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Abstract
The positron emission tomography (PET) imaging technique enables the measurement of receptor
distribution or neurotransmitter release in the living brain and the changes of the distribution with
time and thus allows quantification of binding sites as well as the affinity of a radioligand. However,
quantification of receptor binding studies obtained with PET is complicated by tissue heterogeneity
in the sampling image elements (i.e., voxels, pixels). This effect is caused by a limited spatial
resolution of the PET scanner. Spatial heterogeneity is often essential in understanding the underlying
receptor binding process. Tracer kinetic modeling also often requires an intrusive collection of arterial
blood samples. In this paper, we propose a likelihood-based framework in the voxel domain for
quantitative imaging with or without the blood sampling of the input function. Radioligand kinetic
parameters are estimated together with the input function. The parameters are initialized by a
subspace-based algorithm and further refined by an iterative likelihood-based estimation procedure.
The performance of the proposed scheme is examined by simulations. The results show that the
proposed scheme provides reliable estimation of factor time-activity curves (TACs) and the
underlying parametric images. A good match is noted between the result of the proposed approach
and that of the Logan plot. Real brain PET data are also examined, and good performance is observed
in determining the TACs and the underlying factor images.
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I. Introduction
Functional imaging techniques, such as positron emission tomography (PET), single photon
emission computed tomography (SPECT), and magnetic resonance imaging (MRI), represent
powerful tools for the visualization and elucidation of important molecular mechanisms [1],
while high-resolution MRI supplies the structural details that PET and SPECT may lack. The
fundamental aim of functional imaging is to extract quantitative information about
physiological function (e.g., physiological parameters) from medical images. For example,
using PET and a specific radioligand, the serotonin transporter (SERT) in the brain can be
quantified to assess the integrity of serotonergic neurotransmission [2]. PET is a nuclear
imaging technique relying on the unique physics of radionuclide that decay via positron
emission. More recently, PET imaging has found many clinical applications, with substantial
contributions to neurologic illnesses, oncology, and cardiovascular disease [3]. Of particular
interest in this paper is quantification modeling of brain receptors with PET.

PET in dynamic mode can produce sequential images of in vivo distribution of a radioligand
over time, thus allowing quantification of binding sites as well as the affinity of a radioligand.
To extract clinically or physiologically relevant information, the PET time-activity data are
commonly analyzed by applying tracer kinetic modeling approaches [4] in which a tracer
kinetic model describing the tracer behavior as a function of certain biological parameters is
used.

Compartmental model-based analysis forms the basis for tracer kinetic modeling in dynamic
imaging [5], [6], and the output parameter or parametric image is usually the binding potential
(BP) or the distribution volume (DV). These compartmental modeling approaches originate
from the mathematics of pharmacokinetics, and certain reasonable assumptions are usually
employed to simplify the multicompartment models and minimize the number of kinetic
parameters. These approaches can be mainly classified into two categories (namely invasive
and noninvasive) on the basis of whether blood sampling is required. In the invasive
approaches, the tracer time-activity curve (TAC) in blood (i.e., a sequence of arterial blood
samples) is used as the input function in the kinetic model [7], [9]. Although, compared with
noninvasive models, invasive models have some advantages, for instance, in terms of simpler
models, fewer assumptions needed, and lower computational cost, invasive measurement of
the input function from arterial blood samples represents a limited, but not negligible, risk of
complications including thrombosis, infection, and nerve injury [10]. Therefore, there has been
increasing interest in noninvasive techniques.

Several noninvasive techniques have been proposed in the literature and can be further
classified into subcategories, depending on whether a reference region is needed. Examples of
noninvasive techniques requiring reference data include [11], where TAC from a region on the
targeted organ was used as an input function, and [12], [13], where a simplified reference model
was studied. Under conditions where no reference region is available, it is of great interest to
estimate both the kinetic parameters and the input function simultaneously in a noninvasive
fashion. Only a few works for this purpose have been reported along this research line,
including the nonlinear least square method in [15], a Monte Carlo method called simulated
annealing [16], which was reported to be more insensitive to noise than the nonlinear least
square method, and three blind identification schemes [17], where the authors reported that the
iterative quadratic maximum likelihood (IQML) method yielded the most accurate kinetic
parameter estimates. The present work plans to address PET quantification with or without
knowledge of the blood input function.

In conventional compartmental modeling, the region of interest (ROI)-based approach is
widely employed [8], [9], [15]–[17]. As described in [8], based on an m-compartmental model,
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the measured concentration of the tracer over time of the tissue within this ROI, which is
referred to as the TAC of the ROI, is often well modeled as the summation of a convolution
of each regional tissue component response with the total tracer concentration in plasma (i.e.,
the input function), where the total number of compartments is the number of components plus
one. It has been shown in [6] that a two-compartment model (also referred as having one tissue
component) fits some dynamic PET and SPECT studies [18], where the tissue impulse response
for ROI i is modeled as

(1)

in which the kinetic parameters kI and kO represent the rate constants. Most current research
on the determination of the kinetic parameters has been concerned with this simple model
[14]-[17].

Despite the fact that great efforts have been taken to assess the dynamic imaging data by ROI-
based compartmental modeling analysis, the ROI-based approach suffers from several
problems. Briefly speaking, an important shortcoming of ROI-based approaches is that tissue
response in a ROI is assumed homogeneous, and the homogeneous ROIs must be drawn in
advance. However, the problem of identifying different ROIs itself remains an essential
challenge, and most often, we are interested in the underlying spatial heterogeneity
characterization of a region since it is essential in understanding the underlying model. For
instance, some researchers have commented that ROI-based methods may not be appropriate
to evaluate the kinetic process when heterogeneous areas of distribution are diagnostically
important [19]. Moreover, clinical observations suggest that multiple components affect the
region impulse response simultaneously. In reality, each ROI (even each image voxel) may be
composed of multiple tissue components. In the case of serotonin transporter imaging, the
minimal number of such components is three: One represents vascular activity, one
displaceable binding to the receptor of interest (called specific binding), and one
nondisplaceable binding to all other tissue components (called nonspecific binding sometimes).
Limited time of imaging, limited sampling rate, and image noise in PET typically do not permit
application of a more complex tissue response model.

Modeling each voxel as a separate ROI is computationally intensive or even not feasible. To
address the spatial heterogeneity issue in dynamic PET data analysis, a voxel-by-voxel
heterogeneity analysis of fluorodeoxyglucose (FDG) kinetics has been proposed in [20], but
the procedure requires a high computational cost. The factor analysis (FA) approach has been
explored for separation of kinetic components [21]. However, the resulting factors are not
necessarily physiological (i.e., they maynot provide direct information about the underlying
receptor binding process); in addition, the factors are not quantitative and not reproducible,
which limits their diagnostic usage. We note that an interesting idea was proposed in [29],
where, using the input function, spectral analysis was applied for parametric image
reconstruction. In [29], a large number of β values are fixed and prechosen to provide a wide
range of basis functions, which are represented by cp(t) ⊗ exp(−βkt). Since β values are
prechosen, the problem is formulated as a linear system, and the corresponding coefficient for
each basis function can be estimated by fitting the TAC to the spectral model using the non-
negative least-square (NNLS) optimization algorithm. The precision of this algorithm is limited
by the number of affordable basis functions and by the success of NNLS. In this work, using
statistical criteria, we propose a new approach in the voxel domain while keeping the
compartmental modeling approach. Specifically, we propose to construct a likelihood-based
framework for estimating the spatial/temporal patterns of tissue binding with and without the
measured input function.
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This paper is organized as follows. In Section II, we describe a system model in the voxel
domain, representing the multiple dynamic parameters and the input function, and we then
formulate the problem. In Section III, we consider the condition that the blood sampling
measurements are available as the input function. A subspace-based algorithm is developed,
and the validity and effectiveness of the proposed scheme is examined via the data noise
impacts. In Section IV, the proposed idea is extended to the situation where no blood samples
are available. A computationally efficient algorithm based on subspace analysis is developed
to obtain the initial estimates, and an iterative maximum likelihood (IML) technique is then
applied to improve the estimation accuracy. Simulations are put into operation to demonstrate
the performance of the proposed scheme. A serial two-tissue model was studied in Section V.
In Section VI, the identifiability of the proposed scheme is examined by using real PET data
sets. Conclusions are drawn in Section VII.

II. System Model And Formulation
In the linear conventional compartment modeling approach, tracer characterization within a
ROI leads to a set of first-order differential equations. As described in [4] and [8], solving these
equations directly suggests the solution that the radioactivity in an ROI at time t can be
expressed as

(2)

where the input function cp(t) is the total plasma concentration of a radioligand, m is the number
of components, k1j's and k2j's are the weight factors and rate constants, respectively, and ⊗
denotes a convolution operation. As we mentioned earlier, brain regions containing receptors
have at least three compartments, namely, blood pool, nonspecific binding (more precisely, it
is often referred as nondisplaceable, since this compartment can be the free compartment when
nonspecific binding is negligible, or be the free plus nonspecifically bound compartment), and
specific binding compartments. We focus on the two-tissue compartment model since it
provides stable and reproducible parameter estimates. However, the schemes developed in this
paper can be generalized further and applied to more complex models, as in (2). It is worth
mentioning that tracer kinetics are often represented by a serial compartmental model in PET
tracer study. As a first step, we use a parallel model here since its microparameters and
macroparameters are identical, whereas the parallel model leads to a simpler way for us to
estimate the underlying macroparameters by employing a voxel-domain analysis. In the case
of a serial model, the macroparameters need to be transformed to obtain the microparameters,
as discussed later in Section V.

More specifically, the parallel two-tissue model is illustrated in Fig. 1. As in [1], we have

(3)

where the time t ≥ 0, k2f > k2s > 0, cf (t), and cs(t) are the radioactivity in the fast turnover
(reflecting the sum of all kinds of nonspecific binding) and slow turnover (resulting from
specific binding) pools, respectively; k1f and k2f (also k1s and k2s) are the washin (and washout)
rate constants.

We now describe the factored compartment modeling by modeling each voxel as an ROI and
applying a simple method to convert temporal kinetics to spatial information. Similar to the
factor analysis in [1], for voxels i = 1,…, N within the organ of interest (i.e., brain), by using
the three-factor TACs af(t), as(t), and cp(t), the dynamics of each voxel i is as

(4)
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with k1f(i) and k1s(i) being the local permeability parameters associated with voxel i; vp(i)
means the plasma volume; and ε(i, t) is the noise term. We now describe the discrete version
of the model in (4). Letting af, as, and cp be length-P vectors sampled uniformly every T0 sec,
we have

(5)

in which the matrix H(e−k2fT0) is a nonsymmetrical Toeplitz matrix with its first column being
[1, e−k2fT0, e−k2f2T0,…, e−k2f(P-1)T0]T, and T0 should be small enough to yield an accurate result.
Similarly, the nonsymmetrical Toeplitz matrix H(e−k2sT0) is defined, with the first column
being [1, e−k2sT0,…,e−k2s(P-1)T0]T.

However, in practice, the PET images with short-lived radionuclides as C-11 are generally
acquired with increasing time intervals to compensate for the increasing relative statistical error
due to radioactive decay. Therefore, we need to address the issue of nonuniform sampling.
Letting t = {t1, t2,…, tn} indicate the arbitrary sampling times, using the uniformly sampled
vectors expressed in (5), we employ the linear interpolation to represent the measurements,
meaning that we have

(6)

with A = [af, as, cp], s(i) = [k1f(i), k1s(i), vp(i)]T, and the interpolation matrix Q is n × P. Since
simple linear interpolation is employed, each row of Q contains one or two nonzero elements
determined by the mapping between the vector t and [0,T0,…,(P - 1) T0]. For instance, if ti =
2.1T0, then the ith row includes two nonzero elements, i.e., Q(i, 3) = 0.9 and Q(i, 4) = 0.1. Note
that the interpolation matrix Q can take other forms, depending on the specific interpolation
approach.

Since there are a number of sources of noise in the PET image, and several additive sources
of errors tend to form a Gaussian distribution, Gaussian noise is assumed here [30]. Assume
that the noise term ε(i, t) is both temporally and spatially white Gaussian distributed, with zero
mean and variance σ2. Therefore, for case-1, where blood samples are measured as the input
function, the complete parameter set in our problem is

(7)

and for case-2, where the input function is not available, we have

(8)

Writing X = [cm(1), cm(2),…,cm(N)], due to the white Gaussian noise assumption, we can
derive the likelihood function f(X|θ) as

(9)

We are interested in the maximum-likelihood (ML) estimate of the unknown parameters θ,
due to its accuracy and robustness. Recall that the matrix A is fully characterized by k2f, k2s,
and cp. Given A, it is easy to show that explicit maximums with respect to σ2 and s(i) are given
by

(10)
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In other words, with A being fixed, for each voxel i, the ML estimate of s(i) and σ2 can be
derived and substituted. Therefore, the set of parameters is reduced to θs = {k2f, k2s} for case-1
when measuring the input function (as measured), and θs = {k2f, k2s, cp} for case-2. Substituting
(10) into the likelihood (9), our problem is formulated in the framework of likelihood testing
as obtaining the ML estimates of the parameters θs

(11)

with some constraints (e.g., k2f > k2s > 0). Therefore, our goal is to simultaneously estimate
these unknown parameters θs by minimizing the cost L(θs).

III. Case 1: Known Input Function
In this case, the plasma input function Cp(t) is based on a sequence of arterial blood sampling
measurements. The proposed scheme is described first, and then, efforts are taken to judge the
validity and effectiveness of the proposed scheme by examining the impact of data noise.

A. Proposed Scheme
We propose an integrated scheme: First, a subspace-based algorithm is developed to obtain the
initial estimates of the parameters. Second, with the initial guess, an optimization technique is
applied to improve the estimation accuracy.

Subspace-Based Algorithm—The basic principle of subspace-based methods is to
explore the spectral decomposition of a covariance matrix and use its intrinsic properties to
provide a solution to an underlying estimation problem for a given observed process. The first
and critical step is the separation of signal subspace and noise subspace.

In our problem, each observation vector cm(i) can be regarded as the outputs of the n time-
array elements at voxel position i. Based on the model in (6), the subspace spanned by the
columns of QA is called the signal subspace, and its orthogonal subspace is termed the noise
subspace. The approach of subspace-based methods is to first estimate the dominant subspace
of the observations and then find the elements of QA that are closest to this subspace. The
subspace estimation is generally achieved by performing an eigendecomposition on the
estimated covariance matrix R of the observations. Assuming the noise and signals are
uncorrelated, due to the white noise assumption, we note that the covariance matrix is expressed
as

(12)

where Qs and Qw consist of signal and noise eigenvectors, respectively, i.e., the span of column
vectors of Qs defines the so-called signal subspace. Clearly, D0 has a full rank M = 3. Thus,
span (Qs) is orthogonal to the space span (Qw).

Note that the potential signal in our problem is presented by as(α) = QH(e−α)cp. More
specifically, the signal subspace is spanned by {QH(e−α )cp}, with α = 0, k2fT0 and k2sT0.
Therefore, to estimate the rates k2f and k2s and using the orthogonal property of
eigendecomposition, we could develop a MUSIC-like subspace-based algorithm as
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(13)

where 0 < e−α < 1. Here, we are particularly interested in the Multiple SIgnal Classification
(MUSIC) algorithm because of its wide success in many areas [24]. The tremendous interest
in the subspace-based approaches is mainly due to the introduction of MUSIC. Similar to
MUSIC spectrum, which exhibits peaks in frequency components, here, the peaks correspond
to the exponent parameters k2s and k2s, e.g., by the relationship that the peak .

Due to the heavy noise in PET data, and since the signal vectors represented in QA are
correlated with each other, some peaks may not show up clearly within a certain time window
(i.e., subarrays). Intuitively, we note that the fast-turnover component is clearer in early time
images, while the slow-turnover component is demonstrated more clearly in images of the later
stage. Therefore, we process the image sequences in a temporarily sliced-window manner to
find all peaks, as illustrated in Fig. 2 for the later example of the brain PET study. In this
example, there are a total of 18 time points. The peak demonstrating the rate k2s was found
when using all observations, whereas two peaks representing the rates k2f and k2s were noted
when using observations from time point 5 to 18. In practice, different time windows will be
examined to collect all possible peaks and use them to obtain the initial estimates of k2f and
k2s.

Further Refinement—Although the above subspace-based algorithm is computationally
attractive and generally accurate, it may not always yield sufficient accuracy. We need to fully
exploit the underlying data model and apply parametric algorithms, such as the maximum
likelihood (ML) technique, to improve the accuracy.

We can further improve the accuracy by using k̂2f andk̂2s obtained above as the initial estimate
and applying any standard nonlinear programming schemes to obtain the ML estimates by
solving the two-dimensional problem numerically

(14)

after plugging the ML estimate of s(i)'s in (10) into (11), with R ̂ being the sample covariance
matrix defined as  and Tr means the trace operation. Clearly,
compared with the subspace-based algorithm, the price paid for the increased efficiency is that
a two-dimensional search is required to obtain the ML estimates of k2f and k2s.

An inherited problem with numerical optimization schemes is the existence of local minima
(or maxima). Therefore, obtaining a sufficiently accurate initial estimate is critical for
achieving the desired global minimum. However, obtaining an appropriate initial estimate is
not an easy task, and generally, convergence to the global minimum is not guaranteed in
numerical optimization problems. The estimate from a subspace-based method is naturally a
good choice for an initial estimate, provided that it follows the underlying signal model.

B. Examine Data Noise Impact
In the above problem formulation, certain assumptions are made to simplify the problem (e.g.,
the measured input function is noise-free, and there is white Gaussian noise in the voxel TACs).
Ultimately, it is desirable to evaluate the validity of such assumptions and examine the
performance of the proposed scheme. Errors in the proposed estimates can arise from a number
of sources, such as the validity of the three-compartment model for this problem, imperfect
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measurements, and an imprecisely known noise model. It is beyond the scope of this paper to
evaluate all these error sources. In this section, we focus on the noise factor, and efforts are
taken to judge the validity and effectiveness of the proposed scheme by examining the data
noise impacts. We consider different noise models and evaluate the proposed scheme by
examining its effects on both the input function and the measured voxel TAC observations.

Noise is added to simulated, error-free PET TACs, which are generated as follows. First, we
apply the proposed scheme to real brain receptor study, which is analyzed to get the results
shown in Figs. 6 and 7, and record the estimates Â and {ŝ(i)}. We then denote the original
measured blood samples cp as the ideal input function and denote the estimate of each voxel
TAC ĉm = QÂŝ(i) as the ideal noise-free TAC.

In order to evaluate the proposed scheme in terms of parameter estimation of the rate constants
k2f and k2s, we may examine various statistical criteria, such as mean, standard deviation,
coefficient of variation, and bias. In this paper, as in [15] and [32], we consider the coefficient
of variation (CV) and the relative bias

(15)

in which p represents the true value of the individual parameter, SD is the standard deviation
operation, and p̄ is the empirical mean value obtained from simulations. It is clear that CV(p)
and bias(p) make more sense than the simple average and standard deviation of the estimated
parameter, since the latter criteria could obscure large fluctuations in the estimation. The above
criteria CV(p) and bias(p) will be used to evaluate the estimation performance for each
individual parameter.

We first examine the impact of a noisy input function that is simulated by adding noise terms
into the ideal input function. As introduced in [31], the input noise terms are independent
Gaussian variables with standard deviations

(16)

for j = 1,…, n, with cin being a constant defining the noise level. For each noise level, based
on 100 simulations runs, we study the performance measures defined in (15). Table I shows
the effects of the input noise on the kinetic parameters k2f and k2s at three noise levels (0.01,
0.05, and 0.1). Here, the true parameter values are k2f = 0.2808 and k2s = 0.0027. From this
table, we can see that the resulting CVs and relative biases are reasonably small, even at noise
level 10%. This observation is consistent with the observation discussed in [31] that, if the
number of blood samples is sufficiently large, a moderate noise level does not affect the
parameter estimation accuracy significantly.

We then examine the noise impact on voxel TAC observations that are simulated by adding
noise terms into the ideal TACs {ĉm(i)}. We consider two noise models for voxel TACs. The
first one is consistent with the assumption in (6), where the noise terms {ε(i, t)} follow
independent and identically distributed (iid) Gaussian with zero mean and variance σ2. The
second noise model is more realistic. As suggested in [30] and [31], the measurement error
variance is proportional to the imaged radioactivity concentration and is inversely proportional
to the scan duration; therefore, we consider the second noise model, whose noise terms {ε(i,
t)} are independent Gaussian distributed with the variances described as

(17)
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for j = 1,…, n, where c is a constant determining the noise level. Clearly, the second noise
model indicates model-mismatch in the proposed formulation. For each noise level (i.e.,
represented by σ2 in Model 1 or c in Model 2), based on 100 simulation runs, we study the
performance measures discussed above. Table II shows the statistical results of estimating the
parameters k2f and k2s. For Model 1, when the noise levels σ = 50 and 150, the corresponding
signal-to-noise ratios (SNRs) are approximately 89.9 and 10, respectively. Here, the SNR is

defined as  with c̄m(tj) being the average vector of all voxel TACs. We notice
that noise level σ = 50 yields very similar SNR to those observed in real PET images. From
this table, we can see that the proposed scheme provides good performance under both noise
models. It is encouraging to find that, although there is model mismatch in the case of Model
2, the proposed scheme still yields high estimation accuracy.

IV. Case 2: Unknown Input Function
In this case, cp(t) also needs to be estimated based on the voxel measurements. In other words,
we propose to simultaneously estimate both the input function and the kinetic parameters. To
reduce the parameter dimension of the problem, we consider a commonly adopted parametric
model of the input function, as in [25], having

(18)

This plasma TAC model has been previously validated [25] and used in simulation studies by
the same authors. To remove the redundancy, we set a1 = 1 and have

(19)

in which λ1 < λ2 < λ3 < 0, with λ = {λ1, λ2, λ3}. Now, we note that the signal-matrix A is fully
characterized by parameters k2f, k2s, λj's, and aj's since

Now, we have the parameter set θs = {k2f, k2s, λ1, λ2, λ3, a2 a3} in the estimation problem of
interest.

A. Proposed Scheme
We develop a likelihood-based framework in the voxel domain for quantitative imaging, where
radioligand kinetic parameters are estimated together with the input function. The parameters
are initialized by a subspace-based algorithm and further refined by an iterative likelihood-
based estimation procedure.

Subspace-Based Algorithm—Our plan is to estimate the exponent parameters k2f, k2s,
and λi's by taking advantage of the special structures of the impulse response functions and the
input model in (18).

For the input function as in model (18) with a1 = 1, we have the Laplace transform of cp(t) as
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(20)

In addition, recall that the component impulse response function has the exponential decaying
form e−αt, having ℒ{e−αt} = (1/(s + α)). Using these properties and applying the convolution
theorem, based on the system model (4), our analysis on the Laplace transform shows that the
signal subspace S is characterized by exponential decaying signals and te−λ1t, meaning that we
have

(21)

where the coefficient vector c(i) indicates the weight of each signal component at voxel i, and
f0(α) and f1(α) are the values of eαt and teαt sampled at t, respectively. Now, we can write the
covariance matrix as

(22)

Recall that R can also be decomposed as in (12), where the rank of signal subspace is 3, meaning
the rank of D in (22) is 3. Therefore, there is a rank deficiency in matrix D. This is because the
signals represented in S are coherent as a result of the convolution model in (4).

Therefore, before we could employ subspace-based algorithms to estimate the parameters in
(21), we need to address two issues: One is rank deficiency, and the other is the nonuniform
sampling time points. We first assume that the TAC measurements are uniformly sampled,
meaning t = [0, T0, 2T0,…, (n – l)T0]. Since, from the subspace decomposition point of view,
our problem is analogous to array signal processing problems widely faced in radar, sonar, and
communications [24], we can apply similar techniques to restore the rank of the source
covariance matrix D and develop subspace-based algorithms correspondingly. For linear
uniformly spaced arrays, a well-known technique to restore the rank of the signal covariance
matrix is so-called smoothing [23], [24], in which the antenna array is split into a number of
overlapping subarrays, and the covariance matrices of the subarrays are then averaged. The
smoothing process introduces a random phase modulation that helps to decorrelate the source
signals causing the rank deficiency. It is worth mentioning that spatial smoothing is shown
[24] to work since the signal space matrix constructed of steering vectors has Vandermonde
structure. In our problem, the validation of the Vandermonde structure of S is not so obvious
due to the component te−λ1t in the signal space. Here, we split the uniformly sampled TACs
into a number of time overlapping sub-TACs with length ns. We show in Appendix A that S
has Vandermonde structure as the signal components in the sub-TACs are identical up to
different scalings. Thus, we present a temporal smoothing process where the covariance
matrices based on sub-TACs are then averaged. Employing this temporal smoothing, we can
make D with a full rank M = 6. As long as D (thus SDST) is of full rank, we could compute
subspace-based algorithms.

Since the sampling times t are not uniformly spaced in practical PET images, we need to further
address this nonuniform sampling issue. In radar direction-finding applications, combining the
ideas of spatial smoothing and array interpolation makes it possible to restore the rank of the
signal covariance matrix for arbitrary array geometries [27], [28]. The idea was tested by Monte
Carlo simulations to show good performance for different test cases in [27], and its statistical
performance analysis was provided in [28]. The basic idea of array interpolation is to obtain
the array manifold of a virtual array by linear interpolation of the array manifold of the real
array in the least square sense within a limited sector. Since S is a Vandermonde matrix when
uniformly sampled, we employ similar ideas.
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• We form single “virtual” uniformly spaced sampling time points tv = [0,T0, …, (nv −
l)T0], divide the values β = e−α (where 0 < e−α < 1) into sectors, and design the best
interpolation matrix for each sector in the least square sense. More specifically, for

each sector l, we define a set of values dl within the interval . Compute the
signal vectors associated with the set dl for the given sampling time points t and
arrange them into a matrix Al. Similarly, we compute the signal vectors for the
interpolated tv and denote the resulting matrix as Āl since our basic assumption is that
Āl of the virtual tv can be obtained through linear interpolation of Al of the real t.
Thus, we estimate the interpolation matrix Bl such that it is the least square solution
of

(23)

Remember now that the covariance matrix R ̄
l of the virtual tv can be computed from

the covariance matrix Rl of the real t as .
• We then apply the smoothing technique by splitting the TACs into a number of

overlapping sub-TACs with length ns, and the covariance matrices based on sub-
TACs are averaged to obtain the smoothed covariance matrix R ̄s, as described in the

Appendix. We also compute the smoothed noise covariance  based on the
interpolation matrix Bl. Finally, we prewhiten the noise to obtain

. We then perform the eigendecomposition on R ̂ and get the
signal and noise subspace.

Thus, we can restore D with a full rank M = 6. As long as D (thus SDST) is of full rank, due
to the property of eigendecomposition, we notice that the eigenvectors in Qw are orthogonal
to S, meaning that

(24)

where qm are noise eigenvectors. Therefore, utilizing this orthogonality property in (24), we
compute a MUSIC-like algorithm as

(25)

where 0 < eα < 1. Similarly to the MUSIC spectrum, which exhibits peaks in the vicinity of
true frequency components, here, the peaks correspond to the exponent parameters of interest.
We use the constraints (k2f > k2s > 0 and λ1 < λ2 < λ3 < 0) to help the mapping between the
peaks and the exponent parameters. Based on the mapping, several sets of the estimates of the
exponent parameters can be used as parallel initial estimates. We need to further estimate the
coefficients a2 and a3 by minimizing the cost function, as defined in (11).

Iterative Likelihood Maximum (ILM)—Since the subspace-based method is biased and
may not always yield sufficient accuracy, we need to fully exploit the underlying data model
and apply the ML technique to improve the accuracy.

Since any prior information (belief) should be helpful in improving the accuracy, we exploit
the non-negative property of the underlying factor image coefficients (e.g., k1f (i) ≥ 0). With a
fixed A, estimating the factor coefficients s(i) is equivalent to solving a constrained
optimization problem
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(26)

via applying the Lagrange multiplier theorem. We then plug in this estimate into the cost in
(11) when estimating the parameters θs.

We can apply a seven-dimensional search to find the ML estimates. To further reduce the
computational cost of the overall ML approach, here, we propose an iterative alternative, called
the iterative likelihood maximization or iterative minimization, where each iteration includes
five substeps by decoupling the effects of unknown parameter sets. The main idea is to achieve
multidimensional minimization (or maximization) by solving successive lower dimensional
minimization (or maximization) problems iteratively. This idea has its root in the Alternate
Projection (AP) technique [26]. AP is conceptually simple and appears to be a good competitor
to the computationally expensive ML method. The key idea of the alternative maximization in
the AP approach is to iteratively update the estimates by successively performing a
maximization with respect to each single parameter while all other parameters are held fixed.
In our case, employing the alternative maximization idea and considering the structure of input
cp, we feel it is more reasonable to treat the pair (λ2, a2)—similarly the pair (λ3, a3)—as a
subset of parameters and update their estimates simultaneously. Therefore, letting  denote
the estimated values of θs at iteration k, at iteration (k + 1), the update of the estimate  is
obtained by solving the following one- or two-dimensional minimization problems: Update
the ML estimates of the parameter pair (k2f, k2s) under constraints while fixing all other
parameters; update the ML estimates of the parameter pair (λ2, a2); then, update the ML
estimates of the parameter pair (λ3, a3); then, update the ML estimates of the parameter λ1,

subject to . These substeps are iteratively applied until the convergence is achieved.

Since a minimization is performed at every substep, the value of the cost function L(θs) keeps
decreasing with the index of the iteration k. Intuitively, the algorithm reaches the bottom of
the cost function L(θs) along lines parallel to the axes. Thus, the above algorithm converges to
a local minimum, which depends on the initial condition. It is worth mentioning that this
algorithm is easy to implement, and it is computationally attractive since we only need to solve
simple one- or two-dimensional optimization problems.

B. Simulation Results for Unknown Input Function
Due to the complex nature of the dynamic imaging problem and the multiple goals of our
interpretation of the dynamic imaging data, it is impossible to characterize the performance of
an algorithm analytically. Hence, performance demonstrations are based on simulations. In
addition, due to the lack of the existing schemes in the literature in estimating both the input
function and the kinetic parameters under the system model studied here, we compare our
results to the true values.

The proposed scheme should accurately estimate the three factor TACs associated with the
organ (i.e., af(t)), and it should locate the organ heterogeneity characterization reasonably
accurately. Let y and ŷ be the true and estimated factor TAC, respectively. We calculate the
correlation coefficient (CC) between ŷ and y. We also study the norm of the corresponding
residuals defined as (ŷ − y) since it is desirable for an estimator to fit the real factor curve in a
least-square sense. To make a fair comparison, we perform “centering” and “normalization”
on the three factor TACs over time t before we calculate the above performance measures.

Considering a measure of adherence to the second objective above, we calculate the CC
between the estimated factor image {k̂1i} and the true one. In addition, we propose PM, which
is the relative distance between the true and the estimated factor coefficients, as
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(27)

The smaller PM is, the better performance in revealing the spatial heterogeneous structure.

As an example, we report simulation results for the case of unknown input function, when the
images are uniformly sampled every 15 sec from 0 to 10 min. The input function cp(t) is
generated from the parametric model proposed in [25]. The simulated organ phantom consists
of three significantly overlapped underlying factor images, where each factor image includes
a light and a darker subregion, as shown in Fig. 4. The coefficients (e.g., {k1f(i)}) are randomly
drawn from one of the two uniform distributions. For instance, {k1f(i)} and {k1s(i)} are from
the uniform distributions U(0.1, 0.4) and U(0.8, 1). The noise level is chosen as σ2 = 30.

One example of the estimated “centering” factor TACs is shown in Fig. 3, where good matches
are observed. We are particularly interested in the factor images that reveal the underlying
spatially heterogeneity. We study the statistical behavior of the correlation coefficient between
the true and estimated factor images and the performance measure PM. Correspondingly, Table
III shows their empirical means and standard deviations based on the estimate of factor images
from 100 simulation runs. Again, we note that the proposed scheme provides good performance
in estimating the underlying factor images that demonstrate the spatial heterogeneity of each
component.

Since we are particularly interested in estimating the factor images, to have a better sense of
the accuracy of the recovered heterogeneity indicated in Table III, one example is shown in
Fig. 4. It can be seen that the proposed scheme provides high accuracy in estimating the factor
images that demonstrate the spatial heterogeneity of each component.

V. Microparameters of the Serial Model
So far, all our discussions focus on the parallel compartmental model described in (2). In the
literature, the in vivo tracer kinetics are often represented by a serial compartmental model
[4], [33], and measures such as binding potential (BP) and distribution volume (DV) are often
calculated based on the model parameters. The serial two-tissue compartment configuration is
illustrated in Fig. 5, where cp(t) represents radiotracer concentration in arterial blood, cf(t)
means radioactivity in the nondisplaceable compartment, and cs(t) means radioactivity in
specifically bound compartment. This system in Fig. 5 can be represented by differential
equations

(28)

The solution of (28) can be described as in (3). For the two-tissue compartment region, the
relationships between the microparameters (i.e., k1, k2, k3, and k4 in the serial model (28) and
the macroparameters (i.e., k1f, k1s, k2f, and k2s) in the parallel model (3) are as follows [4],
[33]:

(29)
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Extending the relationships in (29) into the voxel-domain framework, based on the parameters,
namely k1f(i), k1s(i), k2f, and k2s, estimated by the proposed scheme, we could obtain the
estimates of the serial model parameters as

Therefore, for each voxel i, we could further calculate the DVs as

(30)

If we are interested in calculating the DVs for a certain ROI i, the region rate  is now

determined by the summation of all local rate k1s(j), where j belongs to ROI i.  is defined
similarly. Therefore, to calculate the serial model parameters for ROI i, k1s(i) and k1f(i) are

replaced by  and , respectively, in equations defined in (30).

VI. Real Datasets
We now examine the PET studies of healthy control subjects obtained after intravenous
injection of C-11 labeled DASB (3-11C-amino-4-(2 dimethylaminomethylphenylsulfanyl)
benzonitrile), which is a radioligand used for imaging the serotonin transporter (SERT). The
experimental details were the same as in [2]. In total, ten subjects were tested, and results from
a typical subject are presented here. A dynamic PET study was performed with a GE Advance
PET camera with an axial resolution (in full width half maximum) of 5.8 mm and an in-plane
resolution of 5.4 mm. This scanner acquires 35 simultaneous 4.25-mm-thick slices. A
transmission scan was first obtained with twin 10-mCi germanium-68 pin sources for 10 min
for the purpose of attenuation correction of the emission scans. Eighteen serial dynamic PET
images were acquired during the first 95 min after injection using the following image
sequence: four 15-sec frames, three 1-min frames, three 2-min frames, three 5-min frames,
three 10-min frames, and two 20-min frames. All PET scans were reconstructed using the
Ramp-filtered backprojection technique in a 128 × 128 matrix, with a transaxial voxel size of
2 × 2 mm. The PET images were corrected for radionuclide decay, tissue attenuation, and
injected dose of the radioligand.

For invasive determination of the input function, a radial artery line was placed by an
anesthesiologist. During the PET study, arterial blood samples were withdrawn every 5–7 sec
during the first 2 min and then with increasing time intervals until the end of study 95 min post
injection. Exact times of blood sampling were registered. The blood samples were centrifuged,
and plasma activities were counted in a gamma counter cross-calibrated with the PET scanner
every day. The exact time difference between the start of the camera and the start of the gamma
counter was registered for decay correction. The input function was corrected for metabolized
radioligand activity. Fig. 6(a) shows the input function corrected for metabolites labeled as
input (measured). For this purpose, 2-ml arterial plasma samples were obtained at 5, 15, 30,
60, and 90 min post injection. The extent of the metabolism of C-11 DASB was determined
using high-performance liquid chromatography (HPLC). Missing data points of the correction
function that describes the percent unmetabolized tracer were obtained by biexponential
interpolation.
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We first consider the case of knowing the input function by examining one subject. As a starting
point, we analyze a single slice with number 15. The top of Fig. 6 shows the factor TACs
estimated by the proposed scheme, where the factor curves are meaningful and follow
compartmental kinetics. We further combine data from six slices, numbered 13, 15, 17, 19, 21,
and 23. With all six slices, we obtain the estimates as [k2f, k2a] = [0.3238, 0.0047] by applying
the proposed scheme. Using the estimated factor TACs, we then reconstruct the factor images
for all six slices simultaneously. Similarly, we combine data from slice 15 and 20, since slice
15 includes the cerebellum with predominantly fast turnover, whereas slice 20 is excellent to
derive the slow factor, but it does not have the cerebellum, and it is hard to identify the fast
turnover component. The reconstructed factor images are shown in Fig. 7 for slice 15 and in
Fig. 8 for slice 20, where the top image represents nonspecific binding, and the bottom image
appears to represent specific binding. For slice 15, as is typical in practice, the specific binding
in the temporal and frontal cortex as well as in the cerebellum is lower than in the midbrain.
Slice 20 shows high specific binding in the basal ganglia and midbrain, which is consistent
with high density of the serotonin transporter in these structures.

Based on the above estimated macroparameters of the parallel model, we can obtain the
estimates of microparameters of the serial model, as described in Section V. As an example,
the parametric images for slice 20 are shown in Fig. 9. The top image shows the nonspecific
distribution volume image of nonspecific binding obtained from the ratio of k1/k2. The bottom
image shows the specific distribution volume image obtained as (k1/k2)(k3/k4). Except some
noise artifacts in the specific binding image, the two images are of reasonable quality and look
similar to the images shown on Fig. 8. Of particular importance is the expected high binding
in the regions on the specific binding image that correspond to higher serotonin transporter
densities. On the other hand, the binding potential image (k3/k4) shown in the middle is very
noisy, although it also shows the expected high binding in the region of basal ganglia and the
midbrain.

To further evaluate the performance of the proposed scheme when the input function is
available, we also report the parametric image result of the total DV for slice 20 via the popular
Logan plot [34], as shown in Fig. 10. The Logan plot result is obtained by using PMT toolbox.
1 In the filtering case at the bottom of Fig. 10, a linear prefilter (with weights 4-2-1) in
combination with a median postfilter (with mask size is 3 × 3) were applied. For the purpose
of comparison, we plot the total DV image calculated as in (30) from the proposed scheme in
Fig. 11, where in the filtering case (see the bottom of Fig. 11), a median postfilter (with mask
size is 3 × 3) was applied. A later DASB concentration image is also provided in Fig. 12 to
allow a basic feeling where the tracer is retained. We also calculated the correlation coefficient
between the total DV image via the proposed scheme and that from the Logan plot. It was
found that the CC is as high as 0.89 and 0.95 for the cases with and without filtering,
respectively. These high CCs indicate the good match between the proposed scheme and the
Logan plot. However, it is worth mentioning that the Logan plot cannot provide information
about the specific DV and nonspecific DV. Since, in this paper, we want to concentrate on the
effect of the proposed scheme, a no-filtering operation is considered in other figures.

Now, we further examine the case of simultaneously estimating the input function and the
kinetic parameters. For comparison with the case of measuring the input function, we plot the
estimated factor TACs in Fig. 6(b) and the factor images in Fig. 13 for slice 15. One can see
that the pattern is comparable to the pattern derived with the measured input function. A
similarly good result is obtained in slice 20. First, applying the subspace-based algorithm based
on smoothing and interpolation ideas to different sectors, we obtained the estimated peak values

1The PET-MRI Tools (PMT) software developed for processing medical images of various modalities is used for research purposes at
academic institutes (See http://www.nmc.dote.hu/nmteng/pmt.htm).
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(i.e., eα)as [0.58, 0.83, 0.92, 0.99, 0.999] by choosing T0 = 0.25. Then, applying the iterative
ML algorithm, we obtained the estimates of θs as

The factor images for the slice with number 20 are plotted in Fig. 14. The pattern again is
similar to the one obtained when the input function was available.

Similarly, we can obtain the estimates of microparameters of the serial model. First, we report
the DV images in Fig. 15 for slice 20. In the upper plots, the DVs are calculated based on
parameters of each voxel (upper row). Since certain smoothness is expected in DVs, for each
voxel i with position {xi, yi}, we define a small region Ωi characterized by [xi − 1, xi + 1] and
[yi − 1, yi + 1]. Now, for each small region Ωi, the macroparameters are defined as

 and . The microparameters are accordingly
calculated, and the DV parametric images derived from them are shown in the lower row of
Fig. 15. It is worth mentioning that more sophisticated methods of spatial regularization, such
as [35], could be further explored to achieve better results.

It is worth mentioning that similar results were observed when the proposed schemes were
applied to PET brain images of other control subjects.

VII. Conclusion
Modeling in PET allows the estimation of parameters describing receptor kinetics. In this paper,
we have presented a likelihood-based framework in the voxel domain to estimate the kinetic
parameters and reveal the spatial and temporal characteristics. Our contributions include the
following.

• We proposed a novel approach in the voxel domain while keeping the compartmental
modeling feature. Since we investigate the system model in the voxel domain, no
preprocessing for identifying different ROIs on the targeted organ is required.

• We developed an efficient voxel-domain likelihood-based framework for
understanding the underlying kinetics and estimating the spatial/temporal patterns of
tissue binding. By taking advantage of the specific signal structure, we developed
subspace-based algorithms to obtain an initial estimate of the parameters. Then, an
iterative likelihood maximization technique is applied to refine the estimation results.

• We derived parametric images depicting both the microparameters (i.e.,k1, k2, k3, and
k4) in the serial model and the macroparameters (i.e., k1f(i) and k1s(i) in the parallel
model.

We studied several performance measures to examine the results of the proposed scheme in
estimating the three factor TACs and in revealing the underlying spatial heterogeneous
structures (e.g., the factor images and the DV images). The results illustrated that the proposed
scheme is able to quantify the binding parameters and provide reliable estimations of factor
TACs, and it is very promising in examining the underlying spatial heterogeneity in tissue
dynamics on a voxel-by-voxel basis. Furthermore, we studied the result on brain PET data,
and good performance was observed. According to the simulation and real image results, we
conclude that the scheme proposed in this paper is useful for the noninvasive quantitative
analysis of brain receptor dynamic PET studies.
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Appendix

Temporal Smoothing Process
Here, we consider that the voxel TAC observations are uniformly sampled at the time vector
t = {0, T0,…, (n − 1)T0}. We split the TACs into M overlapping sub-TACs of size ns, with
time indices {1,…,ns} forming the first sub-TAC, {2,…, ns + 1} forming the second sub-TAC,
and so on. For each voxel i, let cm,j(i) denote the vector of the measured signals at the jth sub-
TAC. Following the notation in the signal model of (21), let Sj denote the signal space of the
jth sub-TAC and Dj denote a 6 × 6 diagonal matrix. We then have

(31)

Therefore, the covariance matrix of the jth sub-TAC is expressed as

(32)

Thus, since the signal space includes both the components of eλ1t and teλ1t, we show above
that the signal components (i.e., the steering vectors) in the sub-TACs are identical up to
different scalings. Correspondingly, the covariance metrics of sub-TACs can be averaged. We
define the so-called temporally smoothed covariance matrix as the average of the sub-TAC
covariances

(33)

where D ̄
s is the temporally smoothed covariance matrix of the signals. Since this temporal

smoothing induces randomness (due to Ej), which in turn tends to decorrelate the signals that
caused the rank deficiency of D, D ̄

s will be nonsingular when the number of sub-TACs is not
less than the number of sources. In addition, we note that the covariance matrix R ̄s has the
same form as that for the noncoherent sources, with S1 being a subset of the full signal space.
Therefore, we can successfully apply the “usual” subspace-based algorithms, such as MUSIC,
after the smoothing process.
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Fig. 1.
PET imaging parallel two-tissue model.
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Fig. 2.
Brain PET example to estimate the exponent parameters using MUSIC-like algorithm.
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Fig. 3.
True and the estimated factor TACs in simulation.
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Fig. 4.
Factor images in the simulated phantom of the shaped biological structures. (Left) True factor
images. (Right) Estimated factor images
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Fig. 5.
PET imaging serial two-tissue compartment model.
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Fig. 6.
Estimated factor TACs in brain PET study in the case of known (i.e., measured) (top) input
function and (bottom) the case of input function estimated simultaneously with the kinetic
parameters.
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Fig. 7.
Estimated factor images {k1f(i)} and {k1s(i)} of (top) nonspecific and (bottom) specific binding,
respectively, from Slice 15 of the brain PET study using the measured input function and the
parallel model.
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Fig. 8.
Estimated factor images {k1f(i)} and {k1s(i)} of (top) nonspecific and (bottom) specific binding,
respectively, from Slice 20 of the brain PET study using the measured input function and the
parallel model.
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Fig. 9.
Estimated voxel-by-voxel DV (distribution volume) parametric images of nonspecific and
specific binding from brain PET study using the measured input function. Slice number is 20,
which is identical to Fig. 8.
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Fig. 10.
Estimated voxel-by-voxel total DV parametric images from brain PET study using the Logan
plot. Slice number is 20, identical to Fig. 8. On the bottom, a linear prefilter and a median
postfilter were applied.
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Fig. 11.
Estimated voxel-by-voxel total DV parametric images from brain PET study using the
measured input function. Slice number is 20, identical to Fig. 8. On the bottom, a median
postfilter were applied.
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Fig. 12.
Example of PET image at the 15th time point. Here, the 15th time point represents the time
window from 30 to 40 min.
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Fig. 13.
Estimated factor images {k1f(i)} and {k1s(i)} of (top) nonspecific and (bottom) specific binding,
respectively, from slice number 15 of the brain PET study with simultaneous estimation of the
input function.
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Fig. 14.
Estimated factor images {k1f(i)} and {k1s(i)} of (top) nonspecific and (bottom) specific binding,
respectively, from slice number 20 of the brain PET study with simultaneous estimation of the
input function.
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Fig. 15.
Estimated distribution volume (DV) parametric images of nonspecific and specific binding
from slice number 20 of the brain PET study with simultaneous estimation of the input function.
In the upper row images, the DVs are calculated in each voxel; in the lower figures, the DVs
are calculated for each small region to improve image smoothness.
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TABLE I
Estimation Performance of the Rate Parameters When Different Noise Levels cin Are Added to the Input Function.
The Results Are Calculated From 100 Simulation Runs

cin bias(k2f) bias(k2s) CV(K2f) CV(K2s)
0.01 0.0015 0.0033 0.0176 0.0191
0.05 0.0338 0.0299 0.0721 0.1070
0.1 0.118 0.039 0.083 0.110
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TABLE III
Performance of Estimating the Factor Images, in Terms of CC and PM. in Each Parenthesis, the First Number
Is the Mean, and the Second Number Is the Corresponding Standard Deviation of the Performance Measure CC
or PM. Here, the Noise Level σ2 = 30

factor fast slow input
CC (0.962,0.041) (0.996,0.005) (0.980,0.016)
PM (0.388,0.113) (0.110,0.079) (0.207,0.064)
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