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Abstract—Thermal infrared (TIR) land surface temperature 

(LST) products derived from geostationary satellites have a high 
temporal resolution in a diurnal cycle, but they have many missing 
values under cloudy-sky conditions. Therefore, it is pressing to 
obtain all-weather LST (AW LST) with a high temporal resolution 
by filling the gap of TIR LST. In this study, a method integrating 
reanalysis data and TIR data from geostationary satellites (RTG) 
was proposed for reconstructing hourly AW LST. Then, taking the 
Tibetan Plateau, which is a focus of climate change as a case, RTG 
was applied to the Chinese Fengyun-4A (FY-4A) TIR LST and 
China Land Surface Data Assimilation System (CLDAS) data. 
Validation based on the in-situ LST shows that the accuracy of the 
AW LST is better than the FY-4A LST and CLDAS LST under 
clear-sky, cloudy-sky, and all-weather conditions. The mean 
RMSEs are 3.02 K for clear-sky conditions, 3.94 K for cloudy-sky 
conditions, and 3.57 K for all-weather conditions. Uncertainty and 
coarse resolution of the original FY-4A and CLDAS data affect the 
accuracy of the obtained AW LST. The results of the LST time 
series comparison also show that the reconstructed AW LST is 
consistent with in-situ LST. The reconstructed AW LST also has 
good image quality and provides reliable spatial patterns. RTG is 
practical in obtaining high temporal resolution AW LST from the 
Chinese FY-4A to satisfy related applications. It can also be 
extended to other geostationary satellites and reanalysis datasets. 
 

Index Terms—All-weather, geostationary satellite, high-
temporal resolution, land surface temperature, thermal infrared. 

I. INTRODUCTION 
AND surface temperature (LST) plays a vital role in the 

interactions between the earth’s surface and atmosphere 
[1]–[4]. It is an essential input and basic parameter in many 
applications, including global climate change studies [5], [6], 
ecological monitoring and assessment [7]–[10], hydrological 
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process simulation [11], [12], and surface radiation balance and 
energy budget modeling [13], [14]. Thus, as the global climate 
and land surface change continuously, LST is becoming 
increasingly crucial in related areas. 

The accurate acquisition of LST over large areas is extremely 
important. Since remote sensing has the advantages of low cost, 
wide spatial coverage, and frequent observation, it has become 
the main way for LST acquisition [15]–[17]. The LST 
estimation using satellite remote sensing has become a long-
standing and classical topic for remote sensing science. With 
the continuous development of studies in the geoscience field, 
acquiring all-weather (AW) LST is increasingly pressing [18], 
[19]. However, current widely-used satellite thermal infrared 
(TIR) LSTs are significantly affected by clouds and only 
available for clear-sky conditions [20]. Statistics showed that 
the global cloud coverage is generally above 50%, especially in 
climate-sensitive regions such as the Amazon Basin and the 
Tibetan Plateau [21]. Clouds are the main cause of missing TIR 
LSTs, and they further reduce the temporal resolution. 
Therefore, to obtain AW LST data, an effective way is to fill 
the spatial gaps caused by clouds in TIR LST products. 

Studies on how to obtain AW LST based on satellite TIR 
observations can be classified into two broad categories: (i) 
reconstruction of cloudy-sky LST based on effective 
observation and (ii) integration of multi-source data. The 
spatiotemporal interpolation and energy balance-based 
methods are two typical ways for the reconstruction of cloudy-
sky LST. Among them, the spatiotemporal interpolation-based 
methods include time-weighted interpolation, spatial-weighted 
interpolation, and spatiotemporal-weighted interpolation 
algorithms. 
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The time-weighted interpolation-based algorithms usually 
use multi-temporal LSTs information in the same region to 
reconstruct cloudy-sky LSTs. They mainly include linear time 
interpolation, time Fourier analysis, harmonic analysis, and 
wavelet transform [22]–[25]. The spatial-weighted 
interpolation-based algorithms mainly use valid LSTs to 
recover the missing LSTs by assuming that valid LSTs and 
missing LSTs have the same statistical and geometric structures. 
Geo-statistics, spline functions, kriging interpolation, and 
regression tree analysis are all common approaches in spatial 
interpolation, and the clear-sky LST is used as the input 
parameter [26], [27]. Spatiotemporal-weighted interpolation 
utilizes more observation information and considers the 
relationship between valid LST observations and target missing 
pixels from both the spatial and temporal dimensions [28]–[31]. 
Thus, this approach is generally more stable and effective than 
the previous two [32]. Spatiotemporal interpolation does not 
consider the LST difference resulting from the radiation 
difference between the cloudy-sky and clear-sky pixels. The 
obtained LST with spatiotemporal interpolation is not the real 
LST under cloudy-sky conditions but a hypothetical clear-sky 
LST since they neglect the cloud effect. In contrast, the energy 
balance (EB)-based interpolation considers the radiation 
difference and further corrects the LST under the cloudy sky 
[23], [33], [34]. To take EB into account implicitly, Zhao and 
Duan [35] used the random forest (RF) to establish a mapping 
relationship among the clear-sky LST and surface parameters, 
terrain parameters, and accumulated solar radiation. 

Integrating TIR data and other types of data, such as passive 
microwave (PMW) data or reanalysis data, is another effective 
routine for obtaining the AW LST. In previous studies, the 
integration of TIR LST and PMW observations has been widely 
adopted to obtain the AW LST. For example, Duan et al. [36] 
reported that the elevation differences of Moderate Resolution 
Imaging Spectroradiometer (MODIS) pixels within an 
Advanced Microwave Scanning Radiometer-Earth Observing 
System sensor (AMSR-E) pixel determine the LST differences. 
They downscaled the AMSR-E LST using elevation data and 
fused the downscaled AMSR-E LST with the MODIS LST to 
obtain the AW LST. Zhang et al. [37] proposed a so-called TCD 
method based on the temporal component decomposition for 
estimating the 1-km resolution AW LST by merging TIR and 
PMW satellite observations. In TCD, LST is first divided into 
the annual temperature component (TATC), diurnal temperature 
component (TDTC), and weather temperature component (TWTC); 
then, the all-weather TATC, TDTC, and TWTC are calculated based 
on the TIR and PMW LSTs, respectively; finally, each 
component is determined and optimized according to their 
characteristics, and then the optimized components are 
superimposed to obtain the AW LST. In addition, Xu et al. [38] 
used Bayesian maximum entropy to downscale the AMSR-E 
LST and then merged the downscaled AMSR-E LST with 
MODIS LST to obtain the AW LST with a 1-km resolution for 
the Tibetan Plateau and Heihe River Basin. Zhang et al. [39] 
used the Microwave Radiation Imager (MWRI) brightness 
temperature (BT) data from the Chinese Fengyun 3B (FY-3B) 
to reconstruct the AMSR-E PMW BTs within the period of 

missing data (from 2011 to 2012) based on singular spectrum 
decomposition (SSA). They integrated the reconstructed PMW 
BT and MODIS LST to obtain the AW LST. Xu and Cheng [40] 
proposed a new method to fuse the MODIS TIR LST and 
downscaled PMW LST based on a cumulative distribution 
function and multiresolution Kalman filtering. In the processing, 
the Empirical Orthogonal Functions (EOF) interpolation was 
used to fill the PMW LST strips. However, PMW data with a 
high temporal resolution is not currently available; thus, this 
method may be not practical for TIR LST from geostationary 
satellites. 

Integrating satellite TIR LST and reanalysis data is another 
approach of multi-source data integration for obtaining the AW 
LST. However, related studies are still rare. Based on the 
advantages of the enhanced spatial and temporal adaptive 
reflectance fusion model (ESTARFM) in the data fusion, Long 
et al. [41] integrated the China Land Surface Data Assimilation 
System (CLDAS) LST and MODIS LST to estimate the 1-km 
resolution AW LST. This study provides a practical way for the 
integration of TIR data and reanalysis data to obtain the AW 
LST, which has a stable accuracy (2.37–3.98 K) and image 
quality while significantly reducing the spatial gaps in the TIR 
LST. This method has good extendibility to other data sources 
and other areas. Based on an improved LST temporal 
decomposition model, Zhang et al. proposed a reanalysis data 
and TIR remote sensing data merging (RTM) method to 
reconstruct the AW LST [42]. This method was further used to 
generate a 22-year daily 1-km AW LST dataset for the Chinese 
landmass and its surrounding areas (TRIMS LST). The RMSEs 
of TRIMS LST vary from 1.52 K to 3.71 K for the Heihe River 
Basin, Northeast China, North China, and South China. 

Most previous studies on the AW LST focused on polar-
orbiting satellites, while few studies have explored the 
estimation of high temporal resolution AW LST based on the 
geostationary satellites [34]. The LST from geostationary 
satellites has the advantage of high frequency in a diurnal cycle. 
Therefore, filling the TIR LST with the geostationary satellite 
to obtain the high temporal resolution AW LST is crucial for 
characterizing the diurnal variations in many surface processes, 
such as surface evapotranspiration and urban heat island effect 
[43], [44]. Especially for the Tibetan Plateau, the AW LST with 
high temporal resolution can largely strengthen the 
understanding of the diurnal characteristics of the interaction 
between the earth’s surface and the atmosphere. However, to 
the best of our knowledge, relevant studies are still rare. 

Both geostationary satellite data and reanalysis data have the 
advantage of high temporal resolution. Thus, it is possible to 
integrate these two data to obtain the hourly AW LST. In this 
context, we aim to propose a method for integrating reanalysis 
data and TIR data from the geostationary satellites (RTG) to 
reconstruct the hourly AW LST in this study. In RTG, the LST 
is decomposed into a normal component (NC) and an abnormal 
component (AC). The NC under all-weather conditions is fitted 
based on the annual temperature cycle model (ATC), and it is 
further filled and corrected through the Random Forest (RF) 
and the diurnal temperature cycle model (DTC). AC is 
estimated based on the temporal correction of all-weather AC 
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provided by reanalysis data. Then, with the Chinese Fengyun-
4A (FY-4A) TIR LST and CLDAS data, we apply the RTG to 
the Tibetan Plateau for reconstructing hourly all-weather LSTs. 
In the end, the obtained hourly AW LST is validated with the 
in-situ LST at six ground sites. This paper is organized as 
follows: Section II describes the study area and datasets; 
Section III summarizes the AW LST reconstruction method 
(RTG); Section IV presents the reconstruction results for the 
hourly AW LST and discusses the possible reasons affecting 
the accuracy of AW LST; Section V provides the overall 
conclusions. 
 

II. STUDY AREA AND DATASETS 

A. Study Area 
The Tibetan Plateau (TP) is selected as the study area since it 

exerts an extraordinary influence on the climate of the 
surrounding area and even the globe. Specifically, the spatial 
extent of the study area is 73-106°E and 23-40°N (Fig. 1) and 
has an average elevation of over 4,000 m. Notably, the elevation 
changes sharply in the southeastern part of the TP. The complex 
terrain of the TP induces complex surface characteristics and 
atmospheric conditions. A large area of glaciers lies on the 
western and southeastern parts of TP, where many rivers in Asia 
rise. Thus it is also known as the “Asian water tower” [45], [46]. 
A very high plateau is located in the middle of the TP, where 
the atmosphere is relatively thin. In addition, the TP is also one 
of the most heavily cloud-covered regions in the world, 
especially the southeastern part of TP, where the lack of satellite 
observations of TIR LST is particularly severe. Therefore, the 
AW LST estimation of the TP has always been a challenging 
task. 

B. Datasets 

1) FY-4A data 

Fengyun-4A (FY-4A) satellite is one of China’s second-
generation geostationary meteorological satellites and was 
successfully launched on December 11, 2016. FY-4A is located 
in a geostationary orbit above the Equator at 104.7°E, carrying 
the Advanced Geostationary Radiation Imager (AGRI). AGRI 
has four thermal channels in 8.5–13.5 μm, which can be used to 
estimate LST. AGRI can perform 40 times of observations of 
thermal radiation emitted from the earth’s surface per day with 
the following two observation modes: (i) the full disk 
(80.89°N–80.89°S, 23.5–180.00°E) observation is conducted 
every hour, and its start time is the full hour and the end time is 
15 minutes afterward; and (ii) three consecutive full-disk 
observations are made at 3-hour intervals, with the observation 
times at **:45:00–**:59:59, **:00:00–**:14:59, and **:15:00–
**:29:59. The spatial resolution of the FY-4A LST is 
approximately 4-km at nadir. The farther away from the nadir 
the observation pixels are, the lower the spatial resolution is. 
The specific resolution of the pixels is related to the 
corresponding zenith angle. The split-window algorithm 
proposed by Ulivieri & Cannizzaro (1985) is used to retrieve 
the FY-4A LST [47]. Based on the reflectance difference 

between clouds and the earth’s surface, a threshold method is 
used as the cloud mask algorithm, and details for FY-4A cloud 
mask can be found in Xi et al. [48]. This study used the hourly 
FY-4A LST in 2020 and this dataset was provided by the 
National Satellite Meteorological Centre, China Meteorological 
Administration(http://satellite.nsmc.org.cn/portalsite/default.as
px). 

2) Reanalysis data 

The China Land Surface Data Assimilation System (CLDAS, 
http://data.cma.cn/data/cdcdetail/dataCode/NAFP_CLDAS2.0
_NRT.html) reanalysis data from 2020 were also collected 
[49]–[51]. Multiple data are fused in the CLDAS, including the 
ground observation data, reanalysis data derived from 
NCEP/GFS, precipitation products, and meteorological 
parameters from the National Satellite Meteorological Center 
of China. The Space and Time Mesoscale Analysis System 
(STMAS), Optimal Interpolation (OI), Cumulative Distribution 
Function (CDF), and physical inversion are used in the 
production of CLDAS data [49]–[51]. In this study, the CLDAS 
data is mainly used to derive LST and provide meteorological 
elements, including air specific humidity (q), surface air 
temperature (Ta), and pressure (p). These CLDAS parameters 
have a spatial resolution of 0.0625° and a temporal resolution 
of 1 hour. It should be noted that FY-4A LST is not used in the 
generation of CLDAS LST; thus, these two LSTs are mutually 
independent. The quality of FY-4A and CLDAS LSTs will be 
evaluated in section VI-A. 

3) Ground measurements 

To validate the reconstructed AW LSTs, in-situ 
measurements from six ground sites with different land cover 
types in 2020 were collected (Table I and Fig. 1). These six 
ground sites, including Arou (ARO), Daman (DMA), 
Gaohancaodian (GHC), Yagaoshan (YGS), Huazhuaizi (HZZ), 
and Zhangye (ZHY), are located in the northeastern part of the 
TP and the surrounding areas. ARO, DMA, HZZ, and ZHY 
belong to the Heihe Watershed Applied Telemetry 
Experimental Research (HiWATER) experiment, which is a 
world-class observation system widely used to provide long-
term and high-quality in-situ measurements for various satellite 
products validation [52]–[54]. These four sites are located in 
upstream and midstream of the Heihe River Basin. GHC and 
YGS are part of the Qilian Mountains integrated observation 
network [55], [56]. The land cover type of GHC is the alpine 
meadow, and the surface of YGS is extensively covered by 
alpine scrub. The in-situ measurements were provided by the 
National Tibetan Plateau Data Center 
(https://data.tpdc.ac.cn/en/). 

These six sites provide radiation flux observations from four-
component radiometers, including downward longwave 
radiation and upward longwave radiation. The in-situ LST at 
these sites can be calculated according to [57]:  

1/4
up down

s

(1 )L L
T

ε
εσ

− − 
=  

 
 (1) 

where Ts is the LST; Lup and Ldown are the upward longwave 
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radiation and the downward longwave radiation, respectively; 
σ is the Stefan-Boltzmann constant (5.67×10-8 W·m-2·K-4); and 
ε is the broadband emissivity, which can be determined as 
follows [58]: 

29 31 320.2122 0.3859 0.4029ε ε ε ε= + +  (2) 
where ε29, ε31, and ε32 are land surface emissivities in MODIS 
bands 29, 31, and 32 from MYD11A1 product (V006), 

respectively. The land surface emissivities under cloudy-sky 
conditions are obtained by linear interpolation based on clear-
sky data. 

In addition to longwave radiation, four sites, including ARO, 
DMA, GHC, and YGS, are also equipped with SI-111 TIR 
radiometers, which can measure the brightness temperature (BT) 
of the land surfaces. The BT can be further converted to LST 
(SI-111 LST) [59]. For these four sites, the calculated in-situ 
LSTs based on Lup and Ldown have outliers. Therefore, in-situ 

LST samples are excluded when the differences between the in-
situ LST and SI-111 LST are higher than 6 K. 

The representation difference (urep) caused by the scale 
difference between the satellite pixel and the radiometer’s field 
of view (FOV) is an important source of error for the validation 
of AW/FY-4A LST based on the in-situ LST. The FOVs of the 
site observations are much smaller (the radii are approximately 
10-20 m) than those of the satellite pixels (the pixel radius is 

larger than 2 km), and the large-scale difference may introduce 
a large urep. Therefore, the effect of urep on the evaluation of FA-
4A LST based on site observation should be considered as a 
control indicator. Here, the SRI method proposed by Ma et al. 
[60] is used to calculate urep between the sites and the 
corresponding FY-4A LST pixels. The mean urep values for the 
six sites are shown in Table I. A positive urep indicates a 
negative deviation between the estimated LST and the in-situ 
LST, and vice versa. 

 

 
Fig. 1. DEM distribution of the study area and land cover conditions of the six selected ground sites. 

 
TABLE I 

DETAILS OF THE SIX GROUND SITES 

Site Location Land cover Elevation (m) 
Measurement details 

urep (K) 
Interval 
(min) Height of radiometer (m) Period 

ARO 100.46°E, 38.05°N Subalpine 
meadow 3033 10 5 2020 -0.85 

DMA 100.37°E, 38.85°N Cropland 1556 10 12 2020 -0.09 

GHC 98.59°E, 37.70°N Alpine meadow 3718 10 6 2020 -0.35 

YGS 100.10°E, 37.52°N Alpine scrub 3495 10 6 2020 -2.32 

HZZ 100.32°E, 37.77°N Desert 1731 10 6 2020 0.43 

ZHY 100.47°E, 38.98°N Wetland 1460 10 6 2020 -3.26 

Note: urep is the representation differences caused by the scale differences between satellite pixels and the radiometers' field of view (FOV). 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

5 

4)  Other auxiliary data 

This study also uses the vegetation index and surface albedo 
data that are acquired by MODIS instruments on the Terra and 
Aqua satellites. Terra and Aqua were launched on December 18, 
1999, and May 4, 2002, respectively. In this study, two 
categories of MODIS products in 2020 are collected, including 
the 16-day vegetation index product (MOD13C1) and the daily 
surface albedo product (MCD43C3). For MOD13C1, the 
normalized difference vegetation index (NDVI) with a spatial 
resolution of 0.05° is used in this study. The shortwave white-
sky and black-sky albedos with a spatial resolution of 0.05° 
contained in MCD43C3 are used directly. The DEM acquired 
by the Shuttle Radar Topography Mission is employed in this 
study. The original resolution of the DEM data is 90 m. To 
match the spatial resolution among the FY-4A LST and these 
auxiliary data, the aforementioned NDVI, surface albedo, and 
DEM data are resampled to 0.04° through a weighted average 
method. 

In addition, to calculate urep, Landsat-5 TM and Landsat-7 
ETM+ data, GLDAS reanalysis data, and the surface emissivity 
products from the GLASS (Global Land Surface Satellite) 
products are also used. The Landsat data are used to derive the 
LST with a 30-m resolution and simulate the true LST within 
the FY-4A pixel. In this study, Landsat LST is retrieved through 
the radiative transfer equation method [61]. 
 

III. METHODOLOGY 

A. Framework of RTG 
The basis of RTG is the LST temporal decomposition theory 

[8], [62]. LST is decomposed into three components: the annual 
variation component (AVC), the diurnal variation component 
(ΔDVC), and the weather variation component (WVC). AVC 
and ΔDVC are regular varying components that only depend on 
time. Here, we define the sum of these two components as the 
normal component (NC). NC denotes the LST in the ideal state 
(i.e., clear-sky conditions undisturbed by other factors), which 
is caused by the rotation and revolution of the Earth. WVC is a 
non-regular varying component caused by the weather and 
surface type, etc., and it is termed as the abnormal component 
(AC) here. Then the AW LST from a satellite sensor can be 
expressed in the following form: 

,s d avg AVC d DVC d DVC d av

C

g

AVC

WVC

DVC

NC

WV

AC

d

( , )= ( , ) [ ( , )- ( , )]

( , )

T t t t T t t T t t T t t

T t t

∆

+

+











 (3) 

where td, t and tavg are the day of year, satellite observation time 
and satellite average observation time, respectively; TAVC, TDVC, 
and TWVC are AVC, DVC, and WVC, respectively. 

The geostationary satellite has a fixed observation geometry, 
and its observation time t is exactly repeated each day for a 
given location. Therefore, t and tavg in Eq. (3) are the same, and 
ΔDVC of NC can be neglected. Thus, Eq. (3) can be further 
simplified as: 

, s d AVC d WVC d

NC d AC d

( )= ( , ) ( , )
( , ) ( , )

T t t T t t T t t
T t t T t t

+

= +
 (4) 

where TNC is NC and TAC is AC. 
According to Eq. (4), if the all-weather NC and AC can be 

determined, the AW LST based on geostationary satellites can 
be obtained. In RTG, we first estimate the initial NC using the 
annual temperature cycle (ATC) model and then fill and 
optimize the initial NC using the RF and the DTC model. For 
AC, its influencing factors are complex, and there are few 
physical models to express its variation. Using the FY-4A AC 
under clear-sky as a reference, the final AC is obtained after 
time correction and spatial weighting of the initial AC provided 
by CLDAS. The parameterization process for NC and AC is 
described in Sections III-B and III-C, respectively. The overall 
flowchart of RTG is shown in Fig. 2. 

B. Determination of NC 
According to Eqs. (3) and (4), NC can be determined by AVC 

at observation times t. AVC can be determined by ATC model 
[19], [63]. Thus, NC of each pixel can be expressed in the 
following form: 

( )NCNC d AVC d NC-avg NC d NC( , )= ( , )= ( ) cosT t t T t t T t A tω ϕ+ +  (5) 

where TNC-avg is the annual mean of NC; ANC is the intra-annual 
amplitude of NC; ωNC is the annual corner frequency (rad·day-

1), numerically 2π/365 or 2π/366; and ϕNC is the initial phase. 
Next, FY-4A LST under clear-sky conditions and CLDAS 

LST are separately inputted into Eq. (5) to determine the 
corresponding coefficients: 

( )
( )

NC

NC

NC-F d NC-avg-F NC-F d NC-F

NC-C d NC-avg-C NC-C d NC-C

( , )= ( ) cos   (a)

( , )= ( ) cos  (b)

T t t T t A t

T t t T t A t

ω ϕ

ω ϕ

 + +


+ +
 (6) 

where the subscripts “-F” and “-C” denote FY-4A and CLDAS, 
respectively. 

Through Eq (6a), the initial TNC-F can be obtained and 
recorded as the initial TNC of AW LST. To ensure fitting 
accuracy, the FY-4A LST series should not be missing more 
than 326 days in a year. If FY-4A LST has serious missing at 
some moments (i.e., high-temperature moments of the day), the 
numbers of clear-sky LST for some pixels in a year will not 
meet the fitting requirements of Eq. (6a). Therefore, spatially 
continuous TNC cannot be acquired based on FY-4A LST. In 
addition, since there is a difference between FY-4A LST and 
CLDAS LST, we cannot use TNC-C estimated with CLDAS as 
the missing TNC. 

Fortunately, there is a strong correlation between TNC and 
TNC-C/other parameters. Machine learning techniques have a 
good ability to implicitly express the relationships between 
LST/LST-derived parameters and the influencing factors [61], 
[62]. Specifically, the RF algorithm has an excellent 
performance in simulating the LST variation in previous studies 
[56], [63], [64]. Therefore, RF is employed to estimate the 
missing TNC. We determine the missing TNC as: 

 NC d NC

w b NC-C

( , ) ( , , , , ,
, , , , , )

a

s C

T t t lat lon DEM NDVI T
q p T Tα α −

= RF
 (7) 

where lat, lon, DEM, NDVI, Ta, q, p, αw, αb, Ts-C, and TNC-C, are 
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latitude, longitude, elevation, NDVI, surface air temperature, 
humidity, pressure, white-sky albedo, black-sky albedo, 
CLDAS LST, and NC of CLDAS, respectively. 

First, the initial TNC obtained by Eq (6a) and the possible 
influencing factors are imported into RF to obtain the mapping 
model of NC at each hour. Then the missing TNC is estimated 
based on the RF and the possible influencing factors for 
obtaining spatially continuous NC ( NCT ′ ). 

However, due to some problems, such as the unstable data 
quality, uneven distribution of clear-sky LSTs on the temporal 
scale, and significant difference between FY-4A LST and 
CLDAS LST, NCT ′  of some pixels have anomalies at some 
moments. Therefore, an optimization strategy is proposed to 
improve the initial value of NCT ′ . In this stage, a diurnal 
temperature cycle-based (DTC-based) approach is employed to 
detect and reduce NCT ′  anomalies. As described previously, 
NC represents LST in an ideal state (NC is unrelated to weather 
conditions). Thus, the NC values at different times during a 
diurnal cycle should conform to the DTC curve. When NC 
deviates far from the DTC curve, it should be corrected to the 
DTC curve. Therefore, NCT ′ is corrected based on the DTC 
model from the temporal dimension. The DTC-based approach 
for NC optimization can be formulated as follows: 

 

[ ]
NC-DTC d NC-td d

NC d NC-DTC NC-DTC d

NC-diff-T d NC d NC-DTC d

NC d NC-DTC d NC-diff-T d NC-T

NC d d NC-diff-T d NC-T

( , )= ( )
( )cos ( ) (a)

( , )= ( , ) ( , ) (b)

( , )= ( , ) if ( , ) (c)
( , )= ( , ) if ( , )NC

T t t T t
A t t t

T t t T t t T t t

T t t T t t T t t T
T t t T t t T t t T

ω ϕ
+

+

′ −

′′ ≥

′′ ′ < (d)











 (8) 

where TNC-DTC is the predicted NC based on the DTC model; 
TNC-td is NC at sunrise on the td-th day; t is the hour of day (for 
local solar time); ANC is the intra-diurnal amplitude of NC; ωNC-

DTC is the diurnal angular frequency and is numerically equal to 
2π/24 and 2π/60 in rad·h-1 during the daytime and nighttime, 
respectively; φNC-DTC is the initial phase; TNC-diff-T is the 
difference between TNC-DTC and NCT ′ ; NCT ′′  is the optimized 
NC by the DTC-based; TNC-T is the threshold value of TNC-diff-T 
and will be further determined. 

C. Determination of AC and AW LST 
According to Eq. (4), determining AC is essential for 

estimating the AW LST. AC is affected by many factors (e.g., 
meteorological conditions and land surface characteristics) and 
does not follow an analytical pattern of variation [60], [64]. 
However, studies have shown that spatially adjacent pixels with 
the same land cover have similar thermal properties, provided 
that the land cover property does not change significantly [37]. 
Combining previous studies, the response of FY-4A and 
CLDAS to LST changes caused by meteorological parameters 
over a short period can be considered relatively stable (i.e., the 
AC difference between the two LSTs at a given moment 
remains relatively stable over a short period) [42], [65]. The 
relationships between two ACs at two different hours can be 
parameterized in the following form. 

 
AC-F d-1 AC-C d-1 AC-F d-2 AC-C d-2

AC-F d s-F d NC d

AC-C d s-C d NC d

( , ) ( , )= ( , ) ( , )
( , ) ( , ) ( , )
( , ) ( , ) ( , )

T t t T t t T t t T t t
T t t T t t T t t
T t t T t t T t t

− −
 ′′= −
 ′′= −

 (9) 

where the subscripts “-F” and “-C” denote FY-4A and CLDAS, 
respectively; td-1 and td-2 are different days of year, and td-1 is the 
reference date for td-2 (target day). 

From Eq. (9), the following equation can be obtained: 

 
AC-F d-2 AC-F d-1 AC-C

AC-C AC-C d-2 AC-C d-1

( , )= ( , ) (a)

( , ) ( , ) (b)

T t t T t t T

T T t t T t t

+ ∆
∆ = −

 (10) 

Since Eq (10) is unstable on individual pixels, we can use 
similar pixels in spatially adjacent pixels to build a more stable 
relationship. Eq (10) is further evolved into: 

 AC-F d-2 AC-F d-1 i AC-C-i
1

( , )= ( , )
m

i

T t t T t t w T
=

+ ∆∑  (11) 

where wi is the weight of similar pixels. 
If td-1 and wi can be determined, TAC-F can be calculated at any 

moment. td-1 should satisfy the following conditions.  
(1) To prevent drastic changes in land cover, the difference 
between td-1 and td-2 should not exceed 30 days; 
(2) Target pixel at (td-1, t) is clear sky; 
(3) On the basis of satisfying conditions 1 and 2, the date with 
the smallest AC difference from the target moment is selected 
as the reference date (td-1). 

 
Fig. 2. Flowchart of the RTG method. 
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To identify similar pixels, the land cover was classified into 
four types based on NDVI: dense vegetation (NDVI≥0.5, LC-
1), sparse vegetation (0.2≤NDVI<0.5, LC-2), barren ground 
(NDVI<0.2, LC-3), and waterbody (LC-4). The rules for 
determining similar pixels are as follows: 
(1) Similar pixels have the same land cover as the target pixel; 
(2) Similar pixels are located in a moving window centered on 
the target pixel. Based on the previous study, the window size 
is set to 11×11 pixels in this study [37], [41]. 

wi can be determined as follows: 

 

m
i i ii 1

i i

s-F-i s-F-i s-C-i s-C-i
i

s-F-i s-C-i

2 2
i0 0 i 0 i

(1 / ) / (1 / ) (a)

(1 ) (b)
[( ( ))( ( ))] (c)

( ) ( )

1 ( ) ( ) / ( / 2) (d)

i

w q q

q r ds
E T E T T E Tr

D T D T

ds x x y y R

=

 =


= − ×
 − −

=



= + − + −

∑

 (12) 

where ri is the correlation coefficient between the FY-4A and 
CLDAS LSTs for the similar pixels under clear-sky conditions; 
dsi0 is the distance weight of the similar pixels (pixels as a unit 
of measure); (x0, y0) and (xi, yi) are the spatial location of the 
target pixel and similar pixels in a moving window, respectively; 
and R is the size of the moving window. 

In the process of AC estimation, the change information of 
AC comes from CLDAS. However, there is some uncertainty 
in CLDAS, and some pixels cannot satisfy the estimation 
conditions of AC at some moments. Thus, it is necessary to 
further fill and optimize the initial AC obtained based on Eq 
(11). In this process, a weighted convolution method based on 
a moving window (the window size remains the same as before) 
is used. A similar approach has been used in previous studies 
[37]. Previous studies have shown that AC varies minimally 
over small spatial scales [37]. After the negative systematic bias 
is eliminated, the optimized AC in a target pixel can be 
expressed as a weighted sum of reference pixels within the 
moving window. The referenced pixel belongs to the same land 
cover and weather conditions (clear sky or cloudy sky) as the 
target pixel. If the target pixel already has an AC value, it will 
be aligned with the referenced pixel.The optimized AC in target 
pixel can be expressed as: 

 

AC-F-tar

AC-F-m d m
=1

AC d AC-F-tar

AC-F-m d m
m=1

AC-F-tar d

if  does not exist:

( , )  (a)    

( , ) if  exist:

[ ( , )  
1

1+ ( , ) ]  (b)
1

N

m

N

T

T t t W

T t t T
NT t t W

N

T t t
N




 ⋅


= 

 ⋅ ⋅

+

 ⋅

+

∑

∑

 (13) 

where TAC is the all-weather AC; N is the number of referenced 
pixels; Wm is the weight of referenced pixels, and it is 
determined as follows: 

 

1

1 /

(1 / )

m
m N

m
r

dsW
ds

=

=

∑
 (14) 

where dsm is the distance between the target and reference 
pixels, which can be determined by Eq (12d). 

After obtaining the optimized all-weather NC and AC, the 
reconstructed AW LST can be obtained: 
 s-AW d NC d AC d( , ) ( , ) ( , )T t t T t t T t t′′= +  (15) 
where Ts-AW is the reconstructed AW LST. 

D. Implementation of RTG 
The proposed RTG can be implemented using the following 

eight steps. 
Step I: The spatial and temporal extents of all relevant data 

are unified. All datasets are resampled to a 0.04° grid using a 
weighted average method. 

Step II: The FY-4A LST and CLDAS LST in Step I are 
substituted into Eq (5) to obtain the NC parameters (pixel-by-
pixel implementation). After the fitting is completed, NCs of 
FY-4A and CLDAS are calculated separately based on Eq. (6). 
Based on the results of the follow-up evaluation, FY-4A LST is 
considered as better data with lower uncertainty. Therefore, 
TNC-F is used as the initial NC for the all-weather LST (TNC). 

Step III: Based on Eq (7), TNC in step 2 is used as the label, 
and TNC-C and other influencing factors are regarded as features. 
Then, the RF model is trained for NC estimation in space (NC 
estimation models are developed based on the entire study area). 
Later on, the trained RF model is used to estimate the spatially 
continuous all-weather NC ( NCT ′ ). 

Step IV: The DTC-based approach is applied to optimize 

NCT ′  (Eq. 8). First, NCT ′  from Step III is substituted into Eq. (8a) 
to obtain the relevant parameters (i.e., TNC-td, ANC, and φNC-DTC). 
Second, TNC-DTC is estimated based on Eq. (8a). Third, NCT ′  and 
TNC-DTC are substituted into Eq. (8b) to calculate TNC-diff-T. 
Ideally, TNC-diff-T should be 0, but the uncertainty of the input 
data can lead to a bias in TNC-diff-T. Thus, we set the threshold 
value (TNC-T) of the TNC-diff-T to 2.5 K (about three times the 
standard deviation of the mean TNC-diff-T of the normal region) 
and correct the NC according to Eq. (8c) and Eq. (8d). Finally, 
we obtain the optimized NC (termed NCT ′′ ), which will be used 
eventually to calculate the AW LST. 

Step V: The estimation of AC. The study area is divided into 
four land covers (dense vegetation, sparse vegetation, barren 
ground, and waterbody) according to NDVI levels. After 
determining the referenced date td-1 and the weights of similar 
pixels at the target moment according to the rules in the moving 
window, the initial all-weather AC is finally calculated based 
on Eqs (9), (10), (11), and (12). 

Step VI: The filling and optimization of initial AC. Under the 
assumption that neighboring pixels with the same weather 
conditions have small AC variations, we perform AC 
convolution operation according to Eqs. (13) and (14) in the 
moving window of step V for filling and optimizing the initial 
AC. 
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Step VII: After step VI has been looped 3 times, the last 
missing NC is filled using the mean AC within the moving 
window to obtain a spatially contiguous AC (TAC). 

Step VIII: NCT ′′  and TAC obtained in Step IV and Step VII are 
summed (Eq. 15) to obtain the AW LST. 

IV. RESULTS AND DISCUSSION 

A. Evaluation of the input datasets 

1) Statistics of FY-4A LST missing pixels 

To grasp the missing FY-4A LST at different hours, the 
number of missing days of FY-4A LST over the TP was 
counted. The spatial distribution of the missing FY-4A LST in 
2020 is shown in Fig. 3. After comparing the missing rate of 
FY-4A LST in the daytime (07:00 - 16:00, if not specified, all 
times are local solar time at the longitude of 90°E) and 
nighttime (17:00 - 06:00), an unsurprising result is found that 
the FY-4A LST images in the daytime lack more valid values 
than that of nighttime, especially in the central part of the TP. 
The possible reason for this phenomenon is that the land surface 
has stronger evaporation during the daytime, thus causing more 
evident cloud coverage. In terms of spatial distribution, the 
region with the highest missing rate is the southeastern part of 
the TP, with the missing day up to 300 days. In contrast, the 
missing LST in the northwestern part of the TP is relatively less 
than that in the southeastern part. Furthermore, we also 
calculated the mean value and standard deviation (STD) for the 
missing days at the 24 hours (see Fig. 4). From the mean value 
of missing days (see Fig. 4a), the TP has a large number of 
missing data at all hours, with a missing rate of more than 1/3. 
In contrast, the STD of missing days (see Fig. 4b) is relatively 
small, and the STD values in most regions are less than 50 days, 
suggesting that the missing of FY-4A LST pixels is a frequent 
event in the TP. Because the vast majority of missing data are 
caused by clouds, it is necessary and urgent to estimate the 
cloudy-sky LST based on FY-4A data for obtaining the AW 
LSTs. 

2) Validation of FY-4A and CLDAS LST 

Since this study aims to estimate the AW LST using the FY-
4A LST and CLDAS data, the accuracies of the FY-4A and 
CLDAS LSTs need to be validated before conducting the study. 
Based on the in-situ LSTs in the TP, the evaluation results of 
FY-4A and CLDAS LSTs are shown in Table II. Before the 
evaluation, the LST outliers are removed with the 3σ (standard 
deviations) filtering [66], [67]. 

Table II indicates that FY-4A LST outperforms CLDAS LST. 
The RMSE differences between FY-4A LST and CLDAS LST 
are 0.69 K (ARO), 2.27 K (DMA), 2.71 K (GHC), 1.42 K 
(YGS), 1.97 K (HZZ), and 1.21 K (ZHY), respectively. For FY-
4A LST, LSTs at DMA, GHC, and HZZ perform better, while 
LSTs at ARO, YGS, and ZHY have lower accuracy. One 
possible reason for this phenomenon is that DMA, GHC, and 
HZZ have better spatial representativeness with a urep of -0.09 
K, -0.34 K, and 0.43 K (Table I), respectively. In contrast, ARO, 
YGS, and ZHY have poorer spatial representativeness, with a 

urep of -0.85 K, -2.32 K, and -3.26 K, respectively (Table I). 
After considering urep (MBEnew = MBE + urep), all six sites 
showed various systematic biases of MBEnew with -2.62 K 
(ARO), -1.43 K (DMA), -1.6 K (GHC), -1.01 K (YGS), -0.88 
K (HZZ), and -4.03 (ZHY), respectively. For CLDAS LST, 
RMSEs of the six sites are 5.01 K (ARO), 5.40 K (DMA), 6.06 
K (GHC), 6.16 K (YGS), 5.65 K (HZZ), and 6.19 K (ZHY), 
respectively. In addition, there is an obvious overestimation 
phenomenon for MBEs of six sites, with 2.03 K (ARO), 1.95 K 
(DMA), 1.80 K (GHC), 3.75 K (YGS), 2.24 K (HZZ), and 2.30 
K (ZHY), respectively. The possible reasons for the 
underestimation of FY-4A LST are the impact of cloud 
contamination. Meanwhile, the larger satellite observed zenith 
angle also introduces the underestimation of LST. For the 
overestimation of CLDAS, the possible reasons are mainly the 

 
Fig. 3. Statistical results of the missing days for FY-4A LST at different hours 
in 2020. The time is the local solar time at the longitude of 90°E. 

 
Fig. 4. Mean value and standard deviation (STD) for the missing days at the 
24 observation times. (a) Mean value; (b) STD. 
 

TABLE II 
VALIDATION RESULTS OF FY-4A AND CLDAS LSTS UNDER CLEAR-SKY 

CONDITIONS 

Site 

FY-4A CLDAS 

RMSE 

(K) 

MBE 

(K) 
R2 N 

RMSE 

(K) 

MBE 

(K) 
R2 N 

ARO 4.32 -1.77 0.92 3890 5.01 2.03 0.89 3890 

DMA 3.13 -1.34 0.96 4004 5.40 1.95 0.89 4004 

GHC 3.35 -1.26 0.96 1899 6.06 1.80 0.85 1899 

YGS 4.84 1.31 0.88 3901 6.16 3.75 0.90 3901 

HZZ 3.68 -1.31 0.95 4487 5.65 2.24 0.89 4487 

ZHY 4.98 -0.77 0.89 4837 6.19 2.30 0.93 4837 
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input data or the assimilation algorithm. 
In addition, we also selected valid FY-4A LST and CLDAS 

LST for 24 hours of DOY 90, 180, 270, and 360 in 2020 to 
perform the intercomparison between the two types of LST (Fig. 
5). Fig. 5 shows a significant overestimation of CLDAS 
compared to the FY-4A, with an MBE range from 3.35 K to 
5.44 K. The difference between these two LSTs is significant, 
with RMSEs above 7 K. According to the previous validation 
results, the accuracy of FY-4A LST is higher than that of 
CLDAS LST, and the estimated AW-LST is an FY-4A-like 
LST, whose final estimation accuracy depends on the original 
FY-4A LST and CLDAS LST. 

B.  The estimated NC and AC 

1) Initial NC 

Based on Eqs. (5) and (6), it can be noted that the initial NC 
(TNC) estimation is mainly performed by using FY-4A LST. To 
illustrate the reasonableness of NC estimation based on the 
RTG, we first test the NC estimation for the corresponding FY-
4A LST at six sites. Fig. 6 shows a test result at 06:00 in 2020 
with in-situ LST. 

Fig. 6 shows that the in-situ NC can be fitted by the annual 
temperature cycle (ATC) model based on in-situ LST. On DOY 
250 - 300, although many missing in-situ LSTs exist at GHC, 
the in-situ NC curves still reflect the intra-annual variation of 
LST, with an RMSE of 3.87 K between in-situ LST and in-situ 
NC. For all six sites, in-situ LSTs present slight fluctuation and 
are mainly concentrated around the NC curve (the RMSEs 
between in-situ NC and LST range from 2.43 K - 3.98 K), 
indicating the annual trend of NC is obvious. 

NC (TNC) calculated from FY-4A LST has excellent 
agreement with the corresponding FY-4A LST (LST RMSEs 
vary from 2.59 K - 2.96 K). This finding indicates that it is 
reasonable and feasible to fit TNC based on FY-4A LST. The 
difference between TNC and FY-4A LST (mean RMSE is 2.80 
K) is smaller than the difference between the in-situ NC and in-
situ LST (mean RMSE is 3.41 K). The difference between NC 
and LST is caused by AC. AC is directly related to weather 
conditions. Therefore, one reason for this phenomenon may be 
that the meteorological parameters have fewer influences on 
LST at the pixel scale than that of the site scale. In addition, 
despite the scale differences between the in-situ NC and TNC are 

large, both two NCs are highly similar for the six sites in terms 
of various trends (the highest NC appeared at the same time). 
The test results indicate that the ATC-based model is effective 
in fitting TNC and can be used for pixel-by-pixel TNC simulations. 

With the same procedure in Step II (Section III-D), we 
further estimated TNC for the entire TP in 2020. TNC at 06:00 and 
12:00 on DOYs 061, 121, and 241 in 2020 are shown in Fig. 7. 
Obviously, the spatial distribution of TNC is consistent with the 
priori knowledge of the LST distribution on the TP. In the 
southeastern part of the TP, TNC with a 0.04° resolution can 
better reflect the geographic variation of LST, which is more 
evident at 06:00. For the intra-annual variation, TNC has an 
obvious trend, and this is because the characteristics of TNC are 
related to the earth’s rotation. According to the previous 

analysis, FY-4A LST has many missing data at some hours and 
in some regions, and the FY-4A LST series are not uniformly 
distributed in an intra-annual cycle. These problems will 
contribute to the failure of TNC estimation. We can see that TNC 
has different degrees of missing at various hours. Especially at 
12:00, its spatial missing is more obvious. Therefore, TNC needs 
to be further filled and optimized before using it as the input 

 
Fig. 5. Density plots between the FY-4A LST and CLDAS LST on DOY 90, 
180, 270, and 360 in 2020. 

 
Fig. 6. The test results of NC fitting for the six sites. The time is the local 
solar time at the longitude of 90°E. 
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data to calculate the AW LST. 

2) Optimization of NC  

Since TNC has some missing values (Fig. 7), RF is first used 
to fill the spatial missing of TNC to obtain the spatially 
continuous NC ( NCT ′ ). This process is implemented as described 
in Step III of Section III-D. Then, to further remove the 
anomalies that occur at some pixels in NCT ′ , a DTC-based 
approach is proposed to obtain the final NC ( NCT ′′ ) based on the 
characteristics of geostationary satellites with a high-frequency 
observation (here, it is defined as time optimization). The 
temporal optimization is implemented as described in Step VI 
of Section III-D. The core theory of time optimization is that 

NCT ′  is LST in the ideal state; thus, NCT ′  should conform to the 

DTC model during the day. If NCT ′  deviates from the DTC 
curve at a certain moment and exceeds a threshold, we believe 
that NCT ′  needs to be corrected to the DTC curve. 

The final NC ( NCT ′′ ) at 06:00 and 12:00 on DOYs 061, 121, 

and 241 in 2020 are shown in Fig. 8. Comparing to Fig. 7, it is 
evident that before the filling, NC has lots of missing values, 
especially at 12:00. After the filling, all missing NCs are 
successfully estimated, and a spatially continuous NC is 
obtained, indicating that RF can effectively estimate the 
missing NC in small regions. In addition, spatial anomalies of 
NC can be effectively suppressed by time optimization, and 
there are no obvious NC anomalies in Fig. 8. The lower 
temperatures occur at nighttime when the spatial distribution of 
LST is homogeneous. The mean image gradients (which 
characterize the roughness of the LST in space) for the two 
moments are calculated, and the mean gradients are 0.59 K and 
1.44 K for 06:00 and 12:00, respectively. Comparing NCT ′′ at 
06:00 (nighttime) and 12:00 (daytime), we find that NCT ′′ at 
06:00 is smoother in the spatial distribution, with weaker spatial 
variation in a small area and natural visual perception. 
Compared to NCT ′′  at 06:00, NCT ′′  at 12:00 is more complex in 
the spatial distribution, with some obvious regional variations 
and rougher visual perception. At high-temperature moments 
(the hours having larger LSTs of the day), NC is affected by 
solar radiation, and there are some regional differences. Winter 
has a larger solar zenith angle, and LST is less affected by the 
sun. Therefore, NCT ′′ at 12:00 on DOY 061 is smoother than 

NCT ′′  on DOY 121, which indirectly confirms this inference. 
Overall, the image’s visual effect is consistent with the gradient 
calculation results. NCT ′′  can be obtained to calculate the AW 
LST. 

3) The estimated AC 

AC is estimated according to Steps V, VI, and VII in Section 
III-D. The FY-4A LST is severely missing at some pixels 
within a year. In addition, the uncertainty of the input data may 

 

 
Fig. 9. Spatial pattern of the all-weather AC for the TP. The time is the local 
solar time at the longitude of 90°E. 

 
Fig. 10. The validation results of estimated all-weather AC based on the in-
situ AC. 

 

 
Fig. 7. The spatial distribution of the initial TNC. (a), (b), and (c): nighttime; 
(d), (e), and (f): daytime. The time is the local solar time at the longitude of 
90°E. 

 
 
Fig. 8. The optimization results of the initial NC. (a), (b), and (c): nighttime; 
(d), (e), and (f): daytime.The time is the local solar time at the longitude of 
90°E. 
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cause anomalies in the initial AC of a small number of pixels. 
By filling and optimizing the AC, we obtained all-weather AC 
(TAC). 

Fig. 9 displays the estimation results of TAC at 06:00 and 
12:00 on DOY 061 and 241. Although TAC is estimated pixel-
by-pixel, there are no significant spatial anomalies for the entire 
TP. This finding indicates that the proposed AC estimation 
method is stable and generalizable. TAC is present in both 
positive and negative values, showing that LST has an obvious 
spatial variation. A closer look indicates large variation in some 
regions at some moments (with varying amplitude reaching 10 
K). Thus, the estimated TAC can be used for AW LST estimation. 

The in-situ ACs at six sites are extracted to validate the 
estimated TAC by RTG. The calculated mean absolute error 
(MAE) between in-situ AC and TAC is shown in Fig. 10. For the 
clear-sky condition, the MAE ranges from 1.83 K (ZHY) to 
2.89 K (GHC). For the cloudy-sky conditions, the MAE ranges 
from 2.04 K (ZHY) to 3.46 K (GHC). Overall, the MAE under 
clear-sky conditions is lower than that under cloudy-sky 
conditions. The possible reason for this phenomenon is that the 
weather conditions are more complex under cloudy-sky 
conditions than clear-sky conditions. For the all-weather 
condition, the MAE ranges from 1.92 K (ZHY) to 3.26 K 
(GHC). The large differences between the estimated TAC and 
the in-situ AC are found at some sites. The possible reason for 
this phenomenon is that there is a scale difference between sites 
and pixels, and the in-situ AC is more susceptible to the weather 
compared to the TAC at the pixel. In addition, according to Eq 
(4), the accuracy of the final AW LST is also related to NC in 
addition to AC. Therefore, the difference between the in-situ 
AC and the TAC at pixel scale does not ultimately determine the 
accuracy of AW LST. The predicted TAC has stable accuracies, 
with a mean MAE of 2.48 K at all six sites. The results indicate 

that the proposed method can effectively estimate the AC, 
which can be used to estimate the all-weather AC (TAC) over TP. 

C. The reconstructed AW LST 

1) Validation against the in-situ LST 

To quantitatively evaluate the accuracy of RTG, the 
reconstructed AW LSTs under clear-sky, cloudy-sky, and all-
weather conditions are validated against the in-situ LST. Table 
III presents the validation results of RTG at various weather 
conditions for the six ground sites. As a control, the validation 
results of CLDAS LST under three weather conditions are also 
presented in Table III. 

Table III clearly shows that the reconstructed AW LST with 
RTG has better accuracy (mean RMSE is 3.02 K) for the clear-
sky condition than FY-4A and CLDAS LSTs. For AW LST, the 
RMSEs/MBEs are 2.74 K/-0.58 K (ARO), 2.37 K/-0.21 K 
(DMA), 2.73 K/-0.14 K (GHC), 3.12 K/0.97 K (YGS), 2.71 
K/0.05 K (HZZ), and 4.45 K/0.48 K (ZHY), respectively. The 
systematic deviations for all six sites are within 1 K. Compared 
to the FY-4A LST (Table II), the original underestimation is 
significantly depressed in reconstructing the AW LST. For all 
six sites, the RMSE of the AW LST is lower than that of the 
FY-4A LST. The RMSEs of FY-4A LST can be reduced by 
1.58 K (ARO), 0.76 K (DMA), 0.62 K (GHC), 1.72 K (YGS), 
0.97 K (HZZ), and 0.54 K (ZHY), respectively (Table II). 
Compared to the CLDAS LST, the original overestimation 
effect is significantly depressed in reconstructing the AW LST. 
The RMSEs of CLDAS LST can be reduced by 2.27 K (ARO), 
2.03 K (DMA), 3.33 K (GHC), 3.04 K (YGS), 2.94 K (HZZ), 
and 1.74 K (ZHY), respectively. R2 between the reconstructed 
AW LST and in-situ LST are all greater than 0.9 for all six sites, 
indicating the reconstructed AW LSTs with RTG have a good 
agreement with in-situ LST under clear-sky conditions. The 

TABLE III 
VALIDATION RESULTS OF AW LST AND CLDAS LST UNDER CLEAR-SKY (CLOUDY-SKY), DAYTIME (NIGHTTIME), AND ALL-WEATHER (ALL-TIME) CONDITIONS 

Site LST 
Clear-sky (Cloudy-sky) Daytime (Nighttime) All-weather (All-time) 

RMSE 

(K) 
MBE 
(K) R2 N RMSE 

(K) 
MBE 
(K) R2 N RMSE 

(K) 
MBE 
(K) R2 N 

ARO 
AW 2.74 

(4.22) 
-0.58 

(-2.76) 
0.97 

(0.93) 
3889 

(4724) 
3.79 

(3.49) 
-1.81 

(-1.75) 
0.93 

(0.94) 
3569 

(5044) 3.62 -1.78 0.95 8613 

CLDAS 5.01 
(4.49) 

2.03 
(-0.27) 

0.89 
(0.86) 

3889 
(4274) 

5.01 
(4.55) 

-1.64 
(2.81) 

0.85 
(0.89) 

3569 
(5044) 4.75 0.97 0.88 8613 

DMA 
AW 2.37 

(3.73) 
-0.21 

(-1.85) 
0.97 

(0.93) 
4004 

(4028) 
3.25 

(3.02) 
0.09 

(-1.84) 
0.93 

(0.96) 
3369 

(4663) 3.12 -1.03 0.95 8032 

CLDAS 5.40 
(4.61) 

1.95 
(1.14) 

0.89 
(0.89) 

4004 
(4028) 

6.22 
(3.77) 

1.62 
(1.15) 

0.84 
(0.90) 

3369 
(4663) 4.95 1.35 0.89 8032 

GHC 
AW 2.73 

(4.31) 
0.14 

(-1.01) 
0.96 

(0.90) 
1891 

(3318) 
4.22 

(3.49) 
0.52 

(-1.35) 
0.87 

(0.92) 
2114 

(3095) 3.81 -0.59 0.92 5209 

CLDAS 6.06 
(4.68) 

1.80 
(0.35) 

0.85 
(0.85) 

1891 
(3318) 

5.84 
(3.94) 

-1.03 
(1.84) 

0.78 
(0.90) 

2114 
(3095) 4.81 0.68 0.87 5209 

YGS 
AW 3.12 

(3.71) 
0.97 

(-0.81) 
0.94 

(0.90) 
3868 

(4026) 
3.86 

(3.08) 
1.56 

(-1.01) 
0.90 

(0.94) 
3307 

(4587) 3.43 0.06 0.93 7894 

CLDAS 6.16 
(3.49) 

3.75 
(-0.66) 

0.90 
(0.90) 

3868 
(4026) 

3.77 
(4.02) 

-1.42 
(2.17) 

0.91 
(0.90) 

3307 
(4587) 4.01 0.67 0.92 7894 

HZZ 
AW 2.71 

(3.52) 
0.05 

(-0.80) 
0.97 

(0.95) 
4487 

(4007) 
3.70 

(2.62) 
-0.75 

(-0.07) 
0.95 

(0.95) 
3533 

(4961) 3.12 -0.35 0.96 8494 

CLDAS 5.65 
(4.74) 

2.24 
(2.29) 

0.89 
(0.92) 

4487 
(4007) 

5.07 
(5.34) 

0.19 
(3.74) 

0.90 
(0.91) 

3533 
(4961) 5.23 2.27 0.91 8494 

ZHY 
AW 4.45 

(4.18) 
0.48 

(-0.28) 
0.92 

(0.90) 
4837 

(3806) 
5.54 

(3.18) 
3.74 

(-2.42) 
0.91 

(0.97) 
3596 

(5047) 4.33 0.14 0.92 8643 

CLDAS 6.19 
(6.45) 

2.30 
(3.68) 

0.93 
(0.93) 

4837 
(3806) 

8.45 
(4.01) 

5.99 
(0.71) 

0.94 
(0.92) 

3596 
(5047) 6.26 2.91 0.93 8643 
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validation results under clear-sky conditions show that RTG 
can significantly improve the systematic bias and increase the 
accuracy of the input data (i.e., FY-4A LST and CLDAS LST). 

The accuracy of AW LST under cloudy-sky conditions is 
slightly lower than that of clear-sky conditions, with a mean 
RMSE of 3.94 K. For the six sites, the RMSEs/MBEs are 4.22 
K/-2.76 K (ARO), 3.73 K/-1.85 K (DMA), 4.31 K/-1.01 K 
(GHC), 3.71 K/-0.81 K (YGS), 3.52 K/-0.80 K (HZZ), and 4.18 
K/-0.28 K (ZHY), respectively. Negative systematic errors can 
be found, indicating the reconstructed AW LSTs have an 
underestimation under cloudy-sky conditions. In addition, 
according to Eq (11), we know that the AC under cloudy-sky 
conditions is related to the AC of FY-4A under the clear-sky 

status. Therefore, the underestimation of AW LST under 
cloudy-sky conditions is related to the underestimation of FY-
4A LST under clear-sky conditions. AW LST has better 
accuracy than CLDAS LST. Except for the YGS site, the 
RMSEs of CLDAS LST are reduced by 0.25 K (ARO), 0.88 K 
(DMA), 0.37 K (GHC), 1.22 K (HZZ), and 2.27 K (ZHY), 
respectively. R2 between AW LST and in-situ LST is higher 
than 0.9 under cloudy-sky conditions, indicating the 
reconstructed AW LSTs with RTG have a good agreement with 
in-situ LSTs under cloudy-sky conditions. The validation 
results show that RTG can better estimate the LST under 
cloudy-sky conditions, but its accuracy is affected by the 
uncertainty of input data. 

The mean RMSEs of AW LST and CLDAS are 3.57 K and 
5.53 K, respectively, under all-weather conditions. After the 
CLDAS LST is fused by RTG, its RMSEs are reduced by 1.13 
K (ARO), 1.83 K (DMA), 1.0 K (GHC), 0.58 K (YGS), 2.11 K 
(HZZ), and 1.93 K (ZHY), respectively, under the all-weather 
conditions. The AW LST for all six sites has a high agreement 
with the in-situ LST under all-weather conditions, with R2 
values above 0.91. For the ZHY site, the accuracy of AW LST 
is lower than the other five sites under three weather conditions. 
Through a closer look at Fig. 1, one can be found that the FY-
4A pixel at ZHY is mainly composed of the urban area (with a 
large number of buildings), which can lead to a large difference 
between the LST at pixel scale and the in-situ LST (urep = -3.26). 
In contrast, the AW LSTs at the other five sites also have good 
accuracy. However, there is still a significant systematic bias 
for some sites, mainly caused by underestimating the AW LST 
under cloudy-sky conditions. The site-based validation results 
show that RTG can better estimate AW LSTs based on FY-4A 
and CLDAS LST under clear-sky, cloudy-sky, and all-weather 
conditions. In particular, RTG can significantly improve the 
accuracy of the original input data at clear-sky conditions. 

The accuracies of AW LST and CLDAS LST in the daytime 
(07:00-16:00) and nighttime (17:00-06:00) are also evaluated 
(Table III). Overall, the AW LST has better accuracy at 
nighttime than daytime, and a similar case is found for CLDAS 
LST. The mean RMSEs of AW (CLDAS) LST during daytime 
and nighttime are 4.06 K (5.73 K) and 3.1 K (4.28 K), 
respectively. There are three possible reasons for this 
phenomenon. First, LST has better spatial homogeneity at night. 
Second, FY-4A LST has a higher percentage of clear sky at 
nighttime than daytime, which is more beneficial for RTG 
execution at nighttime. Third, CLDAS LST, as one of the data, 
has better accuracy at night. The accuracy difference of the 
reconstructed AW LST by the RTG method between the 
daytime and nighttime is less than 1 K, indicating that the RTG 
method has strong applicability in both daytime and nighttime. 

2) Time series evaluation 

To further evaluate the performance of the proposed RTG 
method in terms of time series, the AW LST and in-situ LST 
series on DOY 150-240 in 2020 are shown in Fig.11. For 
comparing the time series change of AW LST clearly, Fig.11 
merely shows the LST series from DOY 150 to DOY 240. 

It can be found that AW LST has a good agreement with the 

 
Fig. 11. The AW LST and in-situ LST series on DOY 150-240 in 2020. 
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in-situ LST during DOY 150-240, with R2 values above 0.91. 
However, for some sites, there are significant differences 
between the highest/lowest values of AW LSTs and in-situ 
LSTs during the day. There are two possible reasons for this 
phenomenon. The first one is the deficiency of RTG in 
capturing the maximum and minimum values of LST during the 
day. The second one is that there is a scale mismatch between 
the sites and the corresponding pixels, leading to the difference 
being significantly magnified at the high/low temperature 
moments of a day. For example, the land cover type of the ZHY 
site is the wetland, while the corresponding FY-4A pixel 
contains many urban areas. There is a significant heat island 
effect in urban areas during the highest temperature moments 
of the day, which leads to higher LST values for pixels. This 
could well explain why the AW LST is higher than the in-situ 
LSTs during the highest temperature moments of the day. In 
addition, the AW LST is highly consistent with the in-situ LST 
at other moments of the day except for the moments of high/low 
LST. All six sites have stable accuracy during DOY 150-240, 
with RMSEs varying from 3.39 K to 3.73 K. A closer look at 

Fig. 11 reveals that the AW LST is able to maintain 
synchronous changes with the in-situ LST when the LST is 
mutated at certain dates (these dates are marked by the red 
rectangular box in Fig. 11). 

3) Spatial patterns of AW LST 

To further examine the spatial distributions of AW LST, Fig. 
12 lists some examples of reconstructed AW LST and CLDAS 
LST, and the original FY-4A LST is also given. For the selected 
examples, the continuous cloudy-sky conditions mainly appear 
in the southeastern part of the TP for both daytime and 
nighttime, as shown by the FY-4A LST. After the AW LSTs 
are reconstructed with the RTG method, the missing FY-4A 
LSTs at cloudy-sky conditions are effectively filled. 

To reduce the underestimation issue of FY-4A LST in some 
regions, we used the clear-sky LST determined by the RTG 
method instead of using the FY-4A LST directly. Compared to 
FY-4A LST (FY-4A LST is used as a comparison standard), 
CLDAS LSTs in the central and western parts of the TP are 
significantly underestimated at 06:00 in DOY 001 and 361. In 

 
Fig. 12. Spatial pattern of the FY-4A LST, AW LST, and CLDAS LST for the TP at 06:00 and 12:00 on DOY 121, 241, and 361 in 2020. The time is the local 
solar time at the longitude of 90°E. 
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the eastern part of TP, the spatial distribution of CLDAS LST 
is more consistent with FY-4A LST. The reconstructed AW 
LST and FY-4A LST maintain high consistency in magnitude 
and spatial patterns over the whole TP. In the region where 
CLDAS is underestimated, the spatial distribution of AW LST 
is more consistent with that of FY-4A LST. This finding 
indicates that RTG can suppress the underestimation of CLDAS 
LST, and the accuracy of AW LST is not affected when the 
CLDAS has a large uncertainty. RTG can also reconstruct the 
AW LST of the entire TP well during the day when the FY-4A 
LST pixels are almost completely missing due to the cloud 
cover (e.g., 12:00 in DOY 001 and 241). In addition, we found 
that there is no obvious “boundary effect” between the clear-
sky LST and cloudy-sky LST, indicating that the reconstructed 
AW LSTs possess good spatial continuity. Compared to 
CLDAS LST, the reconstructed AW LST has better image 
quality, higher spatial resolution (FY-4A LST and ancillary 
data have higher spatial resolutions), and higher spatial 
coverage (CLDAS LST has a significant spatial missing in 
some hours). 

D. Discussion 
Although this study develops an effective method to 

reconstruct a high-temporal resolution AW LST based on the 
reanalysis data and TIR data from geostationary satellites, an 
in-depth discussion is needed. First, the evaluation results based 
on in-situ LST indicate there are some obvious systematic 
errors in the FY-4A LSTs. Such systematic error may be further 
magnified in the reconstruction of the AW LST, affecting the 
accuracy of the AW LST under cloudy-sky conditions. Second, 
the CLDAS data also have some uncertainties, and some 
parameters (e.g., LST) present spatial deficiencies. This also 
adds more uncertainty and errors to the AW LST reconstruction. 
In addition, it should be noted that CLDAS includes both near-
real-time and real-time versions. Generally, near-real-time 
CLDAS has better quality compared to real-time CLDAS due 
to good post-processing and quality control. However, the near-
real-time CLDAS in 2020 was not released when this study was 
being conducted. Thus, we used the archived data from the real-
time CLDAS in this study. Third, fewer high-temporal 
resolution remote sensing parameters are used in the estimation 
of the AC, especially for the cloud parameters (quantitative 
parameters) that are unavailable. The absence of relevant 
parameters deteriorates the accuracy of the estimated all-
weather AC to some extent. 

According to the evaluation results in section IV A, it is clear 
that FY-4A and CLDAS LSTs have large uncertainty. To 
quantitatively evaluate the effect of uncertainty in two LSTs 
(i.e., FY-4A and CLDAS LSTs) on the accuracy of the 
reconstructed AW LST, the following two control experiments 
are conducted. 

In the first experiment, the clear-sky in-situ LST was input 
into RTG and then used to replace the FY-4A LST to 
reconstruct the AW LST for corresponding pixels at the six sites. 
The absolute difference in accuracy between the first 
reconstructed AW LST and the original AW LST was used to 
quantify the effect of the uncertainty in the FY-4A LST on the 

AW LST. In the second experiment, the all-weather in-situ LST 
was input into RTG and then used to replace the CLDAS LST 
to reconstruct the AW LST for corresponding pixels for the six 
sites. Similarly, the absolute difference in accuracy between the 
second reconstructed AW LST and the original AW LST was 
used to quantify the effect of the uncertainty in the CLDAS LST 
on the AW LST. The effects of uncertainties of two LSTs on 
the reconstruction results are shown in Fig. 13. 

FY-4A affects the accuracy of AW LST with a mean RMSE 
difference of about 0.66 K. For ZHY, FY-4A has the largest 
effect on AW LST with a mean RMSE difference of about 1.39 
K. CLDAS affects the accuracy of AW LST with a mean RMSE 
difference of about 1.18 K. For ARO, DMA, and ZHY, CLDAS 
has a greater effect on AW LST than the other three sites, with 
the RMSE differences of 2.22 K, 2.03 K, and 1.82 K, 
respectively. Overall, CLDAS has a greater impact on the 
accuracy of the AW LST than the FY-4A. According to the 
principle of the RTG method, CLDAS is mainly used to 
estimate AC. Therefore, the estimation accuracy of AC is 
greatly affected by CLDAS. CLDAS has a further impact on 
the accuracy of AW LST. Nevertheless, the effects of both LST 
products on the AW LST are generally within the acceptable 
range. 

In addition, some limitations should be noted. The accuracy 
of the AW LST depends on the FY-4A LST and CLDAS LST. 
In the future, if higher-quality geostationary satellite LST data 
and reanalysis data are available, the reconstructed AW LST 
will have better accuracy. At the same time, if more high-
temporal resolution remote sensing parameters are further 
collected, the AC under cloudy-sky conditions can be estimated 
reasonably with the proposed RTG method. 

V. CONCLUSIONS 
All-weather LST (namely, AW LST) with a high temporal 

resolution is crucial in many studies and applications associated 
with the geoscience field. However, studies on how to obtain 
the AW LST with high quality are rare. In this study, a so-called 
RTG method is proposed to reconstruct the hourly AW LST by 
integrating reanalysis data and TIR data from geostationary 
satellites. RTG decomposes the LST into NC and AC 
components. On the one hand, the all-weather NC is initially 
determined based on the ATC model and then filled and 
optimized by employing the RF and DTC model. On the other 
hand, the all-weather AC is determined through time correction 

 
Fig. 13. The evaluation results of the impact of the uncertainty of the two 
input LSTs (i.e., FY-4A LST and CLDAS LST) on reconstructed AW LST 
with RTG method. 
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and spatial weighting of the initial AC provided by CLDAS. By 
selecting the TP as the study area, RTG is applied to FY-4A 
LST and CLDAS data to reconstruct the hourly AW LST. 
Validation based on in-situ LST indicates that RMSEs (R2) of 
the obtained hourly AW LST at 0.04° vary from 2.71 K (0.92) 
to 4.45 K (0.97) for clear-sky conditions, from 3.52 K (0.88) to 
4.18 K (0.93) for cloudy-sky conditions, and from 3.12 K (0.92) 
to 4.33 K (0.96) for all-weather conditions. The results of the 
LST time series evaluation show that the AW LSTs are 
consistent with the in-situ LSTs, and the AW LSTs can also 
maintain a consistent change trend with the in-situ LSTs at the 
date of the LST mutation. The spatial patterns of AW LSTs 
show that RTG can effectively reconstruct the missing LST of 
FY-4A data without an obvious “boundary effect” caused by 
large missing areas. Overall, RTG can be flexibly extended to 
other geostationary satellites and reanalysis datasets. The 
hourly AW LST can better contribute to understand the regional 
diurnal LST variation and estimate remote sensing parameters, 
such as soil moisture, evaporation, and surface air temperature, 
with high temporal resolution. 
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