from large-scale
cross-domain databases based on the SSC manner. These scatter-
ing component semantics (SCSs) are also the semantic supports
of uGZSDA inference.

III. PROPOSED METHOD

As shown in Fig. 4, the proposed uGZSDA framework of
cross-domain PolSAR classification is shown.

In this framework, the main land cover classes of the source
domain can be fewer than or the same as those of the tar-
get domain, but the target domain does not contain any la-
beling information. First, the SAE network is used to extract
source/target-domain features, and the SCS expressions of typi-
cal land covers are constructed by the large-scale cross-domain
databases and the SSC manner. Second, when combining the
aligned network features and source-domain labels, the most
likely seen class samples in the target domain are classified by
probability sorting. The SAE network is retrained by using the
obtained labeled seen samples from the target domain. Third,
combined with the retrained SAE network and target-domain
seen classes, the most likely unseen class samples in the target
domain are inferred by using the classification probability and
semantic similarity distances, and the specific unseen category
is inferred by combining the semantic similarities with SCS.

Fig. 5. Process of constructing SCS for typical PolSAR land covers.

Finally, the selected seen and inferred unseen class samples in
the target domain are used to further retrain the SAE network;
the retrained network features and the classifier are applied to
further classify the target domain. The detailed descriptions of
this unsupervised cross-domain classification and inference are
as follows.

A. Scattering Component Semantics

At present, the semantic information used in remote sensing
image ZSL and GZSL mainly comes from Word2Vec or SUN
attributes [24], [30]. However, these semantics from natural
languages and natural image models are not befitting for PolSAR
description. Since SAR mechanisms are generally described by
scattering characteristics, the effects of the Word2Vec or SUN
attributes semantics for PolSAR land cover descriptions are
limited or invalid [30], [39]. To obtain the more befitting seman-
tic expression of PolSAR land covers, this section attempts to
construct semantic expression of PolSAR land covers through
large-scale cross-domain databases and the SSC manner. The
obtained SCS is the inferring basis for the uGZSDA framework.

Combined with labeled cross-domain PolSAR databases
and SSC (including Yamaguchi decompositions extraction,
Wishart clustering, histogram statistics, and dimensionality re-
duction) [5], [11], the process of creating SCS for typical
PolSAR land covers mainly includes four steps: labeled patch
selection from cross-domain databases, SSC feature extraction
of each patch, within-class weight average of SSCs, and the
SCS templates are formed by the averaged SSCs. Among these
steps, the labeled patch selection means to select the patches with
high confidence (combined with the corresponding annotations,
the homogeneous patches are selected). The within-class weight
average step refers to the weighted average of SSCs of the same
type of land covers in different datasets. Considering the SCS’s
universality for the dataset from different PolSAR sensors, the
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Fig. 6. SCS of typical PolSAR land covers.

weights are set the same, and the sample sizes of every land
cover from each dataset are fixed.

Furthermore, Fig. 6 illustrates the quantized SCS visualiza-
tion effect of typical land covers obtained according to the flow
in Fig. 5. In these semantic expressions, the similarities between
water and ice and between forest and farmland are high, which
are well consistent with the basic facts. Theoretically, not only
the land covers in Fig. 6 can be described by SCS, but also the
other typical land covers can be expressed in this way when there
are enough corresponding labeled samples.

B. Feature Extraction Model Based on the SAE

Deep learning methods have been widely applied in SAR
data interpretation [40]. As a typical neural network, the au-
toencoder (AE) network can automatically learn features from
unlabeled data and give better feature descriptions than the
original data [41]–[43]. The AE tries to find a representation
close to the input, and some hidden features can be found in this
process. The stacked autoencoder (SAE) model is a deep neural
network model composed of multilayer AEs, and the output of
the former layer is used as the input of the latter layer, and the
output representation of the highest level can be used as input to a
stand-alone supervised learning algorithm [42], [43]. It is widely
used in unsupervised feature extraction and expression of remote
sensing image classification [15], [44], [45]. SAE has shown
great advantages and attraction in unsupervised PolSAR feature
extractions in recent years [44], [46]. The commonly used SAE
models in SAR interpretation include stacked sparse AE and
stacked denoising autoencoder (DAE). As one of the typical
and mature models, the stacked DAE can select effective feature
representation from high-dimensional features in case of without
labels; therefore, it can effectively reduce the cost of sample
labeling [42], [43]. Combined with the above characteristics,
the stacked DAE is applied.

As shown in Fig. 7, the DAE is the basic block of the applied
SAE, which incorporates the entire n inputs. For a DAE, given
a normalized N -dimensional input vector x, an N -dimensional
hidden layer y is generated as follows [42]:

y = s(wx+ b) = fθ(x) (1)

where w is the weight matrix and b is the bias vector. θ is
the parameter set {w,b}, and s is referred to as the sigmoid

Fig. 7. Illustrations of the DAE basic block.

function. y is, then, mapped back as the DAE output x′

x′ = s (w′y + b′) = g′
θ(y) (2)

where b′ is a different bias vector. The reverse weight matrix w′

can optionally be constrained by w′ = wT , and thus, the DAE
has tied weights. Through the minimization of a loss function L
that represents the error betweenx andx′ by using the stochastic
gradient descent algorithm, θ and θ′ can be determined [42]. The
well-known squared error is applied in the loss functions

L (x,x′) = ||x− x′| |2. (3)

More specifically, the covariance matrixes C3 of source- and
target-domain partitioned samples at the patch level are the input
x of the SAE. The partitioned samples patch size n× n and
the overlapping rate of patches are optional. (Specifically, the
optional range of n is 20–60. To improve efficiency, the default
and empirical value of n can be set to 20, and the overlap rate
is 50%.) For each partitioned sample, the amplitudes of C3 ele-
ments are used to put into the SAE for feature extraction. Due to
the symmetry ofC3 elements, the input dimension of each patch
isn× n× 6. In the SAE step, the input vectorx is first corrupted
into a noisy version x̃ by means of a stochastic mapping qD, as
shown in Fig. 7. Then, the DAE structure generates the output
features x′. The loss function L is established based on x and
x′, according to (3).

In the SAE structure, each DAE process above is regarded as
a pretraining stage, and a fine-tuning stage is needed after it [42].
In the pretraining stage, the input vectors are trained one after
another according to the SAE structure, and the final optimal
parameters are determined in the fine-tuning process. Finally,
the corresponding feature representations can be acquired by
pretraining and fine-tuning stages. The number of SAE layers is
adaptively selected according to the training sets from the source
domain and the target domain.

The SAE has been used three times in the uGZSDA frame-
work, and the specific process is illustrated in Fig. 8. In the first
round of feature extraction, SAE1 is fine-tuned by the labeled
samples from the source domain. The seen classes’ samples in
the target domain can be classified through the SAE features
and probability sorting. In the second round, the obtained seen
classes’ samples from the target domain are used to retrain the
SAE2 network. The unseen classes’ samples in the target domain
are classified through above retrained SAE2 features, probability
sorting, and SCS semantic similarity. Third, the obtained seen
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Fig. 8. SAE usage progress in the uGZSDA.

and unseen classes’ samples are input to the SAE3 network
for feature extraction, and the classifier is retrained to further
classify the whole target domain.

C. Probabilistic Ranking and Semantic Similarity

For different source- and target-domain data, the optimized
feature dimensions obtained by the SAE are also different, while
the dimension of the constructed SCS is uniform. In addition, the
types of seen classes for training are usually different from those
in the target domain, and the differences between different SCSs
are also large. If the mapping between image features and SCS
is obtained by fixed mapping matrixes [49], under the condition
of insufficient training classes and unbalanced seen and unseen
classes, the projection domain shift problem [50] may easily
occur and reduce the uDA effect. To match the variability of SAE
feature dimensions, based on the SAE features and the created
SCSs, a two-step inference is applied to classify and infer the
unlabeled target domain by reusing limited labeled samples from
the source domain. The two-step inference mainly depends on
the classification probability sorting and semantic similarity, and
the details are described in Algorithm 1.

1) Seen Class Classification in the Target Domain: Based on
SAE1, the features of the unlabeled target domain are extracted,
and the target domain is classified into seen land covers. Al-
though SAE1 is trained by the samples from source and target
domains, the fine-tuning is based on the labeled samples from
the source domain. Therefore, it is inevitable that the results
of obtained target-domain seen classes are still affected by
the domain shifts. To reduce the influence of domain shifts,
classification probability ranking is introduced.

For the initial classification results of the target domain, the
probabilities of each seen class are sorted. Only the first p
samples with larger probabilities are selected as corresponding
determined seen samples (p is adjustable), denoted as xSeen

T . In
addition, to retrain SAE2 to make it more suitable for the tar-
get domain, unlabeled samples xunlabeled

T are randomly selected
from the target domain. xSeen

T and xunlabeled
T are used to retrain

SAE2, and the retrained SAE2 is further fine-tuned based on
the obtained xSeen

T . SAE2 is used to extract features from the
target domain and classify it, and the results with the larger
probabilities are determined as the labeled seen samples of the
target domain, i.e., update xSeen

T .
2) Unseen Class Inference in the Target Domain: Based on

SAE2, only seen classes in the target domain can be classified.

Algorithm 1: Two-Step Inference Algorithm.
1: Input: The labeled source domain DS with Ns seen

classes (each class with p samples), the SCS
templates, the unlabeled target domain DT , the unseen
class number Nu (Ns ≥ 2, Nu ≥ 0, Nt = Ns +Nu).

2: Seen class classification in DT :
3: for each samples in DS and DT do
4: Extract the amplitudes of C3 features of train

samples as input of SAE1
5: end for
6: Training the SAE1 by unlabeled samples from DS and

DT

7: Fine-tuning the SAE1 by labeled samples from DS

8: Class the DT by SAE1 features, labeled samples of
DS , and classifier.

9: The first p samples of each class with larger
probabilities are selected as corresponding determined
labeled seen sample set (p is adjustable) in DT , denote
as xSeen

T

10: SAE2 is trained by xSeen
T and unlabeled samples in DT

11: DT is reclassified by SAE2 features, xSeen
T and

classifier, update xSeen
T by the updated probabilistic

ranking.
12: Unseen class inference in DT :
13: for each samples in DT do
14: SSC features are extracted
15: The similarities between each semantic template

SCS and samples’ SSC features are calculated,
select the largest similarity as the inferred class of
the sample.

16: end for
17: The number of labels corresponding to each class is

counted, removing seen classes in inferred results, and
the remaining classes are sorted from large to small,
the first Nu classes of the sorted numbers are
determined as unseen classes.

18: for Each unseen class k ≤ Nu do
19: The p unseen samples with high semantic similarity

and low classification probability in step 11 are
selected as corresponding determined unseen sample
set in DT , denote as xUnseen

T .
20: end for
21: xSeen

T and xUnseen
T are used to train and fine-tune SAE3.

22: The DT is re-classified by SAE3 features, xSeen
T ,

xUnseen
T and classifier.

23: Output: Classified and inferred results (yT ) for the
target domain DT with Nt classes.

To further inference unseen classes, for each unlabeled sample
in the target domain, their SSC [5] features are extracted, and the
similarities between each semantic template SCS and samples’
SSC features are calculated. The similarity vector SimSem is
expressed by cosine similarity [47], [48]

SimSem = [cos(sT ,S1), . . ., cos(sT ,Si), . . ., cos(sT ,SNc
)]
(4)
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TABLE I
DATA DESCRIPTIONS AND USAGES OF THE APPLIED POLSAR DATASET

0SCS1 represents the usage of creating SCS and verifying SCS effectiveness. uGZSDA2 indicates the usage of uGZSDA framework verification.

where sT represents the SSC features of each unlabeled samples;
S1,Si, . . .,SNc

are the SCS templates corresponding to the seen
and unseen classes (Nc is the number of the SCS templates; it
is usually larger than the concerned Nt in the target domain).

For each instance in unlabeled DT , the largest similarity in
simSem is selected as the inferred class of this instance; the
inferred result is denoted asNi (2 ≤ i ≤ Nc). For all the inferred
results of instances inDT , the number of labels corresponding to
each class is counted, denoted as SumN . The classes in SumN

are consistent with the number of classes in the semantic base.
Based on xSeen

T , the seen classes in SumN are removed. The
remaining classes are sorted from large to small; the first Nu

classes of the sorted numbers are determined as unseen classes,
which are denoted as yU . For each class in yU , the first p samples
with high semantic similarity and low classification probability
in step (11) are selected to form the labeled sample set xUnseen

T

for unseen classes in DT

SumN = [SumN1
,SumN2

, . . .,SumNi
, . . .,SumNc

]. (5)

Based on the updatedxSeen
T and thexUnseen

T obtained by seman-
tic inference, SAE2 is retrained again to form SAE3. Because
SAE3 is trained by target-domain samples and the fine-tuning
process also depends on the target-domain samples, SAE3 is
suitable for the target domain to obtain the seen and unseen
classes at the same time. After three rounds of training and
fine-tuning, the SAE is changed from depending on the source
domain to the target domain; the obtained features are more
suitable for the target domain. Thus, the domain-shift problem
is reduced in the SAE training and fine-tuning.

IV. EXPERIMENTS AND RESULT ANALYSIS

The applied dataset and cross-domain settings are first intro-
duced in this section. Then, the proposed SCS and the uGZSDA
are verified. Moreover, further comparisons are presented.

A. Dataset Descriptions and Experimental Settings

The effectiveness of the proposed method was tested on six
Radarsat-2 spaceborne PolSAR data and ten Gaofen-3 space-
borne PolSAR data. The basic information of selected experi-
mental data is shown in Table I. These cross-domain data include
the cross-sources, cross-scenes, cross-temporal data, and the
types of land covers are different. Seven typical types of land
covers are contained in these datasets. For each land cover type in
dataset for creating SCS, 500 samples are randomly selected to
construct corresponding SCS templates. According to the setting
of the uGZSDA in Section II-A, the detailed types of unseen
classes are unknown, but only the number of unseen classes Nu

can be preset.
The cross-domain units in Table II are set to verify uGZSDA

effectiveness. To illustrate the land cover differences between the
source and target domains, the corresponding seen and unseen
land covers are shown in advance. Actually, the unseen classes in
the target domain are unknown, they are inferred by combining
with SCS. If a different number of unseen classes are given,
different classification and inference results can be obtained. By
applying the uGZSDA, labeled samples from a source domain
and generalized SSC can be reused in many other target-domain
data with different land covers. The training samples from the
source domain are selected randomly. For each cross-domain
unit, the number of training samples of each seen class is set to
1000 by defaults, and the number of training samples should be
less than 10% of the number of source-domain samples.

B. SCS Performances

The SCS is constructed based on labeled cross-domain
datasets. These generalized semantic templates can support dif-
ferent unlabeled PolSAR data for land cover inference. To verify
its generalization and effectiveness, three aspects of experiments
are conducted. First, for the obtained SCS templates, the correla-
tions between each kind of SCS are obtained according to cosine
similarity, as shown in Fig. 9. The correlations between SCSs
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TABLE II
BASIC EXPERIMENTAL UNITS INTRODUCTION FOR UGZSDA CROSS-DOMAIN CLASSIFICATION AND INFERENCE

Fig. 9. Correlations between typical land covers’ SCS templates.

are in line with the characteristics of PolSAR land covers. For
example, the SCS relations between water and ice and between
water and desert have high correlativity, because they are mainly
surface scattering targets. The similarity between forest SCS
and farmland SCS is high because they are both vegetation land
covers, including surface scattering and volume scattering. The
similarity between built-up areas SCS and forest SCS is also
high; both of them contain dihedral scattering. In addition, in
Fig. 9, there are great semantic differences between SCSs of
built-up areas and water, built-up areas and desert, desert and
forest, desert and farmland, and farmland and bareland, which
are also in line with PolSAR land cover’s scattering character-
istics. These indicate that the SCS templates are suitable for the
expression of PolSAR typical land covers.

Second, the SSC features of each data sample are directly
matched with each SCS template, and the nearest template is
taken as the inferred result of the sample. The SCS template
matching results of the four datasets in Table I are shown in
Fig. 10. From the results and corresponding ground truth (GT),
it can be seen that the SCS templates can be applied to different
PolSAR data and can also help to infer the main land cover
information. However, due to the CDS problem, there are some
wrong inference results when only using the SCS templates.
For example, the difference between ice and desert SSC is not
significant enough, which leads to some wrong inference results
in the third row of Fig. 10.

Third, the SCS template matching result of the Rs2-Flev
dataset is shown in Fig. 11, and as a comparison, the results

Fig. 10. Examples of the SCS template matching results, (a) Pauli images
of Rs2-Vanco, Rs2-Wuh, Gf3-Jiayg, and Gf3-Yingk datasets. (b) GT of corre-
sponding datasets. (c) SCS matching results.

Fig. 11. SCS template matching result of the Rs2-Flev dataset and compar-
isons. (a) Pauli image. (b) unsupervised Yamaguchi–Wishart clustering results.
(c) Artificially assigned results of (b). (d) SCS matching results. (e) GT.
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Fig. 12. t-SNE visualizations of the Rs2-Sanf-c2/Rs2-Flevo-c5 uGZSDA process.

obtained by unsupervised Yamaguchi–Wishart [51] are pre-
sented [the clusters of unsupervised results should be artificially
assigned to land covers for evaluation in Fig. 11(c)]. Combined
with GT, this group of experimental results can further show
that the SCS templates are more flexible and factual. On one
hand, SCS can help to obtain detailed land covers types for
the unlabeled target-domain data. On the other hand, the SCS
templates are generalized; they can be applied for different
cross-domain PolSAR data.

C. uGZSDA Process Visualization

In general, the above semantic correlations and inference
results are in line with expectations. The inference results in
Fig. 10 are more abundant than GT; this is also consistent with
the actual situation. For some complex scenes in Fig. 10, it is
very difficult to obtain accurate and fine-grained labels, and the
results obtained by the SCS matching can accurately classify the
land cover types in unlabeled data.

To further demonstrate the effectiveness of the uGZSDA
inference, taking Rs2-Sanf-c2/Rs2-Flevo-c5 unit as an example,
the inference process is visualized in Fig. 12. Among the C3
features input into SAE1, only the source-domain samples con-
tain labels. After SAE1 and SAE2, the seen samples in the target
domain are classified and confirmed. Combined with probability
ranking and semantic similarity, the unseen classes in the target
domain are inferred. The inferred samples are used to classify the
target domain. In addition, Fig. 13 visualizes theC3 features and
SAE network features. The original features have large intraclass
differences, while after the uGZSDA, the intraclass aggregation
is optimized. Figs. 12 and 13 prove that the uGZSDA can infer
the unlabeled target domain.

D. Evaluation of Proposed uGZSDA Frameworks

According to the definition and settings of the uGZSDA, the
experimental units in Table II are evaluated quantitatively. The
number of seen classes in the source domain is two to three; the
training samples from the source domain are selected randomly.
For each class, the number of training samples is 1000. The
target domain does not contain any labels, and the unseen classes
are unknown. To make the SAE network suitable for the target

Fig. 13. t-SNE visualizations of the C3 features and the SAE features.

Fig. 14. uGZSDA results of Rs2-Sanf-c3/Rs2-Flev-c4 unit. (a) and (b) are the
source-domain Pauli image and GT, respectively. (c) and (d) are the Pauli image
and uGZSDA results of the target domain, respectively.

domain, unlabeled target-domain samples are randomly selected
to participate in the training, and the total number of samples is
the same as that of the source domain.

The uGZSDA results of eight units in Table II are shown
in Figs. 14– 22. The target domains have no labeled samples
in all experiments, and the categories in the target domain are
different from the source-domain categories (unseen categories
are unknown, but the number of unseen categories can be preset).
From the results, by using two to three types of seen labeled
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Fig. 15. uGZSDA results of Rs2-Sanf-c3/Rs2-Vanco-c4 unit. (a) and (b) are
the source-domain Pauli image and GT, respectively. (c) and (d) are the Pauli
image and uGZSDA results of the target domain, respectively.

Fig. 16. uGZSDA results of Rs2-Sanf-c2/RFlev-c4 unit. (a) and (b) are the
source-domain Pauli image and GT, respectively. (c) and (d) are the Pauli image
and uGZSDA results of the target domain, respectively.

Fig. 17. uGZSDA results of Rs2-Sanf-c3/Gf3-Wuhan-c4 unit. (a) and (b) are
the source-domain Pauli image and GT, respectively. (c) and (d) are the Pauli
image and uGZSDA results of the target domain, respectively.

Fig. 18. uGZSDA results of Rs2-Sanf-c3/RFlevo-c5 unit. (a) and (b) are the
source-domain Pauli image and GT, respectively. (c) and (d) are the Pauli image
and uGZSDA results of the target domain, respectively.

Fig. 19. uGZSDA results of Rs2-Sanf-c2/Gf3-Yingk-c4 unit. (a) and (b) are
the source-domain Pauli image and GT, respectively. (c) and (d) are the Pauli
image and uGZSDA results of the target domain, respectively.

Fig. 20. uGZSDA results of Gf3-Dunh-c2/Gf3-Jia-c3 unit. (a) and (b) are the
source-domain Pauli image and GT, respectively. (c) and (d) are the Pauli image
and uGZSDA results of the target domain, respectively.

Fig. 21. uGZSDA results of Rs2-Sanf-c2/Rs2-Flevo-c5 unit. (a) and (b) are
the source-domain Pauli image and GT, respectively. (c) and (d) are the Pauli
image and uGZSDA results of the target domain, respectively.

Fig. 22. uGZSDA results of Rs2-Sanf-c2/Gf3-WuhA-c4 unit. (a) and (b) are
the source-domain Pauli image and GT, respectively. (c) and (d) are the Pauli
image and uGZSDA results of the target domain, respectively. (e) and (f) are the
partial GT and the corresponding results for evaluation, respectively.

TABLE III
EVALUATION OF RS2-SANF-C3/RS2-FLEV-C4 UGZSDA CROSS-DOMAIN

RESULTS (%)

samples from the source domain, combined with SCSs, four to
seven types of land covers can be classified or inferred for the
unlabeled target domain. The classification and inference results
are mostly in line with the actual situations.

In particular, the quantitative evaluations of Rs2-Sanf-c3/Rs2-
Flev-c4, Rs2-Sanf-c3/Rs2-Vanco-c4, Rs2-Sanf-c3/RFlevo-c5,
Rs2-Sanf-c2/RFlev-c4, Rs2-Sanf-c2/Rs2-Flevo-c5, and Rs2-
Sanf-c2/Gf3-WuhA-c4 units are shown in Tables III–VIII;
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TABLE IV
EVALUATION OF RS2-SANF-C3/RS2-VANCO-C4 UGZSDA CROSS-DOMAIN

RESULTS (%)

TABLE V
EVALUATION OF RS2-SANF-C3/RFLEVO-C5 UGZSDA CROSS-DOMAIN

RESULTS (%)

TABLE VI
EVALUATION OF RS2-SANF-C2/RFLEV-C4 UGZSDA CROSS-DOMAIN

RESULTS (%)

TABLE VII
EVALUATION OF RS2-SANF-C2/RS2-FLEVO-C5 UGZSDA CROSS-DOMAIN

RESULTS (%)

TABLE VIII
EVALUATION OF RS2-SANF-C2/GF3-WUHA-C4 UGZSDA CROSS-DOMAIN

RESULTS (%)

the accuracies of the three cross-domain units can reach
76–83.96%. The units of Rs2-Sanf-c3/RFlevo-c5 and Rs2-Sanf-
c2/RFlevo-c5 use the two to three types of labeled samples
from the source domain to infer the five types of land covers’
results in the unlabeled target domain. Since the GTs of Gf3-
Wuhan, Gf3-Yingk, and Gf3-Yingko datasets are incomplete,
the uGZSDA classifies or infers all samples in the target domain;
therefore, these inference results in Rs2-Sanf-c2/Gf3-WuhA-c4,
Rs2-Sanf-c2/Gf3-Yingk-c4, and Gf3-Dunh-c2/Gf3-Jia-c3 units
are not evaluated quantitatively. Above inferred results and
quantitative evaluation show the effectiveness and extensibility
of the proposed uGZSDA method. Combined with semantic
information, a small number of labeled samples in the source
domain can play a better role in many unlabeled target-domain
data with different land covers.

In addition, Figs. 17, 19, and 20 show the results of Rs2-Sanf-
c3/Gf3-Wuhan-c4, Rs2-Sanf-c2/Gf3-Yingk-c4, and Gf3-Dunh-
c2/Gf3-Jia-c3 cross-domain units, respectively. Because there
is no complete GTs for these target domains, the quantitative
evaluations of these three results are not available. The land
cover scenarios of these three target-domain datasets are very
complex, but the inference results are mostly consistent with the
facts. For example, in Fig. 19, according to the built-up areas and
water samples from the source domain, the built-up areas, water,
ice, and bareland in the unlabeled target domain are obtained
by inference, which are consistent with the characteristics of
the corresponding region in imaging time. Compared with the
results by SCS template matching in third and fourth rows of
Fig. 10, the results in Figs. 19 and 20 are more accurate and
applicable.

Especially, for the cross-domain unit Rs2-Sanf-c2/Gf3-
WuhA-c4, the target-domain dataset Gf3-WuhA does not par-
ticipate in SCS semantic creation, which can be considered as
the newly acquired target-domain data without labels and prior
information. Table VIII evaluates the accuracy of the results
of cross-domain unit Rs2-Sanf-c2/Gf3-WuhA-c4 on a limited
number of labeled samples. The results in Fig. 22 and Table VIII
further prove the effectiveness of the proposed method. The
above experiments show that the uGZSDA can fully utilize
labeled samples in the source domain and semantic information,
to overcome the CDS problem and classify the unlabeled target
domain.
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Fig. 23. Unsupervised cross-domain results based on the uGZSDA and com-
parisons.

Fig. 24. Comparison of uDA and uGZSDA effects in the Rs2-Sanf-c2/Rs2-
Flevo-c5 unit.

E. Comparisons and Special Cases

Since there are few well-established methods for the cross-
domain PolSAR inference classification for the unlabeled tar-
get domain, it is difficult to get comparisons under the same
experimental settings (the unlabeled target domain with more
categories than that of the labeled source domain). However, be-
cause the number of unseen classes Nu can be set, the proposed
uGZSDA model can degenerate to the conventional uDA when
Nu = 0. To further compare with other typical uDA methods,
Nu is set to 0, and the unsupervised cross-domain experiments
are carried out using Rs2-Flev and Rs2-Vanco datasets. The
labeled samples from the source domain include four classes.
The Rs2-Vanco-c4/Rs2-Flev-c4 and Rs2-Flev-c4/Rs2-Vanco-c4
cross-domain results and comparisons are shown in Fig. 23. The
applied comparisons include unsupervised Yamaguchi–Wishart
clustering, supervised random forest methods in the target do-
main, CRD cross-domain method [32], and SSC-subspace align-
ment (SSC-SA) [5]. It is difficult to directly obtain the number
and specific types of land cover by unsupervised clustering;
therefore, we artificially assign the clusters to land covers for
evaluation. In Fig. 23, the results of the uGZSDA(Nu = 0) are
comparable with those of SSC-SA, which are better than those
of CRD and unsupervised results in the target domain.

In addition, to further highlight the differences between the
uDA and the uGZSDA, the Rs2-Sanf-c2/Rs2-Flevo-c5 and Rs2-
Sanf-c3/Rs2-Vanco-c4 cross-domain units are conducted and
compared with the uDA, as shown in Figs. 23–25. The experi-
ments show that the uGZSDA is more applicable than the uDA.
The uGZSDA can not only make the labeled samples be reused

Fig. 25. Comparison of uDA and uGZSDA effects in the Rs2-Sanf-c3/Rs2-
Vanco-c4 unit.

in cross-domain data, but also infer some new types of land
covers in the unlabeled target domain, which further reduce the
burden of labeling samples.

V. CONCLUSION

To further reuse the limited valuable labeled samples among
cross-domain PolSAR images, the uGZSDA framework was
proposed to classify and infer the seen and unseen classes in the
unlabeled target domain based on generalized SCS semantics.
In the uGZSDA framework, the domain shift problem between
source and target domains can be reduced by three rounds of SAE
fine-tuning. The seen and unseen classes in the unlabeled target
domain were classified and inferred by using classification prob-
abilities and semantic similarity distances with SCS templates.
The uGZSDA realized cross-domain labeled samples reuse and
overcame the limitation that the existing-domain adaptations
can only deal with the case of same seen classes of source
and the target domain. It further extended the practical range
of cross-domain PolSAR sample reuse. Moreover, this article
proposed and constructed the generalized semantic expression
SCS for PolSAR typical land covers. The SCS helped to infer the
unseen land covers of unlabeled PolSAR data from cross-domain
sources or scenes. The proposed method was verified in seven
types of land covers in 16 Radarsat-2 and Gaofen-3 datasets. By
using two to three types of seen samples from the source domain,
combined with generalized SCSs, the accuracies of four to five
types of seen and unseen land covers in the unlabeled target
domain can reach 76–83.96%.

The uGZSDA mainly focused on the labeled samples reuse
from one source domain to multiple unlabeled target domains. In
practice, labeled samples from multiple source domains may be
available, and the categories in different source domains can be
complementary for the unlabeled target domain with complex
land covers. The follow-up research will focus on how to com-
plement or weight the accurate labeled samples from multiple
source domains, so as to provide more comprehensive labeled
cross-domain samples for unlabeled target domains. This is also
a way to further improve the cross-domain performance and
PolSAR sample reuse application scope.
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