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Abstract—Recently, several solutions have been proposed
to address the complex challenge of protecting individuals’
genetic data during personalized medicine tests. In this short
paper, we analyze different privacy threats and propose simple
countermeasures for the generic architecture mainly used in
the literature. In particular, we present and evaluate a new
practical solution against a critical attack of a malicious
medical center trying to actively infer raw genetic information
of patients.
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I. INTRODUCTION

Recent developments in genome sequencing, in particular

the drastic reduction in sequencing costs, have enabled

an increasing use of genomic data for healthcare. At the

same time, as discussed in many studies [1], [2], genomic

information is highly sensitive because it reveals information

about an individual’s ethnicity, kinship, predisposition to

diseases, phenotype, etc. Therefore, there is a strong need

to protect the privacy of individuals’ genomic data.

One way to achieve this protection is via encryption and

there have been several systems proposed to securely store

and allow for operations on encrypted genomic data [3], [4],

[5], [6]. In this work, we focus on the systems that provide

genetic risk tests in a privacy-preserving way. One common

property of these systems is their architecture and the parties

involved. More specifically, such systems generally assume

the existence of (i) a trusted institution, responsible for the

sequencing, (ii) a data center, responsible for storing the

genomic data and performing some operations on it, (iii) one

or more medical centers (e.g., a physician, a pharmaceutical

company) that prescribe and perform the genetic tests, and

(iv) the individual (or the patient) who provides his genomic

information upon consent.

In this paper, sticking to this generic architecture, we

first analyze the privacy issues of the existing solutions and

demonstrate tractable attacks. Then, we propose efficient

and practical countermeasures. In particular, we propose a

new protocol against an attack carried out by a potentially

malicious medical center trying to learn the genetic data of

the patient (rather than the result of the test) by forging

some of the test parameters. Our protocol allows the data

center (which is unaware of the nature of the genetic test)

to iteratively check some parameters of the test until it is
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Medical Center (MC)Patient (P)

Figure 1: System model architecture. P’s genome is sequenced by
the CI, stored encrypted at the DC, and the MCs are able to perform
risk tests on it. The CI is responsible for distributing the keys, and
the MC can get only the final result of the test computation.

convinced the ongoing test is not an attack. The protocol

introduces a tradeoff between privacy and practicality. In

other words, it leaks minimum information about the test to

the data center to provide a practical protocol.

The rest of the paper is organized as follows. In Section II,

we give an overview of the system model and genetic disease

risk test between the involved parties. In Section III, we

provide a taxonomy of different privacy threats, as well as

some basic countermeasures. In Section IV, we propose an

efficient protocol against a potentially malicious medical

unit. In Section V, we study the tradeoff between the

practicality and the privacy of the proposed protocol. Finally,

in Section VI we conclude the paper.

II. SYSTEM MODEL

In this section, we describe the generic architecture

(Fig. 1), usually found in the literature, for performing

genetic risk tests in a privacy-preserving way. In short,

the genetic information of the patient (P) is processed

at a trusted certified institution (CI), which sequences the

DNA, extracts the SNPs, encrypts them, and distributes the

cryptographic keys to the other parties. A data center (DC)

is used to store the encrypted genetic information, while

one or several medical center(s) (MC) can compute genetic

risk tests for P in a privacy-preserving way. In clinical care,

the genetic risk G is usually computed as a weighted sum

of the raw SNPs’ values, G =
∑

(βi × SNP i), where βi

is the contribution (or SNP weight) of SNPi to the risk.

Such a computation is performed, in a privacy-preserving
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way, via secure multiparty computation or using a trusted

hardware (such as a smart card). The MC learns only the

final result, but not the SNPs’ raw values. In addition, the

DC does not learn the SNP weights used in the test because

the computation is performed at the MC.

III. THREATS AND COUNTERMEASURES

In this section, we investigate the different privacy issues

and propose potential countermeasures for the architecture

presented in Section II. Previous works consider the P

and the CI to be trusted parties, and they assume the DC

and the MC(s) to be honest-but-curious parties. Such an

assumption can be considered too strong for a real-life

scenario. Hence, in our analysis, we extend this threat model

beyond the honest-but-curious case, by focusing on other

possible behaviors for both the DC and the MC.

We assume that a party could be either (i) honest when

it perfectly abides by the protocol, (ii) semi-honest (or

honest-but-curious, or passive) when it honestly follows the

protocol specification without altering the data but still tries

to infer sensitive information that should remain private, or

(iii) dishonest (or malicious, or active) when it can arbitrarily

deviate from the protocol specification. In the last category,

we will focus on the interesting case of a dishonest-but-
covert adversary that is willing to actively cheat, but only if

he is not caught [7].

As shown in Fig. 2, we can distinguish three main attacks

depending on the threat model we consider. Note that more

sophisticated attacks can also be performed in this scenario.

We decided to focus on the most likely and simple ones.

Medical Center

Honest Semi-honest Dishonest

D
at

a 
Ce

nt
er Honest

Semi-honest

Dishonest

Test
Inference

Passive
SNP
Retrieval

Active
SNP
Retrieval

Figure 2: Table showing the different threat models and the three
main attacks that can be performed.

A. Test Inference Attack

A test inference attack can be performed by a semi-honest

data center that might try to infer the nature of the ongoing

test for a given patient P. By looking at the MC’s test

request, the DC learns which SNPs are accessed by the MC,

how many SNPs are used, and how often. For instance, the

DC can infer that P is suffering from heart disease, if the

ongoing test involves SNPs correlated with cardiovascular

risk. Such an attack can dramatically jeopardize P’s privacy

if the DC also has access to some contextual information that

can re-identify P. Re-identification of individuals has been

extensively studied in the literature [8], [9], [10], and it has

been proved to be even more effective when the attacker has

either some additional genetic information about the target

(different from the one securely stored at the DC) or about

his relatives, or some background knowledge about the test

request (i.e., location, and time).

Possible Countermeasure(s): A simple and naı̈ve ap-

proach to address this attack is to use the entire database

for each genomic risk test. In this way, the DC cannot

infer the number and the type of SNPs used for the test.

Following this idea, in [5], Danezis et al. propose a method

that computes the genetic risk test for a given patient by

involving all his SNPs in the computation. The SNPs that

do not contribute to the genetic risk are canceled out from

the final result by using zero weights. However, it is easy to

argue that such a solution does not scale for large databases,

especially if we consider the increasing discovery rate of

new SNPs with clinical relevance. A more sophisticated

approach for hiding MC’s access patterns is represented by

the use of one of the following techniques: Oblivious RAM

(ORAM) [11], or private information retrieval (PIR) [12].

In [4], to protect MC’s access patterns from DC, Karvelas

et al. propose the use of ORAM. Yet, the main drawback

of such a solution is that the protocol periodically requires

the entire database to be reshuffled, which causes significant

computational overhead. In addition, ORAM allows the MC

to obliviously write data on the DC, which is an overkill

in this scenario, and could represent a significant overhead.

Similar concerns also characterize PIR. Even though both

techniques have been proved to be more efficient than the

naı̈ve solution, they are still very expensive, unpractical

and hard to implement in real-life scenarios. Therefore,

we propose in Section IV a more practical solution that

enables the MC to calibrate its strategy according to its

privacy/efficiency preferences.

B. Passive SNP Retrieval Attack

A passive SNP retrieval attack can be performed by a

semi-honest MC that tries to infer P’s SNPs’ raw values

from the test end-result. Note this attack and the next one are

meaningful if we assume that the MC is not allowed to ask

the DC for the raw values of the SNPs but can obtain only

the end-result of a test. As the MC knows the characteristics

of the exposed SNPs (e.g., linkage disequilibrium (LD)

between SNPs), and the SNP weights, the risk computation

can be seen as a linear equation where the SNPs’ values

are the unknowns. P’s privacy decreases with the number of

tests performed by the MC that can build an overdetermined

system of linear equations and easily solve it.

Possible Countermeasure(s): Note that there is no per-

fect solution for preventing such a brute-force attack. Yet, a

potential mitigation has been proposed in [3] where the final

test result is provided as a range. Obviously, as the range size

increases, the utility at the MC decreases, but P’s genomic

privacy decreases slower. The optimal range size for a test

28



result might change based on the test to be performed. It

is necessary to strike a balance between clinical utility and

patients’ privacy.

C. Active SNP Retrieval Attack

An active SNP retrieval attack can be performed by a

dishonest MC that arbitrarily deviates from the protocol and

sets up new SNP weights for a given test in such a way

as to easily retrieve, from the test end-result, SNPs’ raw

values and compromise patients’ genomic privacy. Let G be

the end-result of a genetic risk test computed as described

in Section II. By setting βi = 0 ∀i except for one βj =
1, where i �= j, the MC gets that G is trivially equal to

SNP j . Note that such an attack can be reiterated until the

MC has obtained all the raw SNPs of the target patient. In

a smarter version of the same attack, a malicious MC can

create weights as consecutive powers of a number, ρ, greater

than the highest value used for encoding the SNPs. In our

case, we assume that the additive model has been used to

encode the SNPs. According to such an encoding, a SNP

value corresponds to 0 if it is homozygous major, to 1 if it

is heterozygous, or to 2 if it is homozygous minor. Hence,

ρ should be greater than 2. Now, assume that the attacker

sets the SNP weights as a ternary base such that βi = 3i.
Consider a test of size N = 3 and the following weights:

β0 = 30 = 1, β1 = 31 = 3, and β2 = 32 = 9. If the

final results in base 10 of the risk test computation yields

to Gb10 = 22, its equivalent in base 3 is Gb3 = 211. As

G = SNP 2×β2 +SNP 1×β1 +SNP 0×β0, the attacker

can easily map each SNP to the corresponding digit and

immediately obtain the raw values: SNP 2 = 2, SNP 1 = 1,

and SNP 0 = 1.

Possible Countermeasure(s): We emphasize that such an

attack could represent the most likely and dangerous threat

for the genomic privacy of patients in a real-life scenario,

mainly for two reasons: (i) It is easy to perform in practice,

and (ii) it is hard to check whether the protocol is followed

honestly by the multitude of the MCs that could potentially

make use of the system. Indeed, given the design of the

system where the SNP weights are kept private at the MC,

the DC has no way to check if a malicious MC is trying

to run a legitimate test or an attack. In other words, if it

tries to actively retrieve the SNPs by arbitrarily setting the

SNP weights, a dishonest MC is fully covert and it gets

caught with null probability. A possible mitigation to this

attack is to make a compromise between the privacy of the

MC (i.e., the SNP weights used for a given test) and the

privacy of patients’ genetic information stored at the DC. As

such, we propose in Section IV a protocol where the MC

needs to convince the DC, before getting the final result of

the genetic risk test, that its weights are legitimate and not

meant to reveal raw SNPs.

IV. PROPOSED SOLUTION

We saw in Section III that if the MC can freely set the

SNP weights for a given test, it can efficiently recover the

SNPs’ raw values, without being detected. We propose a

practical solution for the active SNP retrieval attack, where

the MC is forced to play fair by iteratively revealing some of

the SNP weights to the DC, until the DC is convinced that

the ongoing test is legitimate. The proposed solution slightly

compromises the MC’s privacy and gives more capabilities

to the (potentially malicious) DC. Indeed, the test parameters

might allow the DC to infer the nature of the test (as seen

in Section III-A), and also might represent some valuable

private information in the eyes of the MC.1 Note that the

MC can abort the protocol at any time, if it considers the

information leakage on the test parameters being above a

given threshold. As previously done in other works, [3], we

assume that the encrypted SNPs are stored shuffled at the

DC and only the MC knows the mapping that is maintained

by the CI. The protocol is based on the scheme discussed

in Section II, and can be described as follows:

1) The MC wants to compute a genetic risk tests on a

given patient involving R SNPs and to convince the

DC that his SNP weights are legitimate. To confuse

the DC, and to prevent him from a test inference attack

based on the number of SNPs requested, it pads his

request with D supplementary dummy SNPs. Dummy

SNPs are not related to the test and their contribution

is cancelled out from the test computation by zero
weights.2 Let N = R + D be the total length of the

request including real and dummy SNPs.

2) The MC sends to the DC the request for N SNPs,

and a commitment for each SNP weight, βi, that will

be used in the test computation (both zero weights

and non-zero weights). Let Ci = Commit(βi) ∀i ∈
[0, N − 1] be such a commitment.

3) The DC randomly picks two indices j, k ∈ [0, N−1],
and sends them to the MC. As a response, the MC

sends the correspondent βj and βk, in clear, to the

DC.

4) The DC verifies the commitments Ck and Cj , and then

checks the value of the two SNP weights. If both βj

and βk are non-zero, and not different powers of the

same number, the DC is convinced that the ongoing

test is not an active SNP retrieval attack. Steps 3 and

4 are repeated until the DC is convinced, or the MC

aborts the protocol. At each new iteration, except the

first, the DC asks the MC for only one new weight.

1It is possible, for example, that a MC, being represented by a phar-
maceutical company, does not want to reveal the coefficients used for
a pharmacogenetic test on a drug under development, before the test is
patented.

2Padding the request with the entire set of SNPs stored at the DC reduces
to the naı̈ve solution described in Section III-A.
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5) Once convinced, the DC sends to the MC the S
encrypted SNPs corresponding to the weights not seen

during the previous steps. These SNPs are at most

S = N − 2, if it is convinced at the first iteration.

6) Using the S encrypted SNPs, the MC homomorphi-

cally computes the encryption of the first part of the

test result, ENC(G1), and sends it to the DC.

7) The DC computes the encryption of the second part of

the test result ENC(G2), based on the other encrypted

SNPs for which it knew the weights at steps 3 and 4.

The two partial results are homomorphically added,

such that ENC(G) = ENC(G1) + ENC(G2). The final

encrypted result, ENC(G), is partially decrypted to

ENC(Ĝ) and sent to the MC.

8) The MC performs the final decryption of ENC(Ĝ) to

obtain the final test result, G. The protocol ends.

Note that once the DC is convinced from the SNP weights

revealed by the MC, it computes the encryption of the

partial test result, ENC(G2) to make sure that, whatever

other weight the MC decides to use for ENC(G1), an active
SNP retrieval attack cannot be performed. Also note that

the proposed solution protects against this specific attack.

More sophisticated attacks involving multiple requests of

the same SNPs on a given patient, or collusion of multiple

MCs can only be prevented by enforcing an access control

infrastructure maintained by the CI. We will study such a

countermeasure in future work.

V. EVALUATION AND DISCUSSION

As discussed in Section IV, for the protocol to be suc-

cessful and to preserve patients’ genomic privacy against an

active SNP retrieval attack, the MC leaks some information

about the test. We quantified the information leakage at the

MC, depending on the request length (N ), i.e., the number of

real SNPs (i.e., the test length R) along with the number of

dummy SNPs (D). As shown in Fig. 3, the colored curves,

drawn from an hypergeometric distribution, represent the

expected rate of real SNP weights leaked from the MC,

given the number of iterations performed to convince the DC

about the legitimacy of the test. The diamonds show when

DC is convinced. We can observe that the leakage of real

SNP weights is linear and slower with a higher number of

dummy SNPs. In addition, independently from the number

of dummies used by the MC in the request, the leakage is

always around 2 real SNP weights. Note that if we want to

minimize the request latency at the MC, the use of dummies

seems useless.

However, the leakage of real SNPs weights is not the

only important metric; the test length is also an important

information for an attacker at the DC trying to infer the

nature of the ongoing test. As such, we used the Shannon

entropy to measure the uncertainty on the test length of the

attacker or, in other words, the privacy level of the MC.

We implemented the convincing protocol (steps 3 and 4 of
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Figure 3: Evolution of the rate of real SNP weights leaked, given
the number of iteration done between the MC and the DC for the
convincing protocol.

the proposed solution) in Matlab and, as the DC checks the

weights randomly, we simulated it 500 times to smooth out

the results.

As expected, we observe from Fig. 4, that the more

dummy SNPs are requested from the MC, the slower the

curves decay towards zero, meaning that the uncertainty

of the adversary increases as it increases the number of

dummies.
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Figure 4: Evolution of the loss of entropy of test size of real SNP
weights leaked, given the number of iteration done between the
MC and the DC for the convincing protocol.

The tension between privacy and efficiency is obvious.

The best tradeoff on the number of dummy SNPs to use in

the request depends on the context of the MC. For instance,

on one hand, if we consider the MC to be a pharmaceutical

company trying to make pharmacogenetic risk tests for a

clinical trial on a population of thousands of patients, the

best strategy will be not to add dummies, as it will slow

down the process and make the computation more intensive.

On the other hand, if we consider the example of a critical

genetic risk test run on a well-known personality, the MC

will not want to take any risk in leaking the nature of the

test from its length. Hence, the best strategy is to maximize

the number of dummy SNPs in the request.

VI. CONCLUSION

In this paper, we have analyzed the privacy threats of

a generic model used for privacy-preserving genetic risk

tests. We have focused on the case of a dishonest-but-covert
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MC wanting to actively infer important information about

patients by purposefully modifying the test SNP weights.

We have proposed a practical solution that prevents such an

attack by checking the fairness of the MC. We emphasize

that we have focused on a practical and usable solution for

real-life scenarios, rather than designing a perfect but costly

scheme. In the same line of thought, further improvements

can be made in future work. In particular, access control is a

must for further enhancing the protection of sensitive genetic

information. Hiding the access patterns, possibly through an

efficient PIR, would be an additional improvement over the

obfuscation done when accessing data at the DC.
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