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Probabilistic Appearance-Invariant
Topometric Localization with New Place Awareness

Ming Xu, Tobias Fischer, Niko Sünderhauf and Michael Milford

Abstract—Probabilistic state-estimation approaches offer a
principled foundation for designing localization systems, because
they naturally integrate sequences of imperfect motion and
exteroceptive sensor data. Recently, probabilistic localization
systems utilizing appearance-invariant visual place recognition
(VPR) methods as the primary exteroceptive sensor have demon-
strated state-of-the-art performance in the presence of substantial
appearance change. However, existing systems 1) do not fully
utilize odometry data within the motion models, and 2) are
unable to handle route deviations, due to the assumption that
query traverses exactly repeat the mapping traverse. To address
these shortcomings, we present a new probabilistic topometric
localization system which incorporates full 3-dof odometry into
the motion model and furthermore, adds an “off-map” state
within the state-estimation framework, allowing query traverses
which feature significant route detours from the reference map
to be successfully localized. We perform extensive evaluation
on multiple query traverses from the Oxford RobotCar dataset
exhibiting both significant appearance change and deviations
from routes previously traversed. In particular, we evaluate
performance on two practically relevant localization tasks: loop
closure detection and global localization. Our approach achieves
major performance improvements over both existing and im-
proved state-of-the-art systems.

Index Terms—Localization, Autonomous Vehicle Navigation,
Vision-Based Navigation

I. INTRODUCTION

THIS letter addresses the long-term localization problem,
where the aim is to localize a robot within a pre-built

map across varying levels of appearance change induced by
time of day, weather, seasonal or structural changes. We
focus on topometric maps which do not require metrically
accurate reconstructions of the environment, thus enabling
large-scale mapping. Topological maps consist of a discrete set
of nodes or “places” connected by edges which encode spatial
constraints. Incorporating relative pose information provided by
odometry within these edges yields a topometric representation.
Each node within the map stores an appearance signature by
applying appearance-invariant visual place recognition (VPR)
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techniques [1]–[6] to an image captured at the corresponding
place, enabling persistent localization.

Localization systems built around appearance-based topo-
metric maps have become a key component of the 6-dof visual
localization literature [7]–[9], where hierarchical localization
approaches have demonstrated state-of-the-art performance.
In such a hierarchy, the robot first localizes to a coarse,
topometric map, and this coarse localization is used to initialize
a structure-based pose refinement step. This hierarchical
approach increases accuracy while minimizing computation
time compared to only running pose refinement [8]–[10].

Appearance-based topometric localization systems have
also been used as the basis for mapping systems [11]–[13],
allowing for large-scale mapping and navigation [14]–[16]
with minimal compute and sensing capability (i.e. camera and
odometry). A key motivation for improving the capability of
topometric localization systems is there to aid the development
of downstream mapping and navigation systems.

Despite the current impressive performance of appearance-
based localization systems, existing methods still have major
capability gaps. Specifically, systems exploiting appearance-
invariant VPR do not fully utilize 3-dof odometry, suggesting
possible further performance gains through its incorporation.
Furthermore, existing systems tend to implicitly assume query
traverses follow the same route as the mapping traverse. We
show that localization performance of current systems is
significantly compromised if this assumption is not met.

Our list of key contributions is the following:
1) A discrete filtering formulation for topometric localization

which combines appearance-invariant VPR with 3-dof
odometry. Key to this system is a novel, principled
technique for conditioning transition probabilities between
discrete states with continuous 3-dof odometry. This
extends existing discrete filters which use none [10], [17]
to limited [9] odometry and provides an alternative to
continuous state systems utilizing particle filters [10], [18].
We will show that discrete filters combined with backward
smoothing provide substantially improved localization
performance to continuous state systems which are only
capable of forward filtering.

2) We propose a technique to handle localization of query
traverses which can contain significant deviations in route
compared to what was traversed when building the map.
We achieve this by augmenting our discrete filter with an
off-map state. Importantly, addition of the off-map state
does not hinder performance when the query traverse
follows the reference traverse.
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Fig. 1. We propose a probabilistic topometric localization system based on a discrete Bayes filter. Left: Bayes network diagram for our system, illustrating
appearance-based measurements from query images zqt and 3-dof probabilistic query odometry uq

t . Middle: We present methodology for loop closure detection
combining our Bayes filter with backward smoothing, making data associations using a confidence score computed from the beliefs. Right: Our method
includes a novel “off-map” state, allowing the robot to infer whether or not it has left the map using appearance and odometry information.

3) Extensive evaluation of our system on both the loop
closure detection problem and the global localization or
“wake-up” problem on the RobotCar dataset [19]. We
demonstrate that our improved model formulation yields
significant performance gains for both tasks compared
with the state-of-the-art [9], [10].

Figure 1 provides an overview of our proposed system. We
also make our code freely available online1.

II. RELATED WORKS

This section reviews relevant research on visual place
recognition (Section II-A) and appearance-based topometric
localization systems (Section II-B).

A. Visual Place Recognition
The VPR problem is commonly treated as a template

matching problem [20]; we assume the map consists of a set of
reference “places”, and each place has an associated template
extracted from either single images [1], [4], [21] or image
sequences [22]–[24]. Place recognition for a query template
is achieved by retrieving the most “relevant” template from
the set of reference places. One focus within VPR research is
around designing methods that can successfully match places
across changing appearance conditions such as day/night and
seasonal changes [1], [4], [8], as well as across viewpoint
changes [21], [25]. VPR approaches can be further partitioned
into methods that perform matching using deep learning [4],
[5], [8], [26] (see [27] for a review) or handcrafted visual
features [1], [3] (see [28] for a review). Common across many
of these approaches is a match scoring system; given a pair of
images, a typical VPR system outputs a “quality score” which
indicates the likelihood of two images being captured from the
same place. Methods such as [1], [4], [5], [8] first embed the
images into an embedding space and set the quality score as
the Euclidean distance between the embeddings; where lower
distances indicate a higher likelihood of a match.

B. Appearance-based Topometric Localization
One of the pioneering works on appearance-based local-

ization is the probabilistic template matching approach FAB-
MAP [21]. FAB-MAP represents images using a bag-of-visual-
words representation constructed from handcrafted SURF

1https://github.com/mingu6/TopometricLoc

features, which severely limits its robustness to appearance
changes. CAT-SLAM [12] augments FAB-MAP with local
odometry information and uses a particle filter for localization.
This trajectory-based algorithm was then reformulated as a
graph-based representation in CAT-Graph [13]. A key advantage
of these approaches is that new place detection is formulated
as a structured prediction task using the probabilistic model.
Our method provides this capability with added appearance in-
variance through appearance-invariant VPR. Recently, Oliveira
et al. [29] have proposed a probabilistic deep learning approach
that consists of three modules: odometry estimation given two
consecutive images using a Siamese network, a topological
module that estimates the pose of an query image given the
reference images, and a fusion module to merge the other two
module outputs into a topometric pose.

Xu et al. [10] adapt appearance-invariant image descriptors
like NetVLAD [4], DenseVLAD [1] and APGeM [5] to the
Bayesian state-estimation framework, demonstrating state-of-
the-art performance for global localization with substantial
appearance change between query and reference images.
The authors provide both a discrete topological filter that
does not use odometry information, and a particle filter that
utilizes odometry. While the particle filter uses odometry and
demonstrates improved performance over the topological filter,
it requires places in the map to be embedded within a global
coordinate frame. Our method does not require this, making it
more broadly applicable including situations where globally
consistent reference poses are not available.

Badino et al. [11] proposed a topometric localization system,
utilizing SURF features and odometry in a discrete Bayes filter
formulation. Stenborg et al. [9] recently extended Badino’s
method to use NetVLAD [4], DenseVLAD [1] and APGeM [5].
However, both methods utilize only 1D (forward) odometry
information instead of full 3-dof odometry utilized by our
proposed method. Like our proposed approach, [9] performs
backward smoothing after forward filtering, however their
method assumes no route deviations between query and
reference. We show that this assumption has a substantial
impact on localization performance when it does not hold.

III. METHODOLOGY

We now introduce the methodology behind our proposed
localization system, starting with the map representation
(Section III-A) and state-estimation formulation for localization

https://github.com/mingu6/TopometricLoc
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Fig. 2. Topometric map representation. Blue triangles indicate places within
the map. Blue arrows represent adjacent places with odometry collected during
mapping. Orange arrows indicate an edge with corresponding relative pose
estimates. We also allow for transitions to/from the off-map node O.

(Section III-B). We then introduce the motion and measurement
models (Sections III-C and III-D). This is followed by our
proposed methodology for both the loop closure detection
(Section III-E) and global localization task (Section III-F).
In the following section we use the superscript r and q to
denote variables related to the reference map and query traverse,
respectively. Vectors are printed in bold, with the i-th element
of vector v being vi.

A. Map Representation

We assume a topometric representation for the reference
map comprised of nodes and directed edges, with nodes X =
{1, . . . , N} indexed by integers representing places and edges
ei→j ∈ E , for some i, j ∈ X representing possible transitions
between nodes. Each node v ∈ X has an associated appearance
signature zrv ∈ Rd given by an image embedding from a VPR
technique such as [1], [4], [5], [8] and each edge has an
associated relative pose estimate µri→j = [∆x,∆y,∆θ]> from
odometry.

Nodes corresponding to nearby places are connected with
edges. We assume a reference map is comprised of a single
traverse, where node indices are ordered temporally, edges can
be determined by index proximity, i.e. ei→j ∈ E if j > i and
j−i < w for some w > 1. In future work, we plan to generalize
beyond this simple representation to an arbitrary network
topology incorporating loop closures. In our experiments, we
generate maps by subsampling nodes at regular spatial intervals
as indicated by odometry.

Localization of a query image to a reference map involves
identifying the reference node which corresponds to the same
place where the query image was captured. If reference nodes
are provided with associated poses (e.g. from GPS), a metric
pose estimate for a query image can be obtained by inheriting
the pose of the selected reference node.

B. Discrete Bayes Filters for Localization

We utilize a discrete Bayes filtering approach for our
topometric localization system. For a query sequence comprised
of appearance signatures {zqt}Tt=0 and odometry {uqt}Tt=1, the
discrete Bayes filtering framework allows us to maintain a state
estimate of the true unknown robot state xt at each timestep
t ≤ T . Under a discrete model, the true robot state takes on
discrete values, in this case xt ∈ X ∪O, where O is a single
“off-map state” representing the case when the robot is not

close to the previously traversed area given by the reference
map. The state estimate for xt is given by a belief vector pt,
which is a probability density over discrete states. Given an
initial belief p0, we can update the belief recursively using a
motion model (Section III-C) and measurement model (Section
III-D) which utilize the odometry and appearance information,
respectively. Our proposed filtering system can be used to
solve practical downstream localization tasks; in this letter we
address both the loop closure detection (Section III-E) and
global localization (Section III-F) task. We now describe in
detail our motion and measurement models.

C. Motion Model

Our motion model encodes the probabilistic dynamics
between robot states and is represented by an (N+1)×(N+1)
state-transition matrix Et, where the row i column j element
is defined as Et,ij = p(xt = j|xt−1 = i,uqt ). Unlike existing
approaches, our discrete transition probabilities are conditioned
on 3-dof query odometry and fully utilizes probabilistic motion
models. Specifically, query odometry uqt = (µqt ,Σ

q
t ) contains

a distribution over the change in pose from zqt−1 and zqt
parameterized by a mean vector µqt = (µqx, µ

q
y, µ

q
θ)
> and

3× 3 covariance matrix Σq
t . This distribution, combined with

the mean relative pose estimates encoded within map edges
described in Section III-A, are used to compute transition
probabilities between all nodes, including the off-map node O.

Within-to-Within Map Transitions The transition prob-
ability between two within map nodes i and j denoted
Et,ij = p(xt = j|xt−1 = i,uqt ), where i, j ∈ X and edge
ei→j exists, is determined by the similarity in motion between
the query odometry uqt and the edge from i to j. However,
in the case where the query odometry is inconsistent to the
outgoing edges from node i (e.g. query odometry measures
1.5m but neighboring reference nodes are spaced 1m apart),
naively computing query and edge similarity will result in a
low similarity for all outgoing transitions, even if the query
odometry is consistent with the reference traverse. These
discretization errors motivate the following methodology (see
Figure 3 for a visualization).

Let node i be the origin of the local coordinate frame. The
3-dof robot pose relative from node i denoted yt after applying
query odometry uqt is distributed as

p(yt|xt−1 = i,uqt ) ∼ N (µqt ,Σ
q
t ). (1)

This is a continuous distribution of relative pose yt conditioned
on discrete node xt−1 = i. We score the likelihood of yt
being on the previously mapped trajectory around node j to
evaluate Et,ij . Denoting this trajectory segment as Tj , we
approximate the true trajectory by interpolating the midpoints
of the predecessor and successor node. Concretely,

Tj = {sµri→j∗++(1− s)µri→j∗− , s ∈ [0, 1]}, (2)

for midpoints µri→j∗+ = 1
2

(
µri→j + µri→j+1

)
and µri→j∗− =

1
2

(
µri→j−1 + µri→j

)
. We set the transition probability using

the likelihood at the most likely point in Tj given by

Et,ij ∝ max
yt∈Tj

p(yt|xt−1,uqt ). (3)
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Fig. 3. Computation for transition probabilities for node 1. The local trajectory
around nodes 1-3 (only T2 in purple is shown) is scored against the probabilistic
query odometry (red) using Mahalanobis distance to yield d2t,1j . This is used
for the off-map Et,1O and within-map transitions Et,1j .

To solve this, we reformulate this maximum likelihood problem
as a minimum Mahalanobis distance problem due to the
Gaussianity of yt, equivalently solving instead for

d2t,ij = min
s∈[0,1]

(
Tj(s)− µqt

)>
Σq−1
t

(
Tj(s)− µqt

)
, (4)

where Tj(s) = sµri→j∗+ + (1 − s)µri→j∗− for s ∈ [0, 1]. The
transition probability is now given by

Et,ij =
e−

1
2d

2
ij∑

j′ 6=O e
− 1

2d
2
ij′

(1− pt,iO), (5)

where Et,iO is introduced below.
Within-to-Off Map Transitions We can use the set of

squared Mahalanobis distances {d2t,ij}j 6=O computed using
Eq. (4) to estimate the off-map transition probability pt,iO.
Intuitively, higher Mahalanobis distances imply a lower like-
lihood of the robot maintaining the original trajectory at the
section, warranting a higher off-map transition probability. To
make this relationship explicit, note that

P (d2t,ij < d) = χ2
3(d), (6)

where χ2
3 is the cumulative distribution function of a chi-

squared distribution with 3 degrees-of-freedom. This represents
the probability mass under the Gaussian in the hyperellipsoid
defined by a maximum squared Mahalanobis distance of d. We
set the off-map transition probability as

Et,iO = min
j
χ2
3(d2ij). (7)

For nodes where the query odometry is inconsistent to the
mapping odometry, probability mass moves to the off-map
state after a motion update step, reducing the total belief in
the outgoing nodes. This is similar to particle re-weighting for
odometry described in CAT-SLAM [12] and CAT-Graph [13].
Figure 3 illustrates our proposed motion model.

Transitions From Off-Map The off-map node self-
transition probability EO→O is a parameter assumed constant
for all t and can be tuned on a representative training dataset.
Increasing EO→O increases the “inertia” of the off-map state,
making recovery to within-map states slower using the motion
model alone. Furthermore, outward transitions from O to any
within-map state occur with uniform probability.

D. Measurement Model

Our measurement model at time t is encoded by a length
N + 1 measurement vector gt. The measurement model scores
the likelihood of a query image given a particular robot
state p(zqt |xt). For within-map states, we follow the method
proposed in [10], where the likelihood for state xt is given by
an exponential kernel over the appearance signatures

p(zqt |xt) ∝ gt,xt = exp(−λ‖zqt − zrxt
‖2), (8)

where λ is calibrated using zq0 as in [10].
The off-map likelihood is set as the likelihood of the kth

best match for k >> 1. Concretely, p(zqt |xt = O) ∝ gt,(k),
where (k) is the index to the kth highest likelihood value at
time t. The intuition behind this measurement update is to
provide the off-map state a consistently high but not optimal
likelihood. As a consequence, our method only converges to
a location within the map if VPR yields consistently strong
matches consistent with odometry. We now describe how we
can use our localization system for two practical localization
tasks: loop closure detection and global localization.

E. Backward Smoothing for Loop Closure Detection

The loop closure detection (LCD) task involves localizing
each element of a query sequence relative to the reference map.
In this section, we will describe our proposed methodology
for LCD combining discrete filters (Section III-B) with the
forward-backward algorithm for discrete hidden Markov models
(Section III-E). We note that while backward smoothing with
a discrete filter has been investigated before in the localization
context [9]2, we are the first to present methodology for a
standalone localization system. We will also show in Section
V-A that backward smoothing with discrete filters outperforms
continuous state formulations where only forward filtering is
possible.

The forward-backward algorithm allows us to recover a
smoothed belief pst at each time given future and past odometry
and appearance information. Specifically,

pst,i = p(xt = i|uq1:T , z
q
0:T ) where t ≤ T. (9)

In practice we observe that incorporating future observations
in estimating the belief increases localization performance
significantly compared to forward filtering alone at minimal
computation cost. To apply the forward-backward algorithm
requires three steps: extracting measurement vectors {gt} and
state transition probabilities {Et}, running forward recursion
and finally running backward recursion.

Forward recursion computes for all t the joint likelihood
of observations up to time t given by αt, starting with
α0 = p0 ◦ g0 (◦ is the elementwise product). We update αt
recursively using

αt,i = p(zq0:t,u
q
1:t, xt = i) = gt,i

∑
j∈X

αt−1,jEt,ji. (10)

This recursion given by Eq. (10) is fast to compute in practice
due to the typical sparsity of edges in the map representation.

2Results from smoothing are used to remove unlikely image retrievals for a
subsequent pose refinement step in a 6-dof localization pipeline.
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Algorithm 1: Loop closure detection
Data: Query sequence, reference map and τthres
Result: Sequence of state estimates {x̂t}Tt=0 associated

with each query image.
Initialize p0 with uniform belief over within-map states

and off-map state p0,O;
Evaluate measurement model, yielding gt for all t;
Evaluate motion model, yielding Et for all t;
Run forward recursion, yielding αt for all t;
Run backward recursion, yielding βt for all t;
Compute smoothed beliefs pst for all t;
Apply convergence detection to smoothed beliefs;

Backward recursion computes for all t the joint likelihood
of observations after time t given by βt, starting with βT = 1.
We update βt recursively using

βt−1,i = p(zqt:T ,u
q
t:T , xt = i) =

∑
j∈X

βt,jgt,jEt,ij . (11)

We can finally recover the smoothed belief using the relation
pst ∝ αt ◦ βt. More detail around the forward-backward
algorithm can be found in [30]. After computing the smoothed
belief, we can apply convergence detection described in Section
III-G to infer precise location estimates. Algorithm 1 outlines
the full procedure for the LCD task.
F. Global Localization (Wakeup) Problem

In addition to LCD, we can apply our localization system to
the global localization or “wakeup” task. Global localization
involves localizing a robot to a map assuming no prior
information is available around its location. Xu et al. [10]
proposed a method for addressing the wakeup task using
probabilistic filtering techniques, where the robot is first
initialized with a uniform prior belief. Forward filtering steps
are then applied given a query sequence until the belief has
sufficiently converged around a specific place within the map;
see [10] for detailed methodology. We show the utility of our
filtering formulation for the wakeup task in our experiments.

G. Convergence Detection
We use a modified version of the method proposed in [10]

to infer a single robot state x̂t given a belief pt. Convergence
occurs when the belief is sufficiently concentrated around its
mode, representing confidence in the state estimate. Denote the
belief restricted to within-map nodes by pt,¬O. Convergence
score τt = s(pt) ∈ [0, 1] is given by

τt =
∑

x∈Nr(x̂t)

pt,x, where x̂t = arg max pt,¬O, (12)

where Nr(x̂t) contains all nodes within radius r around x̂t. If
τt > τthres, set x̂t to be the proposed robot location otherwise
infer that the robot is off-map.

IV. EXPERIMENTAL SETUP

We evaluate the localization performance of our method
against existing state-of-the-art and show both the robustness
of our approach across varying levels of appearance change
and changes in route between query and reference.

TABLE I
OXFORD ROBOTCAR DATASET SUMMARY

Seq Date + Time Dist. (km) Conditions Detour
Ref 2015/03/17 11:08:44 9.01 Overcast N/A
1 2014/11/21 16:07:03 6.18 Dusk NO
2 2014/12/16 18:44:24 9.07 Night NO
3 2015/07/29 13:09:26 1.86 Rain YES
4 2015/04/24 8:15:07 3.46 Sun YES

1.36km

1.08km

Fig. 4. Map overlaid with reference and query traverses used for evaluation.
Credit: ©OpenStreetMap contributors

A. Datasets

We use one reference and four particularly challenging
query traverses from the Oxford RobotCar dataset [19] in
our experiments, utilizing images from the forward facing
camera and provided visual odometry (VO) data3.

The selected traverses exhibit substantial time-of-day, sea-
sonal and structural changes between reference and all queries.
Table I shows summary statistics of the different traverses
and Figure 4 illustrates the selected routes. We note that the
reference, dusk query and night query traverses are consistent
with the ones used in Xu et al. [10].

Images are captured at approximately 0.5m and 3m intervals,
consistent with [10] for reference and query images, respec-
tively. However, [10] determined image spacing according to
RTK GPS ground truth whereas we use imperfect VO in the
spirit of building topometric maps without accurate reference
pose information. RTK GPS ground truth [32] is used for
evaluation purposes only, to measure the pose error between
proposed reference and query image. A query image is defined
as being off-map if there are no reference map images within
5m and 30 deg based on the ground truth.

B. Comparison Methods

We compare our proposed method against the following
comparison methods and ablations:

1) Single image VPR, where the best matching reference
image is used to localize (without using odometry or
filtering, denoted as “Baseline” in Figures 5-6).

2) Topological Bayes filter from Xu et al. [10], which does
not use odometry information.

3) Topometric localization from Stenborg et al. [9], which
uses forward from odometry motion only.

3The visual odometry (VO) in Oxford RobotCar is based on [31, Chapter 2].
Our method is not constrained to using VO; any odometry source that provides
relative pose estimates modeled by a Gaussian would be suitable.
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4) Monte Carlo Localization (MCL) method from Xu et
al. [10]. This requires RTK-GPS ground truth poses for
map nodes, which is not the case for our proposed system.
We run MCL five times and present the best set of results
out of the five trials.

5) Our proposed method removing the off-map state, denoted
“No Off” in Figures 5-6, utilizing 3-dof odometry for
within-map nodes transition probabilities.

All methods utilize our proposed convergence detection and
backward smoothing is applied for (2-3) for a fair evaluation
of the state estimation formulation for both localization tasks.

C. Sensor Setup

We utilize two VPR methods in our experiments, a weaker
descriptor HF-Net [8] optimized for mobile platforms [33]
as well as a more powerful but resource intensive descriptor
NetVLAD [4] extracted on full resolution images. For odometry,
we use the raw 6-dof relative poses provided by stereo visual
odometry, projected to 3-dof. The odometry motion model as
described in [34] was used to provide odometry mean and
covariances. Odometry is of especially poor quality on the
night and dusk query traverses.

D. Parameters

For each VPR method used, we maintain a single set
of parameters for all traverses and both tasks. Parameters
are optimized on the LCD task, providing the best possible
performance attainable by each system. Specific parameter
values are provided in the available open-source code.

V. RESULTS

We measure the performance of our proposed system
against the comparison methods on the loop closure detection
(Section III-E) and global localization (Section III-F) tasks. We
demonstrate the utility of our 3-dof motion model and off-map
state on the RobotCar dataset. In addition, we provide timing
information for all steps detailed in the methodology.

A. Loop Closure Detection

For the loop closure detection (LCD) task, we evaluate our
method using standard precision/recall (PR), noting that for the
rain and sun traverses there are sequence elements which can
yield true negatives for loop proposals due to the robot being
off-map. PR curves for the HF-Net [8] descriptor are presented
in Figure 5, generated by varying the threshold τthres or the
image similarity score for the single image baseline. As an
ablation, we also show results where no backward smoothing is
applied, only forward filtering. In addition, Table II summarizes
the maximum recall at the 99% precision level (R@99%P) for
all methods and provides a comparison to the more powerful
(but slower) NetVLAD descriptor [4]. We observe that using
NetVLAD [4] yields appreciable performance gains over HF-
Net [8] for methods (2) and (3) for the challenging night
traverse as well as the single image VPR baseline for the rain
and sun traverses. However, for our proposed method, the utility

TABLE II
RECALL AT 99% PRECISION, LOOP CLOSURE DETECTION AT 5M, 30 DEG

(HF-NET/NETVLAD)

Dusk Night Rain Sun
Baseline 0.01 / 0.00 0.01 / 0.00 0.60 / 0.76 0.38 / 0.85

Ours 0.92 / 0.88 0.86 / 0.96 0.97 / 0.96 0.96 / 0.98
No Off 0.86 / 0.82 0.96 / 0.94 0.69 / 0.69 0.75 / 0.76

Stenborg20 0.57 / 0.64 0.57 / 0.89 0.56 / 0.66 0.37 / 0.76
Xu20Topo 0.47 / 0.44 0.41 / 0.49 0.19 / 0.77 0.20 / 0.67
Xu20MCL 0.23 / 0.22 0.49 / 0.18 0.11 / 0.28 0.29 / 0.29

of using a more powerful VPR yields minimal performance
gains overall.

A clear motivation for using a discrete filtering formulation
for localization as opposed to a continuous state approach
(e.g. MCL) is the availability of backward smoothing. For the
dusk query traverse with HF-Net descriptor, forward filtering
alone for our method results in a 9% R@99%P which is lower
than the 23% yielded by the Xu20MCL method [10]. Upon
application of backward smoothing, our method increases to
94% R@99%P, which is a vast improvement above MCL.

In addition, changing from 1-dof odometry (Stenborg20 [9])
to 3-dof odometry (Ours) yields appreciable performance gains
across all traverse, up to 39% absolute increase in R@99%P
on the night traverse for HF-Net. The performance gains are
typically more appreciable when odometry is degraded relative
to the reference map, which is the case for challenging query
conditions (i.e. night and dusk).

The rain and sun query traverses contain major route
deviations from the reference map, where the robot deviates
from the reference map and rejoins at a later point. These
traverses illustrate the limitations of existing discrete filtering
formulations, which assume possible state transitions from a
given node correspond only to spatially proximal nodes. In
our experiments, this translates to a limit on R@99%P, with
discrete filtering approaches that do not incorporate an off-map
state yielding 77% and 76% R@99%P for the rain and sun
traverses respectively. By incorporating the off-map state to
our discrete filtering formulation however, R@99%P increases
from 69% (No Off) to 96% (Ours) for the rain query and
from 76% to 98% for the sun query. Figure 7 illustrates this
qualitatively for the rain traverse.

Finally, we note that including the off-map state when
the query traverse follows the same route as the reference
map (e.g. dusk and night queries) does not appear to degrade
localization performance, yielding a decrease only on the night
traverse (HF-Net) of 10% R@99%P.

B. Global Localization

We evaluate our system on the global localization or “wake-
up” task by running 500 trials with initialization points
randomly sampled4 along the full query traverse, following
the configuration in Xu et al. [10]. We apply forward filtering
using the query sequence until either convergence occurs, or
30 steps have been taken (≈ 90m traveled). For the single
image baseline, we take the position of the best match of the

4The same initialization points are used for all comparison methods and
ablations to ensure a fair comparison.
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Fig. 5. Precision/Recall curves for the loop closure detection task. Dashed lines represent detected loop closures using forward filtering only, solid lines
include backward smoothing for discrete filtering methods. Our proposed motion model consistently yields higher PR curves compared to using forward
odometry only (Stenborg20). Discrete filters with backward smoothing also outperforms the continuous-state approach using MCL (Xu20MCL). For the rain
and sun traverses, our proposed method greatly outperforms the comparison methods due to the inclusion of the off-map state.
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Fig. 6. Precision/Recall curves for the global localization task. Our proposed discrete filter yields comparable performance to the continuous-state MCL
approach. The incorporation of the off-map state does not hinder localization performance on dusk and night where no route deviations are present.

first image from each query sequence in a given trial. We
measure localization performance by precision/recall, with PR
curves presented in Figure 6 and summary statistics (R@99%P)
presented in Table III. We furthermore present the mean
distance traveled until convergence for each method in Table
IV. Similar to the LCD experiments, we provide results for
both HF-Net [8] and NetVLAD [4].

Consistent with the results presented in the LCD task, the
incorporation of the off-map state in our discrete filtering
formulation does not hinder localization performance when no
route detours are present, with a maximum difference of 4%
R@99%P across dusk and night. In addition, we note that our
proposed discrete filtering formulation with 3-dof odometry
yields comparable (occasionally surpassing) performance to the
MCL method which utilizes additional information in the form
of RTK pose estimates for the reference images. The mean
distance traveled for our discrete filter at the 99% precision
level is similar to MCL, meaning the similar localization
performance is not at the expense of localization latency.
Consistent with LCD experiments, incorporation of more
odometry information yields better localization performance
compared to 1-dof (Stenborg20 [9]) or no (Xu20Topo [10])
odometry.

C. Timings

We provide detailed timing information for the required steps
assuming feature extraction is performed by HF-Net [8]. All
methodology was implemented in Python and benchmarked
on a desktop with a Intel® Core™ i7-7700K CPU, 32Gb
RAM running Ubuntu 20.04 with no GPU. Feature extraction
and evaluating the motion model accounts for the majority of

TABLE III
RECALL AT 99% PRECISION, GLOBAL LOCALIZATION AT 5M, 30 DEG

(HF-NET/NETVLAD)

Dusk Night Rain Sun
Baseline 0.01 / 0.01 0.02 / 0.01 0.33 / 0.74 0.75 / 0.79

Ours 0.87 / 0.69 0.69 / 0.78 0.95 / 0.96 0.92 / 0.98
No Off 0.87 / 0.65 0.67 / 0.79 0.95 / 0.95 0.90 / 0.97

Stenborg20 0.83 / 0.89 0.59 / 0.63 0.95 / 0.98 0.90 / 0.97
Xu20Topo 0.55 / 0.70 0.21 / 0.38 0.96 / 0.98 0.94 / 0.98
Xu20MCL 0.45 / 0.80 0.70 / 0.68 0.97 / 0.94 0.91 / 0.97

TABLE IV
MEAN DISTANCE TRAVELED (M) UNTIL CONVERGENCE AT 99% PRECISION

AND 5M, 30 DEG (HF-NET/NETVLAD)

Dusk Night Rain Sun
Baseline 0.0 / 0.0 0.0 / 0.0 0.0 / 0.0 0.0 / 0.0

Ours 45.8 / 49.8 51.5 / 50.2 25.8 / 19.2 24.7 / 17.2
No Off 45.8 / 50.6 51.6 / 49.3 27.2 / 20.3 25.7 / 16.2

Stenborg20 51.8 / 40.2 59.2 / 58.9 35.1 / 19.4 27.9 / 17.1
Xu20Topo 47.5 / 38.9 50.0 / 54.0 24.9 / 14.3 20.1 / 15.0
Xu20MCL 52.2 / 43.0 50.6 / 52.9 23.3 / 13.6 24.2 / 10.8

TABLE V
DETAILED TIMINGS (MS) PER ITERATION

Feat. extr. Motion Meas. Forward Backward
52 30 9 5 3

computation time, with backward smoothing requiring minimal
additional computational overhead. The total computational
time is around 100ms, which allows processing 10 steps per
second. As query images are taken at 3m intervals, this allows
real-time processing of images captured by a robot traveling
up to 30m/s (110km/h).
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Fig. 7. Localization results for the rain query traverse. Reference map
(blue), query sequence (red), LCD predictions from our approach (green)
and Stenborg20 [9] (orange). Arrows indicate direction of travel with both
reference and query moving clockwise around the loop. Our approach handles
all route deviations whereas Stenborg20 fails in the area covered by the green
ellipse. Interestingly, Stenborg20 successfully regains tracking near the end
of the sequence (orange arrow) since the final detour (purple) is similar in
distance to the equivalent mapping segment (black).

VI. DISCUSSION AND CONCLUSION

In this work we presented a new topometric localization
system based on discrete Bayes filters which utilizes full 3-dof
odometry information for localization as well as new place
awareness. We demonstrated state-of-the-art localization perfor-
mance on two localization tasks, with substantial improvements
in the case where the query traverse deviates from the map.
Future work will generalize our system to handle arbitrary
network topologies within the reference map. In addition, we
aim to extend our localization system into a multi-session
mapping system, leveraging the strong appearance invariance
in VPR for long-term mapping.
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