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Abstract—In nonlinear deterministic parameter estimation, the
maximum likelihood estimator (MLE) is unable to attain the
Cramer-Rao lower bound at low and medium signal-to-noise
ratios (SNR) due the threshold and ambiguity phenomena. In
order to evaluate the achieved mean-squared-error (MSE) at
those SNR levels, we propose new MSE approximations (MSEA)
and an approximate upper bound by using the method of interval
estimation (MIE). The mean and the distribution of the MLE ar e
approximated as well. The MIE consists in splitting thea priori
domain of the unknown parameter into intervals and computing
the statistics of the estimator in each interval. Also, we derive
an approximate lower bound (ALB) based on the Taylor series
expansion of noise and an ALB family by employing the binary
detection principle. The accurateness of the proposed MSEAs and
the tightness of the derived approximate bounds1 are validated
by considering the example of time-of-arrival estimation.

Index Terms—Nonlinear estimation, threshold and ambiguity
phenomena, maximum likelihood estimator, mean-squared-error,
upper and lowers bounds, time-of-arrival.

I. I NTRODUCTION

NONLINEAR estimation of deterministic parameters suf-
fers from the threshold effect [2–11]. This effect means

that for a signal-to-noise ratio (SNR) above a given threshold,
estimation can achieve the Cramer-Rao lower bound (CRLB),
whereas for SNRs lower than that threshold, estimation de-
teriorates drastically until the estimate becomes uniformly
distributed in thea priori domain of the unknown parameter.

As depicted in Fig. 1(a), the SNR axis can be split into three
regions according to the achieved mean-squared-error (MSE):

1) A priori region: Region in which the estimate is uniformly
distributed in thea priori domain of the unknown param-
eter (region of low SNRs).

2) Threshold region: Region of transition between thea
priori and asymptotic regions (region of medium SNRs).

Achraf Mallat, Christophe Craeye and Luc Vandendorpe are with the
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1The derived magnitudes are referred as “bounds” because they are either
lower or greater than the MSE, and as “approximate” because an approxima-
tion is performed to obtain them; the terminology “approximate bound” was
previously used by McAulay in [1].
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Figure 1. SNR regions (a)A priori, threshold and asymptotic regions for non-
oscillating ACRs (b)A priori, ambiguity and asymptotic regions for oscillating
ACRs (c: CRLB, eU : MSE of uniform distribution in thea priori domain,
e: achievable MSE,ρpr , ρam1, ρam2, ρas: a priori, begin-ambiguity, end-
ambiguity and asymptotic thresholds).

3) Asymptotic region: Region in which the CRLB is
achieved (region of high SNRs).

In addition, if the autocorrelation (ACR) of the signal carrying
the information about the unknown parameter is oscillating,
then estimation will be affected by the ambiguity phenomenon
[12, pp. 119] and a new region will appear so the SNR axis
can be split, as shown Fig. 1(b), into five regions:

1) A priori region.
2) A priori-ambiguity transition region.
3) Ambiguity region.
4) Ambiguity-asymptotic transition region.
5) Asymptotic region.

The MSE achieved in the ambiguity region is determined by
the envelope of the ACR. In Figs. 1(a) and 1(b), we denote by
ρpr, ρam1, ρam2 andρas the a priori, begin-ambiguity, end-
ambiguity and asymptotic thresholds delimiting the different
regions. Note that the CRLB is achieved at high SNRs with
asymptotically efficient estimators, such as the maximum
likelihood estimator (MLE), only. Otherwise, the estimator
achieves its own asymptotic MSE (e.g, MLE with random
signals and finite snapshots [13, 14], Capon algorithm [15]).

The exact evaluation of the statistics, in the threshold
region, of some estimators such as the MLE has been con-
sidered as a prohibitive task. Many lower bounds (LB) have
been derived for both deterministic and Bayesian (when the
unknown parameter follows a givena priori distribution)
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parameters in order to be used as benchmarks and to de-
scribe the behavior of the MSE in the threshold region [16].
Some upper bounds (UB) have also been derived like the
Seidman UB [17]. It will suffice to mention here [16, 18]
the Cramer-Rao, Bhattacharyya, Chapman-Robbins, Barankin
and Abel deterministic LBs, the Cramer-Rao, Bhattacharyya,
Bobrovsky-MayerWolf-Zakai, Bobrovsky-Zakai, and Weiss-
Weinstein Bayesian LBs, the Ziv-Zakai Bayesian LB (ZZLB)
[2] with its improved versions: Bellini-Tartara [4], Chazan-
Ziv-Zakai [19], Weinstein [20] (approximation of Bellini-
Tartara), and Bell-Steinberg-Ephraim-VanTrees [21] (gener-
alization of Ziv-Zakai and Bellini-Tartara), and the Reuven-
Messer LB [22] for problems of simultaneously deterministic
and Bayesian parameters.

The CRLB [23] gives the minimum MSE achievable by
an unbiased estimator. However, it is very optimistic for low
and moderate SNRs and does not indicate the presence of
the threshold and ambiguity regions. The Barankin LB (BLB)
[24] gives the greatest LB of an unbiased estimator. However,
its general form is not easy to compute for most interesting
problems. A useful form of this bound, which is much tighter
than the CRLB, is derived in [25] and generalized to vector
cases in [26]. The bound in [25] detects the asymptotic region
much below the true one. Some applications of the BLB can
be found in [3, 5, 8, 9, 27, 28].

The Bayesian ZZLB family [2, 4, 19–21] is based on the
minimum probability of error of a binary detection problem.
The ZZLBs are very tight; they detect the ambiguity region
roughly and the asymptotic region accurately. Some appli-
cations of the ZZLBs, discussions and comparison to other
bounds can be found in [10–12, 29–35].

In [36, pp. 627-637], Wozencraft considered time-of-arrival
(TOA) estimation with cardinal sine waveforms and employed
the method of interval estimation (MIE) to approximate the
MSE of the MLE. The MIE [18, pp. 58-62] consists in splitting
the a priori domain of the unknown parameter into intervals
and computing the probability that the estimate falls in a given
interval, and the estimator mean and variance in each interval.
According to [18, 37], the MIE was first used in [38, 39] before
Wozencraft [36] and others introduced some modifications
later. The approach in [36] is imitated in [18, 37, 40, 41] for
frequency estimation and in [42] for angle-of-arrival (AOA)
estimation. The ACRs in [15, 18, 36, 37, 40–42] have the
special shape of a cardinal sine (oscillating baseband with
the mainlobe twice wider than the sidelobes); this limitation
makes their approach inapplicable on other shapes. In [1],
McAulay considered TOA estimation with carrier-modulated
pulses (oscillating passband ACRs) and used the MIE to derive
an approximate UB (AUB); the approach of McAulay can be
applied to any oscillating ACR. Indeed, it is followed (inde-
pendently apparently) in [15, 43, 44] for AOA estimation and
in [41] (for frequency estimation as mentioned above) whereit
is compared to Wozencraft’s approach. The ACR considered
in [43, 44] has an arbitrary oscillating baseband shape (due
to the use of non-regular arrays), meaning that it looks likea
cardinal sine but with some strong sidelobes arbitrarily located.
The MSEAs based on Wozencraft’s approach are very accurate

and the AUBs using McAulay’s approach are very tight in
the asymptotic and threshold regions. Both approaches can be
used to determine accurately the asymptotic region. Various
estimators are considered in the aforecited references. More
technical details about the MIE are given in Sec. IV.

We consider the estimation of a scalar deterministic parame-
ter. We employ the MIE to propose new approximations (rather
than AUBs) of the MSE achieved by the MLE, which are
highly accurate, and a very tight AUB. The MLE mean and
probability density function (PDF) are approximated as well.
More details about our contributions with regards to the MIE
are given in Secs. IV and V. We derive an approximate LB
(ALB) tighter than the CRLB based on the second order Taylor
series expansion of noise. Also, we utilize the binary detection
principle to derive some ALBs; the obtained bounds are very
tight. The theoretical results presented in this paper are appli-
cable to any estimation problem satisfying the system model
introduced in Sec. II. In order to illustrate the accurateness of
the proposed MSEAs and the tightness of the derived bounds,
we consider the example of TOA estimation with baseband
and passband pulses.

The materials presented in this paper compose the first part
of our work divided in two parts [45, 46].

The rest of the paper is organized as follows. In Sec. II
we introduce our system model. In Sec. III we describe the
threshold and ambiguity phenomena. In Sec. IV we deal with
the MIE. In Sec. V we propose an AUB and an MSEA. In Sec.
VI we derive some ALBs. In Sec. VII we consider the example
of TOA estimation and discuss the obtained numerical results.

II. SYSTEM MODEL

In this section we consider the general estimation problem
of a deterministic scalar parameter (Sec. II-A) and the partic-
ular case of TOA estimation (Sec. II-B).

A. Deterministic scalar parameter estimation

Let Θ be a deterministic unknown parameter withDΘ =
[Θ1,Θ2] denoting itsa priori domain. We can write theith,
(i = 1, · · · , I) observation as:

ri(t) = αsi(t; Θ) + w̃i(t) (1)

wheresi(t; Θ) is theith useful signal carrying the information
on Θ, α is a known positive gain, and̃wi(t) is an additive
white Gaussian noise (AWGN) with two-sided power spectral
density (PSD) ofN0

2 ; w̃1(t), · · · , w̃I(t) are independent.

Denote byEx(θ) =
∑I

i=1

∫ +∞
−∞ x2

i (t; θ)dt the sum of the
energies ofx1(t; θ), · · · , xI(t; θ), by ẋ and ẍ the first and
second derivatives ofx w.r.t. θ, and by E, ℜ and P the
expectation, real part and probability operators respectively.
From (1) we can write the log-likelihood function ofΘ as:

Λ(θ) = − 1

N0

[

Er + α2Es(θ) − 2αXs,r(θ)
]

(2)

whereθ ∈ DΘ denotes a variable associated withΘ, and

Xs,r(θ) =

I
∑

i=1

∫ +∞

−∞
si(t; θ)ri(t)dt = αRs(θ,Θ)+w(θ) (3)
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is the crosscorrelation (CCR) with respect to (w.r.t.)θ, with

Rs(θ, θ
′) =

I
∑

i=1

∫ +∞

−∞
si(t; θ)si(t; θ

′)dt (4)

denoting the ACR w.r.t.(θ, θ′) and

w(θ) =

I
∑

i=1

∫ +∞

−∞
si(t; θ)w̃i(t)dt (5)

being a colored zero-mean Gaussian noise of covariance

Cw(θ, θ
′) =

I
∑

i=1

E {wi(θ)wi(θ
′)} =

N0

2
Rs(θ, θ

′). (6)

1) MLE, CRLB and envelope CRLB: By assumingEs(θ) =
Es in (2), that is,Es(θ) is independent ofθ, we can respec-
tively write the MLE and the CRLB ofΘ as [23, pp. 39]:

Θ̂ = argmax
θ∈DΘ

Xs,r(θ) (7)

c(Θ) =
−1

E{Λ̈(θ)|θ=Θ}
=

−N0/2

α2R̈s(Θ,Θ)
=

1

ρβ2
s (Θ)

(8)

where

ρ =
α2Es

N0/2
(9)

β2
s (Θ) = − R̈s(Θ,Θ)

Es
(10)

denote the SNR and the normalized curvature ofRs(θ,Θ) at
θ = Θ respectively. UnlikeEs(Θ), R̈s(Θ,Θ) may depend on
Θ (e.g, AOA estimation [47]). The CRLB in (8) is inversely
proportional to the curvature of the ACR atθ = Θ. Sometimes
Rs(θ,Θ) is oscillating w.r.t.θ. Then, if the SNR is sufficiently
high (resp. relatively low) the maximum of the CCR in (3) will
fall around the global maximum (resp. the local maxima) of
Rs(θ,Θ) and the MLE in (7) will (resp. will not) achieve
the CRLB. We will see in Sec. VII that the MSE achieved
at medium SNRs is inversely proportional to the curvature of
the envelope of the ACR instead of the curvature of the ACR
itself. To characterize this phenomenon known as “ambiguity”
[48] we will define below the envelope CRLB (ECRLB).

Denote byf the frequency2 relative to θ and define the
Fourier transform (FT), the mean frequency and the complex
envelope w.r.t.fc(Θ) of Rs(θ,Θ) respectively by

FRs
(f) =

∫ Θ2

Θ1

Rs(θ,Θ)e−j2πf(θ−Θ)dθ (11)

fc(Θ) =

∫ +∞
0 fℜ{FRs

(f)}df
∫ +∞
0 ℜ{FRs

(f)}df
(12)

Rs(θ,Θ) = ℜ
{

ej2π(θ−Θ)fc(Θ)eRs
(θ,Θ)

}

. (13)

In Appendix A we show that:

− R̈s(Θ,Θ) = −ℜ{ëRs
(Θ,Θ)}+ 4π2f2

c (Θ)Es. (14)

Now, we define the ECRLB as:

ce(Θ) = − N0/2

α2ℜ{ëRs
(Θ,Θ)} =

1

ρβ2
e(Θ)

(15)

2E.g, f is in seconds (resp. Hz) for frequency (resp. TOA) estimation.

where

β2
e (Θ) = −ℜ{ëRs

(Θ,Θ)}
Es

(16)

denotes the normalized curvature ofeRs
(θ,Θ) at θ = Θ. From

(10), (14) and (16), we have:

β2
s (Θ) = β2

e (Θ) + 4π2f2
c (Θ). (17)

2) BLB: The BLB can be written as [25]:

cB = (Θ −Θ)TD−1(Θ−Θ) (18)

where

Θ = (θn1 · · · θ−1 1 + Θ θ1 · · · θnN
)T

D = (di,j)|i,j=n1,··· ,nN

with θn1 , · · · , θnN
(n1 ≤ 0, nN ≥ 0, θ0 = Θ) denotingN

testpoints in thea priori domain ofΘ, and3

d0,0 = α2Eṡ(Θ)
N0/2

= 1
c(Θ)

d0,i6=0 = di,0 = α2

N0/2
[Ṙs(Θ, θi)− Ṙs(Θ,Θ)]

di6=0,j 6=0 = α2

N0/2
[Rs(θi, θj)−Rs(θi,Θ)−Rs(θj ,Θ) + Es].

3) Maximum MSE: The maximum MSE

eU = σ2
U + (Θ− µU )

2 (19)

with µU = Θ1+Θ2

2 andσ2
U = (Θ2−Θ1)

2

12 is achieved when the
estimator becomes uniformly distributed inDΘ [30, 34].

The system model considered in this subsection is satisfied
for various estimation problems such as TOA, AOA, phase,
frequency and velocity estimation. Therefore, the theoretical
results presented in this paper are valid for the different
mentioned parameters. TOA is just considered as an example
to validate the accurateness and the tightness of our MSEAs
and upper and lowers bounds.

B. Example: TOA estimation

With TOA estimation based on one observation (I = 1),
s1(t; Θ) in (1) becomess1(t; Θ) = s(t − Θ) where s(t)
denotes the transmitted signal andΘ represents the delay
introduced by the channel. Accordingly, we can write the
ACR in (4) as Rs(θ, θ

′) = Rs(θ − θ′) where Rs(θ) =
∫ +∞
−∞ s(t+ θ)s(t)dt, and the CCR in (3) as:

Xs,r(θ) = αRs(θ −Θ) + w(θ). (20)

The CRLBc(Θ) in (8), ECRLBce(Θ) in (15), mean frequency
fc(Θ) in (12), normalized curvaturesβ2

s (Θ) in (10) andβ2
e (Θ)

in (16) become now all independent ofΘ. Furthermore,β2
s and

β2
e denote now the mean quadratic bandwidth (MQBW) and

the envelope MQBW (EMQBW) ofs(t) respectively.

The CRLB in (8) is much smaller than the ECRLB in (15)
because the MQBW in (17) is much larger than the EMQBW
in (16). In fact, for a signal occupying the whole band from
3.1 to 10.6 GHz4 (fc = 6.85 GHz, bandwidthB = 7.5

3We can show thatEṡ(θ) = −R̈s(θ,Θ) if Es(θ) is independent fromθ.
4 The ultra wideband (UWB) spectrum authorized for unlicensed use by

the US federal commission of communications in May 2002 [49].
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Figure 2. Normalized ACRR(θ −Θ) and 1000 realizations ofM [Θ̂,X(Θ̂)] per SNR (ρ = 10, 15 and 20 dB); Gaussian pulse modulated byfc, Θ = 0
ns,Tw = 0.6 ns,DΘ = [−1.5, 1.5]Tw (a) fc = 0 GHz (b) fc = 4 GHz (c) fc = 8 GHz.

GHz), we obtainβ2
e = π2B2

3 ≈ 185 GHz2, 4π2f2
c ≈ 10β2

e ,
β2
s ≈ 11β2

e andc ≈ ce
11 . Therefore, the estimation performance

seriously deteriorates at relatively low SNRs when the ECRLB
is achieved instead of the CRLB due to ambiguity.

III. T HRESHOLD AND AMBIGUITY PHENOMENA

In this section we explain the physical origin of the thresh-
old and ambiguity phenomena by considering TOA estimation
with UWB pulses5 as an example. The transmitted signal

s(t) = 2sqrt
Es

Tw
e
−2π t2

T2
w cos(2πfct) (21)

is a Gaussian pulse of widthTw modulated by a carrierfc. We
consider three values offc (fc = 0, 4 and 8 GHz) and three
values of the SNR (ρ = 10, 15 and 20 dB) per consideredfc.
We takeΘ = 0, Tw = 0.6 ns, andDΘ = [−1.5, 1.5]Tw.

In Figs. 2(a)–2(c) we show the normalized ACRR(θ −
Θ) = Rs(θ−Θ)

Es
for fc = 0 (baseband pulse), 4 and 8

GHz (passband pulses) respectively, and 1000 realizationsper
SNR of the maximumM [Θ̂, X(Θ̂)] of the normalized CCR
X(θ) =

Xs,r(θ)
αEs

. Denote byNn, (n = n1, · · · , nN ), (N is the
number of local maxima inDΘ), (n1 < 0, nN > 0), (n = 0
corresponds to the global maximum) the number of samples
of M falling around thenth local maximum (i.e. between the
two local minima adjacent to that maximum) ofR(θ − Θ).
In Table I, we show w.r.t.fc and ρ the number of samples
falling around the maxima number 0 and 1, the CRLB square
root (SQRT)

√
c of Θ, the root MSE (RMSE)

√
eS obtained

by simulation and the RMSE to CRLB SQRT ratio
√

eS
c .

Consider first the baseband pulse. We can see in Fig. 2(a)
that the samples ofM are very close to the maximum of
R(θ−Θ) for ρ = 20 dB, and they start to spread progressively
alongR(θ − Θ) for ρ = 15 and 10 dB. Table I shows that
the CRLB is approximately achieved forρ = 20 and 15 dB,
but not for ρ = 10 dB. Based on this observation, we can
describe the threshold phenomenon as follows. For sufficiently

5 We chose UWB pulses because they can achieve the CRLB at relatively
low SNRs thanks to their relatively high fractional bandwidth (bandwidth to
central frequency ratio).

fc ρ
√
c

√
eS

√

eS
c

N0 N1

0
10
15
20

76
43
24

123
46
24

1.61
1.10
1.01

1000
1000
1000

0
0
0

4
10
15
20

12
7
4

196
31
4

15.81
4.47
1.01

773
985
1000

59
8
0

8
10
15
20

6.3
3.5
2

198
50
14

31.56
14.35
7.14

481
838
987

199
75
7

Table I
CRLB SQRT

√
c (PS), SIMULATED RMSE

√
eS (PS), RMSETO CRLB

SQRTRATIO
√

eS
c

, AND NUMBER (N0 , N1) OF THEM SAMPLES

FALLING AROUND THE MAXIMA NUMBER 0 AND 1, FORfc = 0, 4 AND 8
GHZ, AND ρ = 10, 15 AND 20 DB.

high SNRs (resp. relatively low SNRs), the maximum of the
CCR falls in the vicinity of the maximum of the ACR (resp.
spreads along the ACR) so the CRLB is (resp. is not) achieved.

Consider now the pulse withfc = 4 GHz. Fig. 2(b) and
Table I show that forρ = 20 dB all the samples ofM fall
around the global maximum ofR(θ − Θ) and the CRLB is
achieved, whereas forρ = 15 and 10 dB they spread along
the local maxima ofR(θ−Θ) and the achieved MSE is much
larger than the CRLB. Based on this observation, we can de-
scribe the ambiguity phenomenon as follows. For sufficiently
high SNRs (resp. relatively low SNRs) the noise component
w(t) in the CCRXs,r(θ) in (20) is not (resp. is) sufficiently
high to fill the gap between the global maximum and the local
maxima of the ACR. Consequently, for sufficiently high SNRs
(resp. relatively low SNRs) the maximum of the CCR always
falls around the global maximum (resp. spreads along the local
maxima) of the ACR so the CRLB is (resp. is not) achieved.
Obviously, the ambiguity phenomenon affects the threshold
phenomenon because the SNR required to achieve the CRLB
depends on the gap between the global and the local maxima.

Let us now examine the RMSE achieved atρ = 20 dB
for fc = 4 and 8 GHz; it is 3.5 times smaller withfc = 4
GHz than withfc = 8 GHz whereas the CRLB SQRT is 2
times smaller with the latter. In fact, the samples ofM do
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not fall all around the global maximum forfc = 8 GHz. This
amazing result (observed in [50] from experimental results)
exhibits the significant loss in terms of accuracy if the CRLB
is not achieved due to ambiguity. It also shows the necessity
to design our system such that the CRLB be attained.

IV. MIE- BASED MLE STATISTICS APPROXIMATION

We have seen in Sec. III that the threshold phenomenon
is due to the spreading of the estimates along the ACR. To
characterize this phenomenon we split thea priori domain
DΘ into N intervalsDn = [dn, dn+1), (n = n1, · · · , nN ),
(n1 ≤ 0, nN ≥ 0) and write the PDF, mean and MSE ofΘ̂ as

p(θ) =

nN
∑

n=n1

Pnpn(θ)

µ =

∫ Θ2

Θ1

θp(θ)dθ =

nN
∑

n=n1

Pnµn

e =

∫ Θ2

Θ1

(θ −Θ)2p(θ)dθ =

nN
∑

n=n1

Pn

[

(Θ− µn)
2
+ σ2

n

]

(22)

where

Pn = P{Θ̂ ∈ Dn} (23)

= P{∃ξ ∈ Dn : Xs,r(ξ) > Xs,r(θ), ∀θ ∈ ∪n′ 6=nDn′}
denotes the interval probability (i.e. probability thatΘ̂ falls in
Dn), and pn(θ), µn = E{Θ̂n} and σ2

n = E{(Θ̂n − µn)
2}

represent, respectively, the PDF, mean and variance of the
interval MLE (Θ̂ given Θ̂ ∈ Dn)

Θ̂n = Θ̂
∣

∣Θ̂ ∈ Dn. (24)

Denote by θn a testpoint selected inDn and let Xn =
Xs,r(θn) = αRn + wn with Rn = Rs(θn,Θ) and wn =
w(θn). Using (3),Pn in (23) can be approximated by

P̃n = P{Xn > Xn′ , ∀n′ 6= n} =

∫ +∞

−∞
dxn

∫ xn

−∞
dxn1 · · ·

∫ xn

−∞
dxn−1

∫ xn

−∞
dxn+1 · · ·

∫ xn

−∞
pX(x)dxnN

(25)

where

pX(x) =
1

(2π)
N
2 |CX | 12

e−
(x−µX )C

−1
X

(x−µX )T

2

represents the PDF ofX = (Xn1 · · ·XnN
)T with µX =

(µXn1
· · ·µXnN

)T = α(Rn1 · · ·RnN
)T being its mean and

CX = N0

2 [Rs(θn, θn′)]n,n′=n1,··· ,nN
its covariance matrix.

The accuracy of the approximation in (25) depends on the
choice of the intervals and the testpoints. For an oscillating
ACR we consider an interval around each local maximum
and choose the abscissa of the local maximum as a testpoint,
whereas for a non-oscillating ACR we splitDΘ into equal
intervals and choose the centerθn = dn+dn+1

2 of each interval
as a testpoint. For both oscillating and non-oscillating ACRs,
D0 contains the global maximum andθ0 is equal toΘ.

The testpoints are chosen as the roots of the ACR (except for
θ0 = Θ) in [18, 36, 37, 40–42], as the local extrema abscissa
in [1], and as the local maxima abscissa in [15, 41, 43, 44].

A. Computation of the interval probability

We consider here the computation of the approximate inter-
val probability P̃n in (25).

1) Numerical approximation: To the best of our knowledge
there is no closed form expression for the integral in (25)
for correlatedXn. However, it can be computed numerically
using for example the MATLAB function QSCMVNV (written
by Genz based on [51–54]) that computes the multivariate
normal probability with integration region specified by a set
of linear inequalities in the formb1 < B(X − µX) < b2.
Using QSCMVNV, P̃n can be approximated by:

P (1)
n = QSCMVNV(Np, CX , b1, B, b2) (26)

where Np is the number of points used by the algorithm
(e.g,Np = 3000), b1 = (−∞· · · − ∞)T and b2 = µXn

−
(µXn1

· · ·µXn−1µXn+1 · · ·µXnN
)T two (N − 1)-column vec-

tors, andB =

(

B1

B2
B3

B4

B5

)

an(N−1)×N matrix

with B1 = I(n− n1), B2 = zeros(N + n1 − n− 1, n− n1),
B3 = −ones(N −1, 1), B4 = zeros(N −nN +n−1, nN −n)
andB5 = I(nN − n)6.

2) Analytic approximation: Denote by Q(y) =
1√
2π

∫∞
y e−

ξ2

2 dξ the Q function. AsP{A1 ∩ A2} ≤ P{A1},

we can upper bound̃Pn in (25) by:

P (2)
n =

{

P (θ0, θ1) n = 0
P (θn, θ0) n 6= 0

(27)

where

P (θ, θ′) = P{Xs,r(θ) > Xs,r(θ
′)}

= Q

(

√

ρ

2

R(θ′,Θ)−R(θ,Θ)
√

1−R(θ, θ′)

)

(28)

with R(θ,Θ) = Rs(θ,Θ)
Es

denoting the normalized ACR.
P (θ, θ′) is obtained (28) from (3) and (6) by noticing that
Xs,r(θ) − Xs,r(θ

′) ∼ N (α[Rs(θ,Θ) − Rs(θ
′,Θ)], N0[Es −

Rs(θ, θ
′)])7. If N approaches infinity, then both

∑nN

n=n1
P

(2)
n

and the MSEA in (22) will approach infinity.

Using (27), we propose the following approximation:

P (3)
n =

P
(2)
n

∑nN

n=n1
P

(2)
n

. (29)

In this subsection we have seen that the interval probability
Pn in (23) can be approximated byP (1)

n in (26) or P (3)
n in

(29), and upper bounded byP (2)
n in (27).

The UB P
(2)
n is adopted in [1, 15, 41, 43, 44] with minor

modifications; in fact,̃P0 is approximated by one in [1] and by
1−∑n6=0 P

(2)
n in [15, 41, 43, 44]. In the special case where

Xn1 , · · · , X−1, X1, · · · , XnN
are independent and identically

distributed such as in [18, 36, 37, 40–42] thanks to the cardinal
sine ACR, thenP̃n = P̃A

N−1 , ∀n 6= 0, and P̃0 = 1 − P̃A (P̃A

is the approximate probability of ambiguity); consequently,

6We denote byI(k) the identity matrix of rankk, and zeros(k1, k2) and
ones(k1, k2) the zero and one matrices of dimensionk1 × k2.

7N (m, v) stands for the normal distribution of meanm and variancev.
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Figure 3. Simulated interval probabilityP (S)
n , the approximationsP (1)

n and
P

(3)
n , and the AUBP (2)

n for n = 0, 1 w.r.t. the SNR.

the MSEA in (22) can be written as the sum of two terms:
e ≈ P̃AeU+P̃0c(Θ); P̃0 can be calculated by performing one-
dimensional integration. IfX0 ∼ N (αEs,

N0

2 Es) andXn ∼
N (0, N0

2 Es), ∀n 6= 0, like in [18, 36, 37, 41] thenPA can be
upper bounded using the union bound [36].

As an example, to evaluate the accurateness ofP
(1)
n in (26)

and P
(3)
n in (29) and to compare them toP (2)

n in (27), we
consider the pulse in (21) withfc = 6.85 GHz, Tw = 2 ns,
Θ = 0 andDΘ = [−2, 1.5]Tw. In Fig. 3 we show forn = 0

and 1, the interval probabilityP (S)
n obtained by simulation

based on 10000 trials,P (1)
n , P

(2)
n and P

(3)
n , all versus the

SNR. We can see thatP (S)
n converges to1N at low SNRs for all

intervals; however, it converges to1 at high SNRs (PS
0 = 0.99

for ρ ≈ 30 dB) for n = 0 (probability of non-ambiguity) and
to 0 for n 6= 0. Both P

(1)
n and P

(3)
n are very accurate and

closely follow P
(S)
n . The UBP

(2)
n is not tight at low SNRs;

it converges to0.5 ∀n instead of 1
N due to (28). However,

it converges to 1 (resp. 0) forn = 0 (resp.n 6= 0) at high
SNRs simultaneously withP (S)

n so it can be used to determine
accurately the asymptotic region.

B. Statistics of the interval MLE

We approximate here the statistics of the interval MLE
Θ̂n in (24). We have already mentioned in Sec. IV that
for an oscillating (resp. a non-oscillating) ACR we consider
an interval around each local maximum (resp. split thea
priori domain into equal intervals); the global maximum is
always contained inD0. Accordingly, the ACR inside a given
interval is either increasing then decreasing or monotone (i.e.
increasing, decreasing or constant).

As the distribution of Θ̂n should follow the shape of
the ACR in the considered interval, the interval variance
is upper bounded by the variance of uniform distribution
in Dn = [dn, dn+1]. Therefore, the interval meanµn and
varianceσ2

n can be approximated by

µn,U =
dn + dn+1

2
(30)

σ2
n,U =

(dn+1 − dn)
2

12
. (31)

For intervals with local minima (not considered here), the
ACR decreases then increases soσ2

n is upper bounded by the
variance of a Bernoulli distribution of two equiprobable atoms:

σ2
n,max =

(dn+1 − dn)
2

4
> σ2

n,U . (32)

In [1], it is assumed thatσ2
n is upper bounded byσ2

i,U in (31)
even for intervals with local minima. See [55, 56] for further
information on the maximum variance.

The CCRXs,r(θ) in (3) can be approximated insideDn by
its Taylor series expansion aboutθn limited to second order:

Xs,r(θ) = αRs(θ,Θ) + w(θ)

≈ (αRn + wn) + (αṘn + ẇn)(θ − θn)

+ (αR̈n + ẅn)
(θ − θn)

2

2
(33)

whereẇn = ẇ(θn), ẅn = ẅ(θn), Ṙn = Ṙs(θn,Θ) andR̈n =
R̈s(θn,Θ). Let νn be the correlation coefficient oḟwn andẅn.
Then, from (5), we can show that

ẇn ∼ N (0, σ2
ẇn

) (34)

ẅn ∼ N (0, σ2
ẅn

) (35)

with

σ2
ẇn

=
N0

2

∫ +∞

−∞
ṡ2(t; θn)dt =

N0

2
Eṡ(θn) (36)

σ2
ẅn

=
N0

2

∫ +∞

−∞
s̈2(t; θn)dt =

N0

2
Es̈(θn) (37)

νn =
E{ẇnẅn}
σẇn

σẅn

=

∫ +∞
−∞ ṡ(t; θn)s̈(t; θn)dt
√

Eṡ(θn)Es̈(θn)
. (38)

Let us first consider an interval with monotone ACR. By
neglectingẅn andR̈n in (33) (linear approximation), we can
approximate the interval MLE by:

Θ̂n = argmax
θ∈Dn

{Xs,r(θ)}

≈







dn αṘn + ẇn < 0

dn+1 αṘn + ẇn > 0
dn,1+dn,2

2 αṘn + ẇn = 0.

(39)

As P{αṘn + ẇn = 0} = 0, the latter approximation follows
a two atoms Bernoulli distribution with probability, mean and
variance given from (9), (34) and (36) by:

P{dn} = 1− P{dn+1} = P{−ẇn > αṘn}

= Q
(αṘn

σẇn

)

= Q

(

√

ρṘ2
n

EsEṡ(θn)

)

(40)

µn,B = dnP{dn}+ dn+1P{dn+1}
σ2
n,B = P{dn}P{dn+1}(dn+1 − dn)

2

whereσ2
n,B is upper bounded byσ2

n,max in (32) and reaches
it for P{dn} = 0.5; P{dn} = 0.5 just means that̂Θn is
uniformly distributed inDn (becauseΘ̂n can fall anywhere
insideDn); therefore,µn andσ2

n can be approximated by:

µn,1,c = µn,B (41)

σ2
n,1,c = min{σ2

n,U , σ
2
n,B}. (42)
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By neglectingẇn in (33) and (39) (becauseσ2
n << (Θ−µn)

2

for n 6= 0, see (22)) we obtain the following approximation:

µn,2,c =







dn Ṙn < 0

dn+1 Ṙn > 0
dn+dn+1

2 Ṙn = 0

(43)

σ2
n,2,c = 0. (44)

Consider now an interval with a local maximum. By ne-
glecting ẅn in (33), and taking into account thaṫRn = 0
(local maximum),Θ̂n can be approximated by:

Θ̂n = argmax
θ∈Dn

{Xs,r(θ)} ≈ θn − ẇn

αR̈n

(45)

which follows a normal distribution whose PDF, mean and
variance can be obtained from (8), (34), (36) and (45):

pn,N (θ) =
1√

2πσn,N

e
− (θ−µn,N )2

2σ2
n,N (46)

µn,N = θn (47)

σ2
n,N =

σ2
ẇn

α2R̈2
n

=
N0

2 Eṡ(θn)

α2R̈2
n

= c
−R̈0Eṡ(θn)

R̈2
n

.(48)

For n = 0, σ2
n,N is equal to the CRLB in (8) since−R̈0 =

Eṡ(θ0). To take into account thatDn is finite, we propose
from (46), (47) and (48) the following approximation:

µn,1,o =

∫ dn+1

dn

θpn,1,o(θ)dθ ≈ θn (49)

σ2
n,1,o =

∫ dn+1

dn

(θ − µn,1,o)
2pn,1,o(θ)dθ

≈ min{σ2
n,N , σ2

n,U} (50)

wherepn,1,o(θ) =
pn,N (θ)

∫ dn+1
dn

pn,N (θ)dθ
. By neglectingw(θ) in (33)

and (45), we obtain the following approximation:

µn,2,o = θn (51)

σ2
n,2,o = 0. (52)

For both oscillating and non-oscillating ACRs,D0 contains
the global maximum. To guarantee the convergence of the

MSEA in (22) to the CRLB,µ0 and σ2
0 should always be

approximated using (49) and (50) by:

µ0,0 = Θ (53)

σ2
0,0 = min{c, σ2

0,U}. (54)

For TOA estimation, we can write (40) and (48) asP{dn} =

Q
(√

ρ Ṙn

Esβs

)

andσ2
n,N = c

R̈2
0

R̈2
n

.

We have seen in this subsection that the interval mean and
variance can be approximated by

• µ0,0 in (53) andσ2
0,0 in (54) for n = 0.

• µn,U in (30) andσ2
n,U in (31), µn,1,c in (41) andσ2

n,1,c

in (42), orµn,2,c in (43) andσ2
n,2,c in (44) for intervals

with monotone ACR.
• µn,U andσ2

n,U , µn,1,o in (49) andσ2
n,1,o in (50), orµn,2,o

in (51) andσ2
n,2,o in (52) for intervals with local maxima.

In [18, 36, 37, 40, 42] (resp. [15, 41, 43, 44])σ2
n is

approximated byσ2
n,U (resp. σ2

n,2,o). They all approximate
µn by θn andσ2

0 by the asymptotic MSE (equal to the CRLB
if the considered estimator is asymptotically efficient).

To evaluate the accurateness ofσ2
n,U in (31) andσ2

n,1,o in
(50), we consider the pulse in (21) withfc = 8 GHz,Tw = 0.6
ns,DΘ = [−1.5, 1.5]Tw andρ = 10 dB. In Fig. 4 we show
the approximate interval standard deviations (STD)σn,U and
σn,1,o, and the STDσn,S obtained by simulation based on
50000 trials, w.r.t. the interval numbern = −6, · · · , 6. We
can see thatσn,S is upper bounded byσn,U as expected
and thatσn,1,o follows σn,S closely. The smallest variance
corresponds ton = 0 because the curvature ofRs(θ,Θ)
reaches its maximum atθ = Θ.

Before ending this section, we would like to highlight our
contributions regarding the MIE. We have proposed two ap-
proximations for the interval probability whenXn1 , · · · , XnN

are correlated. We have shown in Fig. 3 how our approxima-
tions are accurate. To the best of our knowledge all previous
authors adopt the McAulay probability UB (except for the case
whereXn1 , · · · , XnN

are independent thanks to the cardinal
sine ACR). We have proposed two new approximations for the
interval mean and variance, one for intervals with monotone
ACRs and one for intervals with local maxima. We have seen
in Fig. 4 how our approximations are accurate. To the best
of our knowledge all previous authors either upper bound
the interval variance or neglect it. Thanks to the proposed
probability approximations our MSEAs (e.g,e1,1,c in Fig. 6)
are highly accurate and outperform the MSE UB of McAulay
(e2,U in Fig. 7) and thanks to the proposed interval variance
approximations the MSEA is improved (e1,U and e1,2,c out-
perform e1,1,c in Fig. 6). We have applied the MIE to non-
oscillating ACRs. To the best of our knowledge this case is
not considered before.

V. A N AUB AND AN MSEA BASED ON THE INTERVAL

PROBABILITY

In this section we propose an AUB (Sec. V-A) and an
MSEA (Sec. V-B), both based on the interval probability
approximationP (3)

n in (29).
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andH2 : Θ = θ0 + ξ.

A. An AUB

As P
(3)
n approximates the probability that̂Θ falls in Dn,

the PDF of Θ̂ can be approximated by the limit ofP (3)
n

as N (number of intervals) approaches infinity (so that the
width of Dn approaches zero). Accordingly we can write the
approximate PDF, mean and MSE ofΘ̂ as

pM (θ) = lim
N→∞

P (3)
n =

P (θ,Θ)
∫ Θ2

Θ1
P (θ,Θ)dθ

(55)

µM =

∫ Θ2

Θ1

θpM (θ)dθ (56)

eM =

∫ Θ2

Θ1

(θ −Θ)2pM (θ)dθ. (57)

We will see in Sec. VII thateM acts as an UB and also
converges to a multiple of the CRLB. In fact,pM (θ) over-
estimates the true PDF of̂Θ in the vicinity of Θ because it is
obtained fromP (3)

n which is in turn obtained from the interval
probability UBP

(2)
n in (27).

B. An MSEA

To guarantee the convergence of the MSEA to the CRLB,
we approximate the PDF of̂Θ insideD0 ≈ [Θ − θ1−Θ

2 ,Θ +
θ1−Θ

2 ) by p0,N (θ) in (46) (Θ is the mean andc(Θ) is the MSE)
and outsideD0 by p′M (θ) = P (θ,Θ)

/ ∫

DΘ\D0
P (θ,Θ)dθ (the

corresponding mean and MSE areµ′
M =

∫

DΘ\D0
θp′M (θ)dθ

and e′M =
∫

DΘ\D0
(θ − Θ)2p′M (θ)dθ), and propose the

following approximation:

pMN (θ) = (1− P̃A)p0,N (θ) + P̃Ap
′
M (θ) (58)

µMN = (1− P̃A)Θ + P̃Aµ
′
M (59)

eMN = (1− P̃A)c(Θ) + P̃Ae
′
M (60)

where P̃A = 2P (θ1,Θ) approximates the probability that̂Θ
falls outsideD0. With oscillating ACRs,θ1 is the abscissa
of the first local maximum after the global one; thus,θ1 ≈
Θ + 1

fc(Θ) . With non-oscillating ACRs, the vicinity of the
maximum is not clearly marked off; so, we empirically take
θ1 = Θ+ π

4βs(Θ) .

The first contribution in this section is the AUBeM which
is very tight (as will be seen in Figs. 7 and 9) and also very
easy to compute. The second one is the highly accurate MSEA
eMN (as will be seen in Figs. 6 and 8); to the best of our
knowledge, this is the first approximation expressed as the
sum of two terms whenXn1 , · · · , XnN

are correlated (see
[1, 15, 41, 43, 44]).

VI. ALB S

In this section we derive an ALB based on the Taylor series
expansion of the noise limited to second order (Sec. VI-A)
and a family of ALBs by employing the principle of binary
detection which is first used by Ziv and Zakai [2] to derive
LBs for Bayesian parameters (Sec. VI-B).

A. An ALB based on the second order Taylor series expansion
of noise

From (33), the MLE ofΘ can be approximated by:

Θ̂ = argmax
θ

{Xs,r(θ)} ≈ Θ̂C = Θ− ẇ0

αR̈0 + ẅ0

(61)

where ẇ0/(αR̈0 + ẅ0) is a ratio of two normal variables.
Statistics of normal variable ratios are studied in [57–59].

Let sign(ξ) = 1 (resp.−1) for ξ ≥ 0 (resp.ξ < 0), δ4(θ) =
Es̈(θ)/Es, h = sign(ν0)σẇ0

√

1− ν20 , a1 = ν0σẇ0/σẅ0 ,
a2 = σẅ0/h, a3 = αR̈0a1/h, a4 = −αR̈0/σẅ0 =√
ρβ2(Θ)/δ2(Θ), q(ξ) = (a3ξ + a4)/

√

1 + ξ2. We can show
from [58] thatΘ̂C in (61) is distributed as:

Θ̂C ∼ Θ+ a1 +
χ

a2
(62)

where the PDF ofχ is given by:

pχ(ξ) =
e−

a2
3+a2

4
2

π(1 + ξ2)

{

1 +
√
2πq(ξ)e

q2(ξ)
2

(1

2
−Q

[

q(ξ)
]

)}

.

(63)
From (63) we can approximate the PDF, mean, variance and
MSE of Θ̂C by

pC(θ) = sign(ν0)a2pχ[a2(θ −Θ− a1)] (64)

µC =

∫ Θ2

Θ1

θpC(θ)dθ (65)

σ2
C =

∫ Θ2

Θ1

(θ − µC)
2pC(θ)dθ (66)

eC = (µC −Θ)2 + σ2
C . (67)

Note that the moments
∫∞
−∞ ξipχ(ξ)dξ, i = 1, 2, · · · (infinite

domain) are infinite like with Cauchy distribution [58]. We will
see in Sec. VII thateC behaves as an LB; this result can be
expected from the approximation in (33) where the expansion
of the noise is limited to second order.

B. Binary detection based ALBs

Let Θ̃ be an estimator ofΘ, ǫ|θ = Θ̃ − Θ the estimation
error givenΘ = θ, p|ǫ||θ(ξ) the PDF of|ǫ|, andP|ǫ|>ξ|θ the
probability that|ǫ| > ξ. For Θ = θ0, the MSE ofΘ̃ can be
written as [60]:

e|θ0 =

∫ ǫmax

0

ξ2p|ǫ|
∣

∣θ0
(ξ)dξ = 2

∫ ǫmax

0

ξP|ǫ|>ξ
∣

∣θ0
dξ

− {ξ2P|ǫ|>ξ
∣

∣θ0
}
∣

∣

ǫmax

0
=

1

2

∫ 2ǫmax

0

ξP|ǫ|> ξ
2

∣

∣θ0
dξ (68)
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whereǫmax = max{Θ2 − θ0, θ0 −Θ1}. By assumingPǫ> ξ
2 |θ

andPǫ<− ξ
2 |θ

constant∀θ ∈ DΘ, we can write8:

P|ǫ|> ξ
2 |θ0

= 2

[

1

2
Pǫ> ξ

2 |θ0
+

1

2
Pǫ<− ξ

2 |θ0

]

(69)

≈ 2

{

Pǫ1 = 1
2Pǫ> ξ

2 |θ0−ξ +
1
2Pǫ<− ξ

2 |θ0
Pǫ2 = 1

2Pǫ> ξ
2 |θ0

+ 1
2Pǫ<− ξ

2 |θ0+ξ

≥ 2

{

Pmin(θ0 − ξ, θ0)
Pmin(θ0, θ0 + ξ)

(70)

wherePǫ1 and Pǫ2 denote the probabilities of error of the
nearest decision rule

Ĥ =
{H1

H2
if |Θ̃− {Θ|H1}| ≶ |Θ̃− {Θ|H2}| (71)

of the two-hypothesis decision problems (the decision problem
in (73) is illustrated in Fig. 5):

H =

{

H1 : Θ = θ0 − ξ PH1 = 0.5
H2 : Θ = θ0 PH2 = 0.5

(72)

H =

{

H1 : Θ = θ0 PH1 = 0.5
H2 : Θ = θ0 + ξ PH2 = 0.5

(73)

and Pmin(θ0 − ξ, θ0) and Pmin(θ0, θ0 + ξ) the minimum
probabilities of error obtained by the optimum decision rule
based on the likelihood ratio test [36, pp. 30]:

Ĥ =
{H1

H2
if Λ(Θ|H1)− Λ(Θ|H2) ≷ ln

PH2

PH1

(74)

with Λ(θ) denoting the log-likelihood function in (2). The
probability of error of an arbitrary detector̂H is given by

Pe = PH1PĤ=H2|H1
+ PH2PĤ=H1|H2

. (75)

From (68) and (70) we obtain the following ALBs:

z1 =

∫ ǫ1

0

ξPmin(θ0 − ξ, θ0)dξ (76)

z2 =

∫ ǫ2

0

ξPmin(θ0, θ0 + ξ)dξ (77)

whereǫ1 = min{θ0 − Θ1, 2(Θ2 − θ0)} and ǫ2 = min{Θ2 −
θ0, 2(θ0 −Θ1)}. The integration limits are set toǫ1 andǫ2 to
make the two hypotheses in (72) and (73) fall insideDΘ.
As P|ǫ|> ξ

2 |θ0
is a decreasing function, tighter bounds can

be obtained by filling the valleys ofPmin(θ0 − ξ, θ0) and
Pmin(θ0, θ0 + ξ) (as proposed by Bellini and Tartara in [4]):

b1 =

∫ ǫ1

0

ξV {Pmin(θ0 − ξ, θ0)}dξ (78)

b2 =

∫ ǫ2

0

ξV {Pmin(θ0, θ0 + ξ)}dξ (79)

whereV {f(ξ)} = max{f(ζ ≥ ξ)} denotes the valley-filling
function. WhenPmin(θ, θ

′) is a function ofθ′ − θ (e.g, TOA
estimation) we can write the bounds in (76)–(79) as (i = 1, 2):

zi =

∫ ǫi

0

ξPmin(ξ)dξ (80)

bi =

∫ ǫi

0

ξV {Pmin(ξ)}dξ. (81)

8The obtained bounds are “approximate” due to this assumption; the
assumption is valid whenθ is not very close to the extremities ofDΘ.
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Figure 6. Baseband: SQRTs of the max. MSEeU , the CRLBc, the MSEAs
e1,U , e1,1,c, e1,2,c, e3,1,c andeMN , and the simulated MSEeS , w.r.t. the
SNR.

If θ0−Θ1 > Θ2− θ0, thenǫ1 > ǫ2; hence,z1 andb1 become
tighter thanz2 and b2, respectively. From (2), (28), (74) and
(75) we can write the minimum probability of error as

Pmin(θ, θ
′) = 0.5

[

PΛ(θ′)>Λ(θ)|Θ=θ + PΛ(θ)>Λ(θ′)|Θ=θ′

]

= 0.5
[

P (θ′, θ)|Θ=θ + P (θ, θ′)|Θ=θ′

]

= Q

(
√

ρ

2
[1−R(θ, θ′)]

)

. (82)

There are two main differences between our bounds (de-
terministic) and the Bayesian ones: i) with the former we
integrate along the error only whereas with the latter we
integrate along the error and thea priori distribution of Θ
(e.g, see (14) in [21]); ii) all hypotheses (e.g,Θ = θ0 and
Θ = θ0+ξ in (73)) are possible in the Bayesian case thanks to
thea priori distribution whereas only one hypothesis (Θ = θ0)
is possible in the deterministic case. So in order to utilizethe
minimum probability of error we have approximatedPǫ<− ξ

2 |θ0
in (69) byPǫ<− ξ

2 |θ0+ξ (see Fig. (5)) .

In this section we have two main contributions. The first one
is the ALB eC whereas the second one is the deterministic
ZZLB family. These bounds can from now on be used as
benchmarks in deterministic parameter estimation (like the
CRLB) where it is not rigorous to use Bayesian bounds.
Even though the derivation ofec was a bit complex, the final
expression is now ready to be utilized.

VII. N UMERICAL RESULTS AND DISCUSSION

In this section we discuss some numerical results about
the derived MSEAs, AUB, and ALBs. We consider TOA
estimation using baseband and passband pulses. LetTw = 2
ns, fc = 6.85 GHz, Θ = 0 andDΘ = [−2, 1.5]Tw. With the
baseband pulse we consider9 equal duration intervals. Let

ei,j,x = P
(i)
0 σ2

0,0 +

nN
∑

n=n1,n6=0

P (i)
n

[

(Θ− µn,j,x)
2
+ σ2

n,j,x

]

(83)
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Figure 7. Baseband: SQRTs of the max. MSEeU , the AUBse2,U andeM ,
the CRLBc, the BLB cB , the ALBseC andz1, and the simulated MSEeS ,
w.r.t. the SNR.

be the MSEA based on (22) and using the interval probability
approximationP (i)

n (i ∈ {1, 2, 3}, see (26), (27), (29)) and
interval mean and variance approximationsµn,j,x andσ2

n,j,x

((j, x) = U in (30), (31), and(j, x) ∈ {1, 2}×{c, o} in (41)–
(44), (49)–(52)).

A. Baseband pulse

Consider first the baseband pulse. In Fig. 6 we show the
SQRTs of the maximum MSEeU in (19), the CRLBc in (8),
five MSEAs: e1,U , e1,1,c, e1,2,c, e3,1,c in (83) andeMN in
(60), and the MSEeS obtained by simulation based on 10000
trials, versus the SNR. In Fig. 7 we show the SQRTs ofeU ,
two AUBs: e2,U in (83) andeM in (57), c, the BLB cB in
(18), two ALBs:eC in (67) andz1 in (80) (equal tob1 in (81)
because a non-oscillating ACR), andeS.

We can see fromeS that, as cleared up in Sec. I, the
SNR axis can be divided into three regions: 1) thea priori
region whereeU is achieved, 2) the threshold region and 3)
the asymptotic region wherec is achieved. We define thea
priori and asymptotic thresholds by [7]:

ρpr = ρ : e(ρ) = αpreU (84)

ρas = ρ : e(ρ) = αasc. (85)

We takeαpr = 0.5 andαpr = 1.1. FromeS, we haveρpr = 4
dB andρas = 16 dB. Thresholds are defined in literature w.r.t.
two magnitudes at least: i) the achieved MSE [7, 9, 21] like in
our case (which is the most reliable because the main concern
in estimation is to minimize the MSE) and ii) the probability
of non-ambiguity [15, 37] (for simplicity reasons).

The MSEAs e1,U , e1,1,c, e1,2,c, e3,1,c obtained from the
MIE (Sec. IV) are very accurate and followeS closely;e1,1,c
is more accurate thane3,1,c which slightly overestimateseS
becausee1,1,c uses the probability approximationP (1)

n in (26)
that considers all testpoints during the computation of the
probability, wherease3,1,c uses the approximationP (3)

n in (29)
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Figure 8. Passband: SQRTs of the max. MSEeU , the CRLBc, the ECRLB
ce, the MSEAse1,1,o, e3,1,o and eMN , and the simulated MSEs of the
passabndeS and basebandeS,BB pulses, w.r.t. the SNR.

based on the probability UBP (2)
n in (27) that only considers

the0th and thenth testpoints;e1,1,c is more accurate thane1,U
which slightly overestimateseS , and thane1,2,c which slightly
underestimates it, becausee1,1,c uses the variance approxima-
tion σ2

n,1,c in (42) obtained from the first order Taylor series
expansion of noise, wherease1,U usesσ2

n,U in (31) assuming
the MLE uniformly distributed inDn (overestimation of the
noise), ande1,2,c usesσ2

n,2,c in (44) neglecting the noise. The
MSEA eMN proposed in Sec. V-A based on our probability
approximationP (3)

n is very accurate as well.

The AUB e2,U proposed in [1] is very tight and converges
to the asymptotic region simultaneously witheS . However, it
is less tight in thea priori and threshold regions because it
uses the probability UBP (2)

n which is not very tight in these
regions (see Fig. 3). Moreover,e2,U → ∞ whenN → ∞. The
AUB eM (Sec. V-A) is very tight. However, it converges to
2.68 times the CRLB at high SNRs. This fact was discussed
in Sec. V-A and also solved in Sec. V-B by proposingeMN

(examined above). Nevertheless,eM can be used to compute
the asymptotic threshold accurately because it converges to its
own asymptotic regime simultaneously witheS .

Both the BLBcB and the ALBeC (Sec. VI-A) outperform
the CRLB. Unlike the passband case considered below,eC
outperforms the BLB. The ALBz1 (Sec. VI-B) is very tight
and converges to the CRLB simultaneously witheS .

B. Passband pulse

Consider now the passband pulse. In Fig. 8 we show the
SQRTs of the maximum MSEeU , the CRLBc, the ECRLB
ce in (15) (equal to CRLB of the baseband pulse), three
MSEAs: e1,1,o and e3,1,o in (83) andeMN in (60), and the
MSEs obtained by simulation for both the passbandeS and
the basebandeS,BB pulses. In Fig. 9 we show the SQRTs of
eU , two AUBs: e2,U in (83) andeM in (57), c, ce, the BLB
cB, three ALBs:eC in (67), z1 in (80) andb1 in (81), andeS .
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By observingeS , we identify five regions: 1) thea priori
region, 2) thea priori-ambiguity transition region, 3) the ambi-
guity region where the ECRLB is achieved, 4) the ambiguity-
asymptotic transition region and 5) the asymptotic region.
We define the begin-ambiguity and end-ambiguity thresholds
marking the ambiguity region by [7]

ρam1 = ρ : e(ρ) = αam1ce (86)

ρam2 = ρ : e(ρ) = αam2ce. (87)

We takeαam1 = 2 andαam2 = 0.5. FromeS we haveρpr = 7
dB, ρam1 = 15 dB, ρam2 = 28 dB andρas = 33 dB.

The MSEAse1,1,o, e3,1,o (Sec. IV) andeMN (Sec. V-B)
are highly accurate and followeS closely.

The AUB e2,U [1] is very tight beyond thea priori region.
The AUB eM (Sec. V-A) is very tight. However, it converges
to 1.75 times the CRLB in the asymptotic region.

The BLB cB detects the ambiguity and asymptotic regions
much below the true ones; consequently, it does not determine
accurately the thresholds (ρam1 = 5 dB, ρam2 = 20 dB and
ρas = 26 dB instead of 15, 28 and 33 dB). The ALBeC (Sec.
VI-A) outperforms the CRLB, but is outperformed by the BLB
(unlike the baseband case). The ALBz1 (Sec. VI-B) is very
tight, but b1 (Sec. VI-B) is tighter thanks to the valley-filling
function. They both can calculate accurately the asymptotic
threshold and to detect roughly the ambiguity region.

Let us compare the MSEseS,BB and eS achieved by
the baseband and passband pulses (Fig. 8). Both pulses ap-
proximately achieve the same MSE below the end-ambiguity
threshold of the passband pulse (ρam2 = 28 dB) and achieve
the ECRLB between the begin-ambiguity and end-ambiguity
thresholds. The MSE achieved with the baseband pulse is
slightly smaller than that achieved with the passband pulse
because with the former the estimates spread in continuous
manner along the ACR whereas with the latter they spread
around the local maxima. The asymptotic threshold of the
baseband pulse (16 dB) is approximately equal to the begin-
ambiguity threshold of the passband pulse (15 dB). Above
the end-ambiguity threshold, the MSE of the passband pulse
rapidly converges to the CRLB while that of the baseband one
remains equal to the ECRLB.

To summarize we can say that for a given nonlinear esti-
mation problem with an oscillating ACR, the MSE achieved
by the ACR below the end-ambiguity threshold is the same
as that achieved by its envelope. Between the begin-ambiguity
and end-ambiguity thresholds, the achieved MSE is equal to
the ECRLB. Above the latter threshold, the MSE achieved by
the ACR converges to the CRLB whereas that achieved by its
envelope remains equal to the ECRLB.

VIII. C ONCLUSION

We have considered nonlinear estimation of scalar determin-
istic parameters and investigated the threshold and ambiguity
phenomena. The MIE is employed to approximate the statistics
of the MLE. The obtained MSEAs are highly accurate and
follow the true MSE closely. A very tight AUB is proposed
as well. An ALB tighter than the CRLB is derived using the
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Figure 9. Passband: SQRTs of the max. MSEeU , the AUBse2,U andeM ,
the CRLBc, the ECRLBce, the BLB cB , the ALBseC , z1 andb1, and the
simulated MSEeS , w.r.t. the SNR.

second order Taylor series expansion of noise. The principle
of binary detection is utilized to compute some ALBs which
are very tight.

APPENDIX A
CURVATURES OF THEACR AND OF ITS ENVELOPE

In this appendix we prove (14). From (11) and (13) we can
write the FT of the complex envelopeeRs

(θ,Θ) as

FeRs
(f) = 2F+

Rs
[f + fc(Θ)] (88)

wherex+(f) =
{

x(f)
0

f>0
f≤0 . Form (13) we can write

R̈s(θ,Θ) = ℜ
{

ej2π(θ−Θ)fc(Θ)
[

j4πfc(Θ)ėRs
(θ,Θ)

+ ëRs
(θ,Θ)− 4π2f2

c (Θ)eRs
(θ,Θ)

]

}

(89)

As from (13)ℜ{eRs
(Θ,Θ)} = Rs(Θ,Θ) = Es, (89) gives

R̈s(Θ,Θ) = ℜ
{

ëRs
(Θ,Θ)

}

− 4π2f2
c (Θ)Es

+ 4πfc(Θ)ℜ
{

jėRs
(Θ,Θ)

}

. (90)

To prove (14) from (90) we must prove thatℜ{jėRs
(Θ,Θ)}

is null. Using (88) and the inverse FT, we can write

ėRs
(θ,Θ) =

∫ +∞

−∞
j2πfFeRs

(f)ej2πf(θ−Θ)df

=

∫ +∞

−∞
j4πfF+

Rs
[f + fc(Θ)]ej2πf(θ−Θ)df

=

∫ +∞

−∞
j4π[f − fc(Θ)]F+

Rs
(f)ej2π[f−fc(Θ)](θ−Θ)df

=

∫ +∞

0

j4π[f − fc(Θ)]FRs
(f)ej2π[f−fc(Θ)](θ−Θ)df

so ėRs
(Θ,Θ) =

∫ +∞
0

j4π[f − fc(Θ)]FRs
(f)df . Using (12)

and the last equation,ℜ{jėRs
(Θ,Θ)} becomes

ℜ{jėRs
(Θ,Θ)} = −

∫ +∞

0

4π[f − fc(Θ)]ℜ{FRs
(f)}df = 0.
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Hence, (14) is proved.
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