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Inference skipping for more efficient real-time
speech enhancement with parallel RNNs

Xiaohuai Le, Tong Lei, Kai Chen and Jing Lu

Abstract—Deep neural network (DNN) based speech enhance-
ment models have attracted extensive attention due to their
promising performance. However, it is difficult to deploy a pow-
erful DNN in real-time applications because of its high compu-
tational cost. Typical compression methods such as pruning and
quantization do not make good use of the data characteristics.
In this paper, we introduce the Skip-RNN strategy into speech
enhancement models with parallel RNNs. The states of the RNNs
update intermittently without interrupting the update of the
output mask, which leads to significant reduction of computa-
tional load without evident audio artifacts. To better leverage
the difference between the voice and the noise, we further
regularize the skipping strategy with voice activity detection
(VAD) guidance, saving more computational load. Experiments
on a high-performance speech enhancement model, dual-path
convolutional recurrent network (DPCRN), show the superiority
of our strategy over strategies like network pruning or directly
training a smaller model. We also validate the generalization of
the proposed strategy on two other competitive speech enhance-
ment models.

Index Terms—speech enhancement, Dual-path RNN, Skip-
RNN, model compression.

I. INTRODUCTION

SPEECH enhancement (SE) aims at separating clean speech
from background interferences for higher speech intelli-

gibility and perceptual quality. Conventional rule-based signal
processing algorithms such as OMLSA [1] and MMSE-STSA
[2] are widely used in real-time applications due to their
small computational cost, but their performance deteriorates
significantly in environments with non-stationary noise. In
the last decade, data-driven SE algorithms based on deep
neural network (DNN) have achieved remarkable progress
with more noise suppression and higher speech quality than
the conventional methods. Typical neural networks such as
convolutional neural networks (CNNs) [3], recurrent neural
networks (RNNs) [4] and more recently the attention mecha-
nisms [5] have been successfully introduced to time-frequency
domain [6], [7] and time domain [8], [9] SE. Generally,
RNNs are suitable for real-time processing and attention is
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more powerful in obtaining contextual information. Compared
to other networks, CNNs require fewer parameters through
weight sharing mechanism. With a convolutional encoder-
decoder (CED) structure and the recurrent bottleneck, the
recently proposed convolution recurrent network (CRN) [10]
can take advantage of both CNNs and RNNs and has become
popular in real-time SE [11], [12].

Most powerful DNNs that achieve promising SE perfor-
mance require billions of floating-point operations per second.
For low latency applications with limited computational re-
sources, we need lightweight DNNs. In addition to designing
a small neural network directly [13], compressing a large
neural network by quantization [14] and pruning [15] is also
feasible and has been used in SE recently [16]. Quantization
reduces the bit width of weights and operators for faster
inference while pruning removes the less important weights
for less resource usage. Knowledge distillation method [17]
trains a small network under the supervision of a larger
network, and this has also been used in SE [18]. All these
methods are applied at training stage and cannot be utilized
to dynamically decrease the computational load according to
the characteristics of input data during inference.

Skip-RNN [19] dynamically skips the state updates of RNN,
which can theoretically reduce the computational load in
inference. Some attempts of applying Skip-RNN have been
made in SE [20]. One notable drawback of this strategy is
that the output mask stops updating when the RNN skips,
which results in audio artifacts. The exponential smoothing of
hidden states [20] cannot effectively alleviate the problem. To
fully solve this problem, it is necessary to skip the updates
without interrupting the updates of mask by leveraging more
reasonable network structures. On the other hand, the noisy
speech features are often distributed unevenly across time and
frequency domain. The noisy signal in practical applications
may have the continuous pure noise frames, and they can
be exploited to further reduce the computational cost without
significant performance degradation.

We find that the interruption of the mask updates can be
effectively circumvented in a network with parallel RNNs
when applying the Skip-RNN strategy. Parallel RNNs have
been used in various high performance SE models such as the
convolutional U-net for speech enhancement (CRUSE) [12],
[21], the gated convolutional recurrent network (GCRN) [11]
and the dual-path convolutional recurrent network (DPCRN)
[22]. In this paper, we take DPCRN as an example to discuss
the application of Skip-RNN, which can be easily extended to
CRUSE and GCRN. DPCRN combines the dual-path RNN
(DPRNN) [23], a time domain speech separation network,
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and CRN in an effective way. Ranked at the 3rd place in
Deep Noise Suppression-3 (DNS-3) challenge [24], it has
much fewer parameters and lower computational burden than
the other top models (0.8 M parameters and 3.7 G MACs,
compared with 6.4 M parameters and 6.0 G MACs of Rank-1
model and 5.2 M parameters and 52.5 G MACs1 of Rank-
2 model), which makes it a very competitive real-time SE
method. A huge number of parallel RNNs used in DPCRN
contribute significantly to the whole computational load, so
it is meaningful to investigate efficient inference skipping
strategies. In this paper, we apply Skip-RNN into DPRNN
to reduce the computational load during inference. A binary
gate is introduced in Skip-RNN to intermittently update the
hidden states of RNNs. Due to the utilization of parallel RNNs,
the mask will keep updating even when the hidden states
stop updating. We investigate several regularization strategies
to induce more skipped states while keeping a high quality
enhanced speech. The CED structure used in DPCRN can
also mitigate audio artifacts. Furthermore, we observe a strong
correlation between the skipping and the characteristics of
noisy speech spectrogram. In pure noise frames, the states
skip mechanism works more frequently. Inspired by this,
we introduce a skipping control factor into Skip-RNN and
integrate a VAD-guided skipping control method into our
model, which can effectively save more computational load.

We test the efficacy of our proposed model by comparing
its performance with that of the original DPCRN through
extensive experiments. To better illustrate the efficacy of
the proposed model, we also compare it with another two
models with the same computational load, i.e., a smaller model
and the model compressed using network pruning technique.
The results of multiple objective metrics show that with the
same amount of computation the proposed method achieves
significantly better performance. Experiments on other real-
time SE models such as CRUSE and GCRN also show that our
proposed strategy can significantly reduce the computational
load while maintaining competitive performance.

II. MODEL DESCRIPTION

A. Problem Formulation

With the short time Fourier transform (STFT), the noisy
speech can be expressed in the T-F domain as

X(t, f) = S(t, f) +N(t, f) (1)

where X(t, f), S(t, f) and N(t, f) represent the complex
spectra of the noisy speech, the clean speech and the noise,
respectively, with time index t and frequency index f . In order
to recover clean speech from the mixture in the time-frequency
domain, a common way is to estimate a mask and multiply
it by the noisy speech X(t, f) [7]. For phase retrieval, the
complex ratio mask (CRM) is a widely used training target
[25] which is denoted as a complex value Mc(t, f). In [22], we
used CRM to recover the phase implicitly and the denoising

1The computional complexity was not provided in the Rank-2 paper, so we
implemented the model and calculated the MACs.

process can be expressed as the complex product of the mask
and the noisy speech as

S̃ (t, f) = X (t, f)�Mc (t, f) (2)

where � denotes element-wise multiplication and S̃ (t, f) is
the enhanced speech. Compared with estimating magnitude
mask only, CRM is more difficult to learn [11]. In this
paper, we separately estimate masks for magnitude and phase
spectrogram. Similar to PHASEN [26], the model has three
outputs, i.e. the magnitude mask M (t, f) and the real and
imaginary parts of the phase mask Φ (t, f). Finally, the noisy
speech can be enhanced by

S̃ (t, f) = X (t, f)�M (t, f)� Φ (t, f) . (3)

Instead of estimating the masks directly, we apply the signal
approximation (SA) [27] to optimize the target masks end-
to-end. SA minimizes the difference between the enhanced
speech and clean speech with the loss function described as
L = Loss

(
S̃ (t, f) , S (t, f)

)
, where Loss is the complex

compressed spectrum MSE loss [12] in this paper.

B. Model Architecture

1) Dual-Path Convolution Recurrent Network: DPCRN
mainly consists of an encoder, a DPRNN [23] module and
a decoder, as shown in Fig. 1. The model has three inputs
Xr, Xi and Xp, which respectively denote the real part, the
imaginary part of the noisy spectrogram and the logarithmic
power spectrogram. They are concatenated as three channels of
the input which can be denoted as a 3-D tensor X ∈ RT×F×C ,
where T , F and C = 3 represent the dimensions of frequency,
time and channel, respectively. The tensor normalized by batch
normalization [28] is fed into the encoder to compress the
frequency dimension to Fen and expand the channel dimension
to Cen. The encoder uses the 2-D convolutional (Conv-2D)
layers to extract the local patterns from the noisy spectrogram
and get the output feature Xen ∈ RT×Fen×Cen . In the DPRNN
module, the feature is further processed by the intra-frame
RNN block and the inter-frame RNN block (also known as
the intra-chunk and the inter-chunk RNN block), as depicted in
Fig. 2. The intra-frame RNNs are applied to the f -dimension
of Xen to model the spectral patterns in a single frame. As
for the inter-frame RNNs, parallel RNNs are used to model
the time dependence of the Fen sub-features.
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Fig. 1. The architecture of DPCRN, including the encoder, the DPRNN
module and the decoder. The numbers of channels for the convolutional layers
are presented.
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Fig. 2. The diagram of the DPRNN module. It consists of the intra-frame
RNN block and the inter-frame RNN block.

For the input Xin∈ RT×Fin×Cin of a DPRNN block (shown
as the orange cube in Fig. 2), the output of the intra-frame
RNN can be expressed as

X1 = [fRNNintra (Xin [t, :, :]) , t = 1, . . . , T ] (4)

where Xin [t, :, :] ∈ RFin×Cin is the sub-feature at time
index t and fRNNintra

(·) represents the function of the intra-
frame RNN in the form of a bi-directional RNN with Chid/2
channel output in each direction. The outputs of all frames are
concatenated to form a 3-D tensor X1 ∈ RT×Fin×Chid . A fully
connected layer (FC) and the instant layer normalization (iLN)
[29] are applied on X1 to transform the channel dimension
back to Cin and normalize the feature respectively, expressed
as

X2 = fLN1
(fFC1

(X1)) (5)

where fFC1
(·) and fLN1

(·) respectively denote the functions
of FC and iLN. To mitigate the gradient vanishing problem, a
residual connection [30] is then applied between the input of
intra-frame RNN and the output of iLN, expressed as

Xintra−out = X2+Xin (6)

where Xintra−out∈ RT×Fin×Cin is the output of the intra-
frame RNN block. Similarly, the inter-frame RNN processes
the sub-features at different frequency indices, expressed as

X3 = [fRNNinter
(Xintra−out [:, f, :]) , f = 1, . . . , Fin] (7)

where Xintra−out [:, f, :] ∈ RT×Cin is the sub-feature at
frequency index f and fRNNinter (·) denotes the function of
the inter-frame RNN. Similar to the sub-band SE method
[31], the sub-features processed by the inter-frame RNN are
mapped from certain sub-bands of the original spectrum. The
unidirectional RNNs are used to model the time dependence
of these sub-features in parallel to guarantee the causality of
the whole model. With the FC layer, iLN and the residual
connection, the output of the inter-frame RNN block is denoted
as Xinter−out∈ RT×Fin×Cin , given by

X4 = fLN2(fFC2 (X3)) (8)

Xinter−out = X4+Xintra−out. (9)

The decoder uses the transposed convolutional layers to
restore the features from the DPRNN module to the original

TABLE I
THE NUMBER OF TRAINABLE PARAMETERS AND MACS OF EACH MODULE

OF THE BASELINE MODEL.

Operator type MACs (M) Parameters (M)
Encoder 83.71 0.042

Intra-frame RNN block × 2 360.6 0.180
Inter-frame RNN block × 2 458.8 0.230

Decoder 212.0 0.077
All 1115.1 0.529

size, forming a symmetric structure with the encoder. There
are skip connections between the encoder and the decoder to
pass the detailed information and further mitigate the gradient
vanishing problem. The output of the decoder also has three
channels, the first one is the magnitude mask M and the
remaining two are normalized to obtain the real part and
imaginary part of phase mask Φ, which are utilized in Eq. (3)
to enhance the speech.

In this paper we replace the LSTM in the original DPCRN
with GRU [32], which yields little performance loss but saves
a quarter of the computational load [12]. We also reduce the
kernel size of the convolutional layers from (2,5) and (2,3) to
(1,5) and (1,3), which reduces the complexity without signifi-
cant performance loss [11]. We use 5 2-D convolutional layers
in the encoder and set the strides as {(2,1), (2,1), (2,1), (1,1),
(1,1)}. Note that the strides in the last two convolutional layers
are (1,1) for sufficient frequency resolution of the features fed
into the DPRNN module, which we found is important for
speech quality [22]. We use two DPRNN modules and the
resulting baseline DPCRN has 0.53 M trainable parameters.

The baseline model enhances the noisy speech sampled at
16 kHz with a 32-ms frame length and a 16-ms hop length,
resulting in 1115 M multiply-accumulate operations per sec-
ond (MACs) during inference. Table I presents the MACs and
trainable parameters of each module in the baseline model,
from which we can find that the DPRNN module contributes
the most to the model complexity. Besides, the convolutional
layers can be more easily compressed by the quantization
[14] technique. Therefore, we focus on the compression of
the DPRNN module in this paper.

2) Skip-RNN: We apply Skip-RNN [19] in the DPRNN
module for saving the computational load during inference.
The hidden state of the conventional RNN updates in the form
as

s̃t = S (st−1, xt) (10)

where S (·, ·) is the update function and xt is the input at
time index t. Skip-RNN introduces a state update probability
p̃t which is usually mapped to a binary gate gt ∈ {0, 1} by a
round function. The binary gate determines whether the hidden
state needs to be updated to s̃t or kept the same as the previous
step st−1.

gt = round (p̃t) (11)

st = gts̃t + (1− gt) st−1 (12)

The probability p̃t is cumulated by ∆p̃t, which is calculated
from the hidden state of the previous step through a FC layer,
given by

∆p̃t = σ (Wpst−1 + bp) (13)



JOURNAL OF LATEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 4

(a) (b) (c)

Fig. 3. The architecture of Skip-RNN with (a) the complete architecture at training, (b) the process of state updating and (c) the process of state skipping.

p̃t+1 = gt∆p̃t + (1 − gt)(p̃t +min(∆p̃t, 1 − p̃t)) (14)

where σ is the Sigmoid function to limit the output between 0
and 1. As shown in Eq. (14) and Fig. 3(a)(b), whenever a state
update is skipped, the probability p̃t is incremented by ∆p̃t
until p̃t is high enough to update the state. As shown by the
dashed lines in Fig. 3(c), ∆p̃t only depends on the previous
state and fixed when the state is fixed, so the update function
Eq. (10) with the most computational load can be skipped
when gt is 0. The extra computational load of the additional
layer shown in Eq. (13) is always negligible, so applying Skip-
RNN can significantly reduce the computational load of the
whole model. Moreover, for the structure like GRU, since the
output is equal to the hidden state, the FC layers following the
RNN can also be skipped when the state is fixed. We integrate
Skip-RNN in the DPRNN module and get the Skip-intra-RNN
and the Skip-inter-RNN respectively as

Xt
1,g

t
1 = fSkip−RNNintra

(Xin [t, :, :]) (15)

Xf
3 ,g

f
3 = fSkip−RNNinter (Xintra−out [:, f, :]) (16)

X1 =
[
Xt

1, t = 1, . . . , T
]

X3 =
[
Xf

3 , f = 1, . . . , Fin

] (17)

g1 =
[
gt
1, t = 1, . . . , T

]
g3 =

[
gf
3 , f = 1, . . . , Fin

] (18)

where Xt
1 and Xf

3 are the outputs of the Skip-intra-RNN
at time index t and the Skip-inter-RNN at frequency index
f , respectively. Consistent with Eqs. (4) and (7), they are
concatenated as the final output X1 and X3. gt

1∈ R1×F in and
gf
3∈ RT×1 respectively represent the binary gates of Skip-

intra-RNN and Skip-inter-RNN and are also concatenated into
g1,g3∈ RT×F in which will be merged into the optimization
targets during training. The computational complexity of Skip-
RNN can be further measured by the update rate, which is
defined as

update rate =
1

TF in

∑
t

∑
f

g [t, f ] (19)

The update rate calculates the percentage of the skipped states
over a period of time.

We also propose a method to control the update rate of
Skip-RNN to further regularize the computational load during

inference. The update of the hidden states of Skip-RNN
depends on p̃t which is cumulated by ∆p̃t. The increase rate of
p̃t can be easily adjusted by a scaling factor on ∆p̃t, expressed
as

∆p̃t = γσ (Wpst−1 + bp) (20)

where γ is the scaling factor, so that the update rate can be
controlled. When γ < 1, the hidden states update rate drops so
that more computational load can be saved. This method can
be easily implemented during inference without retraining.

To better exploit the characteristic of the signal spectrogram,
we also integrate the voice activity detection (VAD) in our
model under a multi-task learning framework. As shown in
Fig. 4, the feature output from the encoder is processed
by a 1 × 1 convolutional layer, after which the channel is
compressed to 1. A GRU and a FC layer are then applied.
The output of the FC layer is the probability of voice formed
by the Sigmoid function. The dimension of the hidden states
in the GRU is set to 32. The VAD estimator is optimized by
minimizing the binary cross-entropy between the true labels
and the predictions. Note that the VAD estimator is easy to be
trained since we only require a high recall ratio of the voice
frame. According to the estimated VAD labels, Eq. (20) will
be utilized with different γ on the pure noise frames and the
voice frames for further computational load adjustment.
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32
32

32 64 128
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32

32
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32
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3
32

32
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Fig. 4. The architecture of DPCRN with the Skip-RNN and the VAD
estimator.

C. Training Target

The complex compressed spectrum MSE loss [12] we use
can be expressed as

LSD = λMSE
(
Sc, Ŝc

)
+ (1− λ)MSE(|S|c, |Ŝ|

c
) (21)
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where S = STFT (s) and Ŝ = STFT (ŝ) denote the
spectrogram of the clean speech s and the enhanced speech
ŝ, and MSE (·) is the function of the mean squared error
(MSE). Note that s and ŝ in a batch are normalized by the
same factor for better optimization. In the first term of LSD,
the spectrogram is compressed by

Sc = |S|cexp(jθS) (22)

where θS is the phase of S. In this paper, the spectrogram
compression factor c and the loss weight factor λ are respec-
tively set to 0.3 and 0.1 for higher speech quality [21].

We observe that directly training the model using Skip-RNN
with loss function Eq. (21) cannot lead to a high skipping rate,
so we use a regularization term to induce more skipped states
in each Skip-RNN, expressed as

LSkip =
1

TF in

∑
i

∑
t

∑
f

g1;i [t, f ] +
∑
t

∑
f

g3;i [t, f ]


(23)

where g1;i and g3;i represent the binary gates of the Skip-
intra-RNN and the Skip-inter-RNN in the i-th Skip-DPRNN
module, respectively. The regularization term minimizes the
sum of the mean values of the binary gates for higher
compression rate. To obtain a specified compression rate, we
can also optimize the states update rate of each Skip-RNN to
the target rate by

LSkip =
∑
i


 1

TF in

∑
t

∑
f

g1;i [t, f ]− µ1;i

2

+

 1

TF in

∑
t

∑
f

g3;i [t, f ]− µ3;i

2


(24)

where µ1;i and µ3;i are the target update rate of the Skip-
intra-RNN and the Skip-inter-RNN in the i-th Skip-DPRNN
module, respectively. In addition to MSE, the mean absolute
error (MAE) can also be used as a regularization term, given
by

LSkip =
∑
i

∣∣∣∣∣∣ 1

TF in

∑
t

∑
f

g1;i [t, f ]− µ1;i

∣∣∣∣∣∣+∣∣∣∣∣∣ 1

TF in

∑
t

∑
f

g3;i [t, f ]− µ3;i

∣∣∣∣∣∣
 (25)

Compare with MSE, MAE can accelerate the convergence.
The final loss function can be expressed as a weighted sum
of LSD and LSkip, given as

L = LSD + αLSkip (26)

where α is a weighting factor.

III. EXPERIMENTS

A. Datasets

All the experiments are conducted on the WSJ0 SI-84
dataset [33]. We select 14633 utterances (about 25 h) from 120

speakers, including 12776 in training set, 1206 in validation
set and 651 in test set. In order to improve the generalization
on various noises, we also use the noise dataset from the DNS-
3 Challenge [24]. The dataset also includes 60000 audio clips
from DEMAND [34], Audioset [35] and Freesound2 for a total
of 150 hours.

To improve the robustness against the variation of the signal
levels, the reverberation and the coloring effects of speech
signal in practical applications, we use the data augmentation
pipeline from [36] in training. Specifically, the clean speech
is split into 11212 8-second segments, 30% of which will be
filtered by a second-order IIR spectral augmentation filters.
Consistent with [12], [13], all the filter coefficients are uni-
formly distributed in [-3/8, 3/8] . After spectral augmentation,
half of the audio clips are convolved with room impulse
responses (RIRs) randomly-selected from openSLR26 and
openSLR28 [37]. Then the noisy speech is generated by
mixing reverberant speech and noise. The signal-to-noise ratio
(SNR) of the mixture is randomly sampled between -5 and
5 dB. Finally, the noisy and clean speech is scaled by the
same factor drawn from a Gaussian distribution on the denary
logarithmic scale with mean -0.5 and variance 1. The level
scaling factor will also be used in Eq. (21) for normalization.
The validation set is generated in the same way as the training
set.

For the test set, we use two unseen noise datasets. One is the
music data from MUSAN [38], the other includes the babble,
factory1 and f16 noise from NOISEX92 [39]. The noises are
mixed with the speech at SNR of -5, 0 and 5 dB, with 651
mixtures for each SNR level and each dataset. Considering the
audio with long pure noise frames in practical applications, we
also generate a test set of long noisy speech. We concatenate
the test speech in pairs, and there are 8-second silent audio
between every pair. We randomly mix the long speech and
music noises at the SNR uniformly sampled between -5 to 5
dB. In total, we generate 3906 segments of short audio and
325 segments of long audio for test3.

B. Experiment Configuration
The window length and hop size used in our models are 32

ms and 16 ms respectively, resulting in a total latency of 48
ms. The FFT length is 512 and the frequency dimension F
of the input is 257. The sine window is applied before FFT
and overlap-add. The baseline model is called DPCRN-base,
in which the hidden dimension Chid of every GRU and Bi-
GRU is 128. We reduce Chid to control the computational
complexity of DPCRN-base for comparison in two ways. One
is by directly training a smaller model, named as DPCRN-S,
and the other is by applying the structured pruning method
described in [40], named as DPCRN-P, with the intrinsic
sparse structures-based `2-norm integrated in Eq. (21) as the
loss function.

We apply Skip-RNN in the intra-frame RNNs and the inter-
frame RNNs, and name the resulting models DPCRN-Intra-
skip and DPCRN-Inter-skip respectively. In order to explore

2https://freesound.org/
3The source code of our proposed model can be found at

https://github.com/Le-Xiaohuai-speech/SKIP-DPCRN
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TABLE II
PERFORMANCE OF OUR PROPOSED MODELS ON TWO TEST SETS.

Test set NOISEX MUSAN
Models α SDR (in dB) PESQ STOI (in %) Update rate SDR (in dB) PESQ STOI (in %) Update rate

Noisy - 0.091 1.433 74.94 - 0.043 2.004 80.76 -
DPCRN-base - 9.527 2.688 89.13 1.00 11.54 3.105 93.69 1.00

Intra-skip 5× 10−5 9.508 2.681 88.87 0.712 11.53 3.084 93.55 0.679
Intra-skip 1× 10−4 9.448 2.670 88.86 0.482 11.48 3.076 93.54 0.456
Intra-skip 2× 10−4 9.394 2.672 88.76 0.436 11.37 3.065 93.41 0.419
Intra-skip 3× 10−4 9.358 2.649 88.49 0.271 11.24 3.042 93.17 0.258
Inter-skip 5× 10−5 9.409 2.666 88.67 0.765 11.45 3.068 93.38 0.709
Inter-skip 1× 10−4 9.424 2.662 88.63 0.640 11.39 3.059 93.30 0.545
Inter-skip 2× 10−4 9.355 2.633 88.24 0.426 11.26 3.031 93.01 0.393
Inter-skip 3× 10−4 9.355 2.640 88.30 0.359 11.27 3.024 93.02 0.328
All-skip 5× 10−5 9.405 2.654 88.57 0.745 11.42 3.056 93.29 0.706
All-skip 1× 10−4 9.337 2.645 88.53 0.577 11.29 3.014 93.20 0.524

the compression capacity of Skip-RNN, we also replace all
the RNNs with Skip-RNNs and name the resulting model
DPCRN-All-skip. The models are trained by minimizing
Eq. (26) with one regularization term from Eqs. (23) and (24),
as explicitly described in Sec. IV.

Based on DPCRN-All-skip, we further explore the multi-
task learning framework with a VAD estimator. The ideal
VAD labels are generated using energy thresholds of the clean
speech. During inference, the output ṽ(t) of the estimator is
smoothed by the rules expressed as

v(t) =

{
0, if ṽ(t), ṽ(t− 1), · · · , ṽ(t− 9) = 0

1, otherwise.
(27)

where v(t) is the final VAD estimation of the t-th frame.
The smoothing strategy improves the recall ratio of the voice
frames at the expense of VAD accuracy.

All the models are trained by the Adam optimizer [41] with
a batch size of 16. The initial learning rate is 1e-3 and it will
be halved if the loss on the validation set does not improve
for 10 consecutive epochs. Early stopping is also applied in
training if the loss on the validation set does not improve
for 20 epochs. For structured pruning, the loss function with
the `2-norm regularization is used first, then the weights of
RNNs and corresponding FCs are pruned by their magnitude,
after which the models are fine-tuned for 50 epochs with the
original loss of Eq. (21). TensorFlow is employed for model
implementation and a Nvidia TITAN Xp is used for training.

C. Models for Comparison and Evaluation Metrics

Apart from DPCRN, we also apply the proposed Skip-RNN
strategy to two more real-time SE models, i.e., CRUSE [12],
[21] and GCRN [11], to further validate its efficacy. CRUSE
is a well-studied model which achieves a promising tradeoff
between computational load and performance. GCRN uses a
gating mechanism and group RNNs, achieving competitive
performance in real-time SE. We build the CRUSE model in
the same way as [21], which has 8 convolutional layers and
a GRU bottleneck with 4 parallel subgroups. As for GCRN,
we follow the same structure as [11], but replace LSTMs with

TABLE III
MACS, TRAINABLE PARAMETER NUMBERS OF PROPOSED MODELS AND

THE AVERAGE UPDATE RATE OF EACH RNN BLOCK.

Models α
Intra-RNN
update rate

Inter-RNN
update rate

MACs
(M)

Para.
(M)

DPCRN-base - 1.00 1.00 1115 0.5286
Intra-skip 5× 10−5 0.696 1.00 1005 0.5288
Intra-skip 1× 10−4 0.469 1.00 923.6 0.5288
Intra-skip 2× 10−4 0.427 1.00 908.6 0.5288
Intra-skip 3× 10−4 0.265 1.00 849.7 0.5288
Inter-skip 5× 10−5 1.00 0.737 1011 0.5288
Inter-skip 1× 10−4 1.00 0.575 994.4 0.5288
Inter-skip 2× 10−4 1.00 0.410 844.2 0.5288
Inter-skip 3× 10−4 1.00 0.344 814.0 0.5288
All-skip 5× 10−5 0.702 0.749 892.5 0.5291
All-skip 1× 10−4 0.520 0.581 749.8 0.5291

GRUs. The number of parameters of these two models are 8.58
M and 7.66 M, respectively. The frame length and hop size in
both models are 20 ms and 10 ms. We use the loss function
Eq. (26) with the regularization Eq. (25) to train these models,
because we find MAE leads to faster convergence than MSE
when the hidden size of RNN is large.

We use three objective metrics for performance evalua-
tion: the signal-to-distortion ratio (SDR) [42], the perceptual
evaluation of speech quality (PESQ) [43], and the short-time
objective intelligibility (STOI) [44].

IV. RESULTS AND DISCUSSIONS

A. The Efficacy of Skip-RNN

To demonstrate the efficacy of Skip-RNN, we compare the
performance of DPCRN-base and the model with Skip-RNN.
Table (II) presents the performance and the average states
update rate on two test sets. All the models with Skip-RNN
are trained by minimizing the loss function Eq. (26) with the
regularization Eq. (23) weighted by α. Table (III) shows the
average states update rate, the average MACs and the number
of parameters of every model. Note that the average update
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Fig. 5. The average performance of DPCRN-All-skip with update rates of {0.3, 0.4, 0.5, 0.6, 0.7} and DPCRN-S and DPCRN-P with compression rates of
{0.3, 0.4, 0.5, 0.6, 0.7}.

rate of Skip-RNN slightly differs between different test sets, so
we show the average update rate of all the test sets in Table II.

From Tables II and III, one can get the following conclu-
sions. Firstly, integrating Skip-RNN saves significant computa-
tional load with limited performance degradation. Secondly, it
can also be found that the performance is positively correlated
with the amount of computation. Note that although DPCRN-
Intra-skip obtains lower update rate than DPCRN-Inter-skip
with the same α, its overall computational load shown in
Table III is higher because the amount of computation of an
intra-frame RNN is a quarter fewer than an inter-frame RNN.
Therefore, DPCRN-Intra-skip gets higher objective metric
scores than DPCRN-Inter-skip with the same α. Thirdly, as
α increases, the regularization term leads to more frequent
skipping and lower update rate, which can be considered as
a form of dynamic temporal pruning. The states update rate
relates to both the regularization factor α and the noise charac-
teristics during inference. Specifically, the performance on the
MUSAN test set is superior to the NOISEX test set in terms of
all the metrics but the update rate is lower, demonstrating that
the model will update more frequently under more disruptive
noises and “slack off” under more tractable noises. This makes
it possible to further reduce the computational load. Lastly,
although DPCRN-All-skip has overall inferior performance,
it exceeds two DPCRN-Inter-skip models with fewer MACs
when α = 1×10−4, which indicates applying Skip-RNN on all
RNNs with a proper α can achieve a good balance between
performance and computation. In addition to the results of
the average computational load, the distributions of the frame
level update rates of the DPRNN module in DPCRN-All-
skip (α = 1 × 10−4) are shown in Fig. 6. The frame-level
computational load is distributed like a Gaussian distribution
and the peek computational load is reduced by about 15%.

B. Compression Rate Comparison

To further illustrate the compression performance of the
Skip-RNN strategy, Eq. (26) with Eq. (24) are used as the
loss (α = 1 × 10−2) to train the DPCRN-All-skip models
with the target update rate respectively set to {0.3, 0.4, 0.5,
0.6, 0.7}. For comparison, we obtain DPCRN-S by directly

Fig. 6. The distributions of the frame level update rates of the DPRNN
module in DPCRN-All-skip (α = 1× 10−4).

training a smaller model and DPCRN-P using structured prun-
ing. The hidden dimensions of the intra-frame and the inter-
frame RNNs of both models are reduced to {(48,52), (60,65),
(74,77), (86,89), (96,100)}, leading to the compression rates
of {0.3, 0.4, 0.5, 0.6, 0.7}, so that all the models can be
compared with similar computational load. The results of the
three methods are shown in Fig. 5. The average computational
load shown by the green line is always higher than expectation,
indicating that the achieved update rates of DPCRN-All-skip
on the test sets are always a little higher than the target
update rates set in training. Even so, it still can be seen that
DPCRN-All-skip outperforms the other two models in most
cases. When the compression rate is greater than about 0.6, the
performance of DPCRN-S is comparable with that of DPCRN-
All-skip. DPCRN-P performs worst at a higher compression
rate, but with decreasing compression rate, it gradually exceeds
DPCRN-S. A possible reason is that the regularization term
of the pruning method brings significant weights sparsity,
which makes it difficult to fine-tune the model at a higher
compression rate.

C. More Efficient Inference by VAD-guided Skipping

Fig. 7 shows the spectrogram processed by DPCRN-All-
Skip (α = 1 × 10−4) on a noisy sample with two utterances
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(e) (f)

Fig. 7. Spectrogram visualization and binary gate visualization of the last Skip-inter-RNN. (a) Noisy speech. (b) The VAD labels of the clean speech.
(c) Enhanced speech by DPCRN-All-skip. (d) The binary gate visualization of the last Skip-inter-RNN. (e) Enhanced speech by DPCRN-All-skip with the
VAD-guided skpping strategy. (f) The binary gate visualization of the last Skip-inter-RNN with the VAD-guided skpping strategy.

and long pure noise segments. The binary gate g3;2 of the last
Skip-inter-RNN is also visualized as a 2-D map in Fig. 7(d),
where the horizontal and the vertical axes respectively denote
time and the index of parallel RNNs. The bright bins in
the map represent the updated states of RNNs and the dark
bins represent the skipped states. From the map and the
noisy spectrogram, we can observe the similarity between the
distribution of the bright bins and the spectral envelope of
the noisy speech. At noise segments, the hidden states are
skipped significantly more frequently than the voice segments,
which illustrates why the model “slacks off” at more tractable
scenarios. Inspired by this, we can reduce the update rate at
pure noise frames to further save the computational load while
hold the original update rate at voice frames. Guided by the
ideal VAD label shown in Fig. 7(b), the probability rescaling
factor γ is set to 0.4 at pure noise frames and 1 at voice
frames. Then we use Eq.(20) to control the update rate. The
results shown in Fig. 7(e)(f) illustrate that the Skip-RNNs skip
more frequently at pure noise segments without spectrogram
artifacts.

We test the VAD-guided skipping strategy on the long audio
test set. DPCRN-All-skip is trained with a VAD estimator and
the target average update rate is set to 0.5. We apply different
γ only at pure noise frames and the objective results are shown
in Fig. 8(a)(b)(c). As expected, the performance deteriorates
significantly when γ is less than 0.3. However, all the metrics
with the ideal VAD labels do not show a monotonic increasing
trend, and the model even achieves the same SDR score as
DPCRN-base (shown as the green dotted lines) when γ = 0.4,

because pure noise frames can be more effectively attenuated4.
Using the estimated VAD labels leads to weaker performance
than using the ideal labels, but the SDR and PESQ curves
still show the benefit of small γ. Overall, the model gets the
best results when γ = 0.5 and the computational load of
the DPRNN modules at pure noise segments is only 28% of
the baseline. Fig. 8(d) presents the average update rates with
different γ. The average update rates are almost constant at
voice frames and demonstrate a close to linear relationship
with γ at pure noise frames, which allows the model to
preserve speech while further reduce the computational load.
The accuracy of the VAD estimator on the long audio test set
is 88.2%. Note that the VAD estimator is not the focus of
this paper and in practice better estimators may lead to higher
performance.

D. Results on CRUSE and GCRN

Table IV presents the results of CRUSE and GCRN, where
CRUSE-base and GCRN-base are the baseline models using
the conventional RNN, and CRUSE-skip and GCRN-skip use
Skip-RNN. It can be seen that after applying Skip-RNN,
the two models remain the comparable performance to the
baseline models with a significantly lower update rate, which
indicates that Skip-RNN can be fused into any model that use
parallel RNN structure. The final update rates of GCRN-skip
is higher than CRUSE-skip because the former utilizes fewer
parallel RNNs with a higher hidden dimension, which makes

4Exemplary audio samples can be found at https://github.com/Le-Xiaohuai-
speech/SKIP-DPCRN-samples
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Fig. 8. Results of the VAD-guided skipping strategy on the long audio test set. (a) SDR scores, (b) PESQ scores and (c) STOI scores at different γ. (d) The
average update rates on voice and pure noise frames at different γ.

TABLE IV
PERFORMANCE OF CRUSE AND GCRN ON TWO TEST SETS SETS.

Test set NOISEX MUSAN
Metrics SDR (in dB) PESQ STOI (in %) Update rate SDR (in dB) PESQ STOI (in %) Update rate

Noisy 0.091 1.433 74.94 - 0.043 2.004 80.76 -
CRUSE-base 8.423 2.457 85.65 1.00 10.29 2.834 91.41 1.00
CRUSE-skip 8.426 2.457 85.58 0.496 10.25 2.822 91.27 0.491
GCRN-base 9.393 2.359 87.32 1.00 11.19 2.654 91.58 1.00
GCRN-skip 9.348 2.364 87.07 0.697 11.14 2.650 91.36 0.642

the model harder to optimize. In addition, the audio artifacts
described in [20] are not observed in all experiments, which
is mainly due to the parallel RNNs and the CED structure.
The parallel RNNs reduce the impact of the skipping on the
updates of the output and the detailed information transferred
from the encoder by the CED structure helps further recover
the speech.

V. CONCLUSION

Parallel RNNs have been proven to be an important module
for several high performance speech enhancement models.
In this paper, we find that it is effective to introduce the
Skip-RNN strategy into these models since the RNNs can

be updated intermittently without interrupting the update of
the output mask. Therefore the computational burden can be
significantly reduced without evident audio artifacts. Using
DPCRN as an example, we investigate several regularization
strategies to induce more skipped states and introduces a VAD
estimator to better exploit the characteristics of the noisy spec-
trogram. The experimental results demonstrate the superiority
of the proposed model over those from the commonly used
compression strategies, i.e., directly training a smaller model
and structured pruning. Experiments on CRUSE and GCRN
also validate the generalization of the proposed inference
skipping strategy.
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