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Abstract—Logistic regression is the method of choice in most
genome-wide association studies (GWAS). Due to the heavy cost
of performing iterative parameter updates when training such
a model, existing methods have prohibitive communication and
computational complexities that make them unpractical for real-
life usage.

We propose a new sampling-based secure protocol to compute
exact statistics, that requires a constant number of communi-
cation rounds and a much lower number of computations. The
publicly available implementation of our protocol (and its many
optional optimisations adapted to different security scenarios)
can, in a matter of hours, perform statistical testing of over 600
SNP variables across thousands of patients while accounting for
potential confounding factors in the clinical data.

I. INTRODUCTION

In biomedicine, patient privacy and the safety of collected

data is of utmost importance. Ideally, all such patient data

can be collected and analysed in-house, however it is often

necessary for an institution to outsource part of the work

to larger commercial or public facilities with more advanced

equipment. For example, new-generation sequencers can be

used to call large numbers of single-nucleotide polymorphisms

(SNPs) [1], identify diseases or prognosis, tailor treatments

to patients [2] and ultimately develop new drugs [3]. Such

sequencers can be unaffordable or simply not cost-efficient to

maintain, and smaller institutions might prefer outsourcing to

contractors, who then obtain knowledge of patients’ genomic

data.

While anonymised polymorphisms data (routinely made

public in wide-scale genome studies [4]) are the subject of

ongoing investigation about the degree of privacy they can

guarantee [5], they are known to become extremely sensitive

when tied to clinical information such as disease status, vital

statistics or personal habits: such a tie greatly increases the

chances of identification [5] and would hypothetically allow

malicious parties to reveal a patient’s health conditions from

any easily-collected DNA sample. Even if the contracting

institution is in good faith, data integrity remains a concern

with any cloud-service providers and data breaches: a common

occurrence [6], [7].

Our goal, in this paper, is therefore to produce useful

statistical tests on patients’ data vertically split (e.g. clinical

and genomic) between two parties, without revealing either

party’s share to the other or tying them together in any

way. We accomplish this by using homomorphic encryption

to obliviously perform statistical testing on a type of non-

asymptotic model. An approach rarely used in (non-oblivious)

analysis of large-sized data, but with crucial advantages in an

oblivious protocol.

We will first introduce our typical biomedical data analy-

sis scenario in a non-oblivious context. Each instance (e.g.,

patient) is represented by three sets of variables: an outcome

variable, explanatory variables and covariates. For instance,

the outcome variable represents disease status, the explanatory

variables represent SNP alleles and the covariates represent

clinical information such as gender, age, ethnicity or smoking

status. The outcome variable is assumed to be binary, separat-

ing the entire example set in case and control instances.

We would like to identify which explanatory variables are

significantly relevant to the outcome. If the case and control

sets have identical distribution of all clinical variables, simple

correlation-based statistics such as chi-squared statistics can be

used [8]. However, this is usually not the case: for example,

if people of a particular ethnicity are overrepresented in either

set, we may end up finding SNPs related to the ethnicity,

not the condition. To avoid such shortcomings, covariates are

usually controlled for by including them in logistic regression

models [9].

Secure logistic regression models have already been pro-

posed by [2], however, their protocol requires a very high

number of communication rounds (proportional to the product

of the number of SNPs by the number of examples, with

a constant factor in the order of 103) and its computational

complexity itself, while asymptotically close to linear (in the

same variables) uses a very large constant factor, which makes

the protocol’s use unrealistic in real-life conditions, where non-

negligible network latency and very large input size occur. This

drawback is mainly due to complex computations involved in

iteratively updating each parameter and costly approximations

of real-number functions (e.g. using polynomials).

This paper presents a new approach employing exact logistic
regression [10], [11], a model not implemented in GWAS

packages such as PLINK [12], but commonly used in statistical

and biological communities via tools such as SPSS [13] or

R [14]. The term “exact” essentially means that the test
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statistics are computed exactly without large-sample approx-

imations, whereas the likelihood-based approach taken in [2]

uses asymptotic statistics.

Crucially, the computation of exact statistics does not re-

quire parameter updates and can be done via sampling [15].

It only involves inner product calculations and a few compar-

isons, all of which are amenable to secure computation. In

theoretical and experimental comparison to the best current

alternative [2], we showed that our secure protocol based on

exact logistic regression requires a (small) constant number

of communication rounds and compares very favourably in

empirical computational time.

II. EXACT LOGISTIC REGRESSION

In this section, we first introduce exact logistic regres-

sion [10] in a traditional (non-oblivious) context. We wish to

evaluate the association between binary outcome y ∈ {0, 1}
and an explanatory variable x1 ∈ {0, 1}. In addition, a

categorical covariate x2 ∈ {0, . . . ,m} is assumed to be

known. The ith example is a tuple {yi, x1i, x2i}. Without loss

of generality, the examples are assumed to be sorted with

respect to x2. Let us define qk as the number of examples

whose covariate is k (x2i = k).

Using dummy coding for the categorical variable, the lo-

gistic model, with π denoting the probability of y being 1, is

defined as

log(
π

1− π
) = γ + β1x1 +

m∑

k=1

β2k�x2 = k�,

where �P� ∈ {0, 1} is the boolean variable resulting from the

evaluation of predicate P .

Let vectors y,x1,x2k respectively denote the q-dimensional

outcome, explanatory and kth (out of m) covariate values of

the q examples. Then, the sufficient statistics for γ, β1 and

β2 are defined as t0 = 1�y, t1 = x1
�y and t2k = x2k

�y,

respectively.

In testing for statistical significance of the explanatory

variable, we would like to find out if the observation y is

special in that it gives particularly high correlation to x1.

If the obtained level of explanatory correlation t̂1 is easily

predictable from the existing information t̂0 and t̂2, it should

not be regarded as statistically significant. In exact logistic

regression, the sample space is defined as the set of all class

vectors whose positive class size and covariate correlation are

constrained to the observed value, called a fiber [16],

Y = {y | y�1 = t̂0,y
�x2k = t̂2k, k = 1, . . . ,m}.

It is equivalently represented as

Y = {y | y�x2k = t̂2k, k = 0, . . . ,m},
where t̂20 = t̂0 −

∑m
k=1 t̂2k.

To calculate the p-value with respect to the explanatory

variable, the null distribution of t1 is derived by uniform

sampling from Y . Sampling is done by concatenating m+ 1
vectors, each of which is a random permutation of a qk
dimensional vector composed of t̂2k ones and qk − t̂2k zeros.
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Fig. 1. Illustration of the Exact Logistic Regression protocol (without
privacy): 1) Alice and Bob both reorder their respective input (y ∈ B

13)
and (x1) according to the values of the covariate x2 ∈ {0, 1, 2, 3, 4, 5}13
2) Alice generates S = 5 samples with identical counts of positive values
for each ‘slice’ of qi rows corresponding to the same value i of x2 3) They

compute the inner products t
(i)
1 of x′

1 with each y′(i) and the inner product t̂1

of x′
1 with y′ 4) By counting the number of i (out of S) such that t

(i)
1 > t̂1,

they obtain the p-value. Note: in a privacy-preserving context, Bob cannot
reorder x1 according to x2 (which Alice does not share with him) and all
y′(i) must therefore be re-ordered (by applying the inverse of the first ordering
permutation) into actual y(i) to match the original ordering of y and x1.

Let y(i), i = 1, . . . , S denote the samples and t
(i)
1 : each inner

product x1
�y(i). Then, the p-value is computed as

1

S

S∑

i=1

�t
(i)
1 ≥ t̂1�. (1)

Figure II illustrates the method (using the reordered vectors

directly, which does not affect the value of the inner products)

for a single covariate x2 and q = 13 instances.

When there are multiple covariates, the fiber Y involves

more constraints and sampling is more complex. Neverthe-

less, it can be achieved using Markov chain Monte Carlo

methods [16], [15], [17]. It is also possible to use continuous

variables [18].

For more details, refer to the textbook [11] and references

therein.

III. NOTATIONS AND CONVENTIONS

In all further protocols and discussions, Alice is the party

with binary outcome (y) and covariate (x2) data, while Bob
has the explanatory variable data {x1i}i. All cryptographic op-

erations are conducted using Paillier’s semi-homomorphically

additive cryptosystem [19]. A single key pair is being used

for all private- and public-key computations: this pair is

generated by Alice and the public key sent to Bob once, at

the beginning of the main protocol and assumed available in

all sub-protocols. In the absence of possible confusion, all

encryption operations, noted E(x), and decryption operations,

noted D(c), implicitly use this key pair. We note N = n2

the size of the resulting ciphertext domain in the Paillier

cryptosystem (ZN ) and all operations on ciphers are therefore

implicitly mod N (omitted from pseudocode for brevity).

We also adopt the common abuse of notation on plaintexts in

Zn:

8



∀p ∈ Zn, p ≤ n− 1

2
: −p ≡ n− p (2)

By convention, we write the ith element of a vector x as

x[i].

IV. PRIVACY-PRESERVING EXACT LOGISTIC REGRESSION

Algorithm 1 outlines the entire protocol used by Alice and

Bob to obliviously compute p-values out of input y, x2 and

{x1i}i=1..s without revealing either party’s share of the data

to the other party. By necessity, the common length of all three

vectors, q, and the total number of explanatory variables, s,

is known to both parties. Parameter S, also known to both,

represents the number of samples used and can be adjusted

according to the desired level of precision desired for the

resulting p-value.

Algorithm 1 Privacy-Preserving Exact Logistic Regression

1: procedure PPELR

2: Parameters: number of samples used S
3: Input from Alice: y ∈ B

q and x2 ∈ N
q

4: Input from Bob: x1i ∈ N
q for i = 1, . . . , s

5: Output to Alice: p-values: pi for i = 1, . . . , s
6: Alice:

7: for i = 0, . . . , q − 1 do
8: y[i]← E(y[i]) � Individually encrypt all

elements of y
9: end for

10: for i = 1, . . . , S do
11: y(i) ← πx2(y), where πx2 is the random permu-

tation outlined in II.

12: for j = 0, . . . , q − 1 do
13: y[j]← REENCRYPT(y[j]) � see IV-A1

14: end for
15: end for
16: Alice sends (y,y(1), . . . ,y(S)) to Bob
17: Bob:

18: for i = 1, . . . , s do
19: t̂1 ← PRIVATESCALARPRODUCT(x1i,y)

20: for j = σ(1), . . . , σ(S) do � σ is a random

permutation in [1, S]

21: t
(j)
1 ← PRIVATESCALARPRODUCT(x1i,y

(j))

22: dj ← t
(j)
1 · t̂−1

1 � homomorphic subtraction

23: GREATERTHANZERO(dj) � sub-routine

returns αij to Alice
24: end for
25: end for
26: Alice:

27: for i = 1, . . . , s do
28: pi ← 1

SΣjαij � each p-value is the sum of

{αij}j divided by the total number of samples S
29: end for
30: end procedure

The main steps of the protocol are:

• Lines 7 to 16: Alice prepares S sampled vectors (using

the values of x2 to shuffle y, in the way described

in section II) and sends them to Bob, along with the

original y vector. Each vector element of y is encrypted

and the calls to REENCRYPT at line 13 guarantee that

shuffled values are also encrypted and not identifiable

across samples.

• Lines 18 to 21: For each possible explanatory variable

x1i, Bob obliviously computes the inner product of x1i

with y: t̂1i, and with each of the samples y(j): t
(j)
1i ,

using the procedure described in algorithm 3. Samples

are treated in random order, so as not to allow Alice to

tie the result of the next step to a specific sample.

• Lines 22 to 23: For each explanatory variable and each

sample, Bob uses the GREATERTHANZERO protocol

described in algorithm 4 to replace the value of the

encrypted difference t
(j)
1i − t̂1i by a boolean indicator,

αij (returned to Alice and deciphered by her), that only

discloses whether the difference is greater than (or equal

to) zero.

• Lines 27 to 29: Alice computes the p-values for each

explanatory variable i, by counting the proportion of

samples for which the sign indicator αij is 1.

A. Sub-Protocols

1) Re-Encryption: Given a plaintext p, one of the primi-

tives most frequently used by our protocol is the generation

of multiple encryptions of p in such a way that they are

statistically indistinguishable in the IND-CPA model: that is,

from a ciphertext x = E(p), generate a new, indistinguishable,

ciphertext y that decrypts to the same plaintext p. In a se-

mantically secure cryptosystem such as Paillier, this is readily

achieved by homomorphically adding a fresh encryption of

zero, mathematically equivalent in Paillier to multiplying by

an exponentiated random value, as shown in algorithm 2.

Algorithm 2 Re-Encryption Function

procedure REENCRYPT(x)

input: Encrypted value x = E(p)
output: Encrypted value y = E(p) such that x and y are

indistinguishable in the IND-CPA model

Choose a random r ∈ ZN

Return x · rN mod N
end procedure

Proofs of correctness and security of this commonly used

method can be found in e.g. [20].

2) Private Scalar Product: Algorithm 3 is a straightforward

use of homomorphic addition to produce the Private Scalar

Product [21] of two vectors (one of plain booleans and one

of encrypted integers). Its correctness and security proofs are

immediate consequences of Paillier’s homomorphic properties

and semantic security.

3) Oblivious Comparison to Zero: A central piece of our

protocol relies on the ability to compare Ss pairs of encrypted

values (equivalent to comparing each difference against zero).

9



Algorithm 3 Computing Private Scalar Product

procedure PRIVATESCALARPRODUCT(x, y)

Input: x ∈ B
q

Input: y = [E(p[i]), . . . , E(p[q])]
Output: Ciphertext of the inner product: t = E(Σix[i]p[i])

t← 0
for i = 0, . . . , n− 1 do

if x[i] = 1 then
t← t · y[j] � homomorphically add y[j]

end if
end for
return t

end procedure

This should be done obliviously: without revealing the initial

values or their difference to either party. By default, we

also assume that only Alice should learn the result of the

comparison test, so that no details about the resulting p-value

are leaked (see section V-C for a relaxation of the protocol

without this requirement).

Although many existing algorithms for oblivious compar-

ison already exist in literature [22], [23], we introduced our

own variant in algorithm 4, which takes advantage of two

particular conditions of this protocol:

1) The values to be tested (pc) are bound by a value known

to both parties (2q) and many orders of magnitude

smaller than the plaintext domain size (q � n).

2) Because the output of GREATERTHANZERO is used

in a statistical context, to evaluate p-values through

sampling, it is perfectly acceptable for the algorithm to

be non-deterministic and output its result with a (small)

error rate.

Algorithm 4 offers an efficient method that takes advantage

of these two points to provide a sign test in a single round

and a number of operations proportional to the bit-size of the

input, with a bounded, arbitrarily small, chance of error (see

theorem 1 and its proof).

The algorithm can be broken up into three parts:

Lines 5 to 7 reduce the original problem (oblivious com-

parison of two encrypted values) to an instance of Yao’s

“millionaires problem” [24], which has many known efficient

solutions [25], [26]. The last part of our algorithm imple-

ments one such solution, based on the GT-SCOT protocol

proposed in [22]. However, because current algorithms for

Yao’s millionaires problem tend to have a complexity in the

domain of the values to compare, we can greatly reduce the

computational cost by noting that the two numbers only differ

in their last d′ bits (where d′ ∈ O(log pc)). Lines 9 to 15

therefore compute d′ before initiating the GT-SCOT protocol

on the d′ least significant bits from each value.

To prove the overall correctness of algorithm 4, we first

prove the correctness of our reduction and restriction to d′

bits:

Theorem 1. Using the same notations and conditions as

Algorithm 4 Obliviously revealing whether a value is greater

than zero
1: procedure GREATERTHANZERO(c)

2: Input from Bob: c = E(pc)
3: Output to Alice: α ∈ B, such that α = 1 ⇐⇒ pc ≥ 0

with arbitrarily low error rate.

4: Bob:

5: c← c · c · E(1) � pc ← E(2pc + 1)
6: x← c · E(r) with r ∈ Zn random.

7: Bob sends x to Alice.

8: Alice:

9: px ← D(x)
10: d← �(log2 q)�+1 � upper bound on bit-length of pc
11: d′ ← d+ 1
12: while px mod 2d

′
= 0 do

13: d′ ← d′ + 1
14: end while
15: d′ ← d′ + 1
16: Alice sends [b0, . . . , bd′−1] = [E(px mod 2d

′
), E(px

mod 2d
′−1), . . . , E(p mod 2)] to Bob

17: Bob:

18: [a0, . . . , ad′−1] = [r mod 2d
′
, r mod 2d

′−1, . . . , r
mod 2]

19: for i = 0, . . . , d′ − 1 do
20: if ai = 0 then
21: di ← bi � di ← E(D(bi)− ai)
22: fi ← bi � fi ← E(ai ⊕D(bi))
23: else
24: di ← bi · E(−1) � di ← E(D(bi)− ai)
25: fi ← E(1) · d−1

i � fi ← E(ai ⊕D(bi))
26: end if
27: if i = 0 then
28: gi ← 0
29: else
30: gi ← gi−1 · gi−1 · fi �

gi ← E(D(2D(gi−1) +D(fi)))
31: end if
32: ti ← di · (gi · E(−1))ri , with a randomly chosen

ri ∈ Zn. � ti ← E(D(di) +D(ri)(D(gi)− 1))
33: end for
34: Bob randomly shuffles all ti and sends

{tσ(0), . . . , tσ(d′−1)} to Alice.

35: Alice:

36: α← 0
37: for i = 0, . . . , d′ − 1 do
38: if D(ti) = 1 then
39: α← 1 � α = 1 ⇐⇒ ∃i,D(ti) = 1
40: end if
41: end for
42: end procedure
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algorithm 4: �pc ≥ 0� = �r ≥ px�, with probability at least
(1− ε).

Proof. First we note that line 5 does not affect �pc ≥ 0� (pc
becomes strictly positive if pc = 0 and remains of the same

sign otherwise).

We consider the relation between pc, r and px = pc + r at

line 6:

• If pc ≤ n−1
2 (≡ pc ≥ 0), then px ≥ pc, except if r ∈ [n−

pc, n] (causing a modulo wrap-around) which happens

with probability: ε = pc

n .

• Conversely, if pc >
n−1
2 (≡ pc < 0), then px < pc (due to

the modulo wrap-around), also with error probability: ε.

Furthermore, because ε < 1
2 (in practice ε � 1

2 ), we can

easily see that a trivial modification of algorithm 4 using k
pairs (ri, pci) would allow arbitrarily small overall error rate.

For practically any applications of our protocol, however, we

have pc � n (e.g. log2(n) ≥ 1024 and log2(pc) ≤ 10) and

the error rate becomes negligible compared to the sampling

error of our exact logistic regression test.

Lemma 1. Using the same notations and conditions as
algorithm 4: �r ≥ px� = �LSBd′(r) ≥ LSBd′(px)�, where
LSBi(x) represents the i least significant bits of x.

Proof. This lemma is a direct application of bitwise arith-

metic: we know that the difference between r and px is of

length at most (log2(pc) + 1) ≤ d bits. In order to account

for the possibility of carry-on (ones in r resulting in zeros in

px, after the d+1 least significant bits), we increment d′ until

we pass at least one non-zero bit. Every bit after that will be

guaranteed to be identical between the two values and would

not affect the comparison.

Detailed proofs of correctness and security of algorithm 4’s

resolution of Yao’s millionaires problem in lines 16 to 41 can

be found in the original publication [24], so we will only

briefly outline the method here:

For each bit at the same position, i, in the two values to

compare: di ∈{− 1, 0, 1} will contain the difference between

the two bits and fi ∈ B: the result of a bitwise exclusive or
operation between the two bits. Since the bits are ordered from

most to least significant, the sign of their difference will be

decided by the first position k where the bits differ (fk = 1)

and will be the same as dk. We can observe that the sequence

of gi will contain a number of zeros, followed by a single 1
at position k, followed by values > 1 afterward. Therefore,

ti will contain a randomly obfuscated value for all i except

i = k, where gi − 1 = 0.

Using the above theorems and lemma, we can directly

deduce theorem 2.

Theorem 2. Using the notations and input outlined in algo-
rithm 4, we have output: α = �pc ≥ 0� and algorithm 4 is
correct.

Additionally, we can prove theorem 3:

Theorem 3. Assuming semantic security of Paillier’s cryp-
tosystem, in the semi-honest adversary model, algorithm 4
does not reveal any new information to either party, except
for Alice’s output of α ≡ �pc ≥ 0�.

Proof (sketch). We can easily see that none of the ciphertexts

sent by Bob to Alice reveal any information about the input

data (obfuscation by random values on lines 7 and 32), except

for one single value α = tk ∈{− 1, 0, 1}. Additionally, the

case tk = 0, which would reveal to Alice that pc is equal to 0,

is removed by line 5. Hence the only information revealed to

Alice by Bob’s encrypted communications is α ≡ �tk = 1�.
All elements in the bit-decomposition sent by Alice to Bob

on line 16 are encrypted with Alice’s key and do not leak any

information, except for the length of the array: d′. However,

d′ depends on the value of bits d + 1 to d′ of x (where d ≡
�(log2 q)� + 1 is a parameter of the input, known to both

parties), which can be deduced by Bob from looking at the

same positions in r (and therefore d′ is already known to Bob).

Therefore, Bob learns no new information from the protocol.

Although this is not mandated by the particular needs of

our statistical test, we note that it would be possible to modify

algorithm 4 to make it entirely deterministic, using Nishide et
al.’s suggested ‘LSB Protocol for Special Case of Interval Test

Protocol’ [23]. However, the resulting protocol would require

a much larger (constant) number of communication rounds and

homomorphic operations than at present.

B. Proof of Correctness
Theorem 4. Values {αi}i returned by algorithm 1 are p-
values for the exact logistic regression test outlined in sec-
tion II, using input y, x1i and x2.

Proof. Given the homomorphic properties of the Paillier cryp-

tosystem (and the correctness of the REENCRYPT procedure in

section IV-A1), it immediately follows that the vectors sent on

line 16 correctly encrypt each element of the plaintext vectors

y and y(i) described in section II.
Similarly, the correctness of PRIVATESCALARPRODUCT

guarantees that t̂1 and t
(j)
1 on lines 19 and 21 are correct

encryptions of the same-named variables in section II.
Based on theorem 2, we show that the returned values αi

match the values �t
(i)
1 ≥ t̂1� that appear in formula 1 and it

immediately follows that line 39 produces the p-value, such

as computed in formula 1.

C. Proof of Security
Theorem 5. Assuming semantic security of Paillier’s cryp-
tosystem, in the semi-honest adversary model, through running
algorithm 1, Bob does not learn anything about Alice’s data
(y and x2) and Alice learns nothing on x1 other than the total
number of samples for which the difference of inner-products
(x1

�y(i) ≥ x1
�y) is positive.

Proof (sketch). Proof of security for algorithm 1 is a direct

consequence of the proven security of the different sub-

protocols used (see sections IV-A1 to IV-A3):
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Outside of protocol GREATERTHANZERO, the only data

exchanged between the two parties is the list of sampled

vectors sent by Alice on line 16. Because all elements are

individually encrypted/re-encrypted, they do not leak any

information about the input data.
Based on theorem 3, we know that the αi returned to Bob at

the end of the protocol do not leak any information beside the

sign of the inner product difference. The random permutation

on line 20 ensures that individual αi cannot be tied to a specific

sample and therefore Alice only learns the total number of

samples for which the difference is positive.

D. Complexity Analysis
1) Communication Rounds: Although we adopted a more

granular notation for clarity, all calls to GREATERTHANZERO

at line 23 and nested exchange inside the procedure, are

independent of one another and can be merged into a sin-

gle parallel call totalling one communication round (inside

GREATERTHANZERO), keeping the total number of commu-

nication rounds for the entire protocol constant and equal to

2.
2) Communication Complexity: The total numbers of ci-

phertexts (of length log2(N) bits) exchanged during these two

rounds are:

• (S + 1)q on line 16 from Alice to Bob.

• Ss on line 7 of GREATERTHANZERO from Bob to Alice.

• Ssd′ on line 16 of GREATERTHANZERO from Alice to

Bob. Because d′ depends on the occurrence of a 1 bit

(after the dth bit) in a random sequence, we can easily

see that (on average) d′ = log2 q + 5: we have at most

Ss(log2 q + 5) ciphertexts in total.

• Finally, Bob sends back: Ss(log2 q + 5) ciphertexts to

Alice.

The total size of the messages exchanged is therefore:

(13Ss + (S + 1)q + 2Ss log2 q) log2 N ∈ O((s + q +
s log q) logN).

3) Computational Complexity: To estimate the computa-

tional cost of the protocol, we enumerate the number of

exponentiations, E , and multiplications, M, in ZN (the few

operations on plaintext integers have comparatively negligible

cost):

• q invocations of Paillier’s encryption procedure for the

initial set-up on Alice’s side: q(2M+ E).
• Sq calls to REENCRYPT to hide the values of the shuffled

vectors: Sq(M+ E).
• For each of x11, . . . ,x1s, we have:

– S + 1 calls to PRIVATESCALARPRODUCT(x,y)

(|x| = |y| = q): (S + 1)qM.

– S multiplications: SM.

– S executions of GREATERTHANZERO (with d′ =
q + 5): S log2 q(10M+ 4E) + 55M+ 21E

fast-reencrypt: - (log q + 5) (M+E) - Sq E
The total number of operations in ZN is therefore:

T = [(S + 1) · sq + 10S · (s log2 q) + 56S · s]M
+[4S · s log2 q + (1 + S) · q + 21S · s]E (3)

and T ∈ O(sqM+ (s log q + q)E).
However, with the use of our fast re-encryption method

described in section V-B, the total number of exponentiations,

E can be greatly reduced, down to 3S · s log2 q+ q+ 16S · s.

Given the cost of modular exponentiation (many orders of

magnitude higher than modular multiplication), this reduction

of the constant factor in q directly translates to a much smaller

running time, in particular for cases where the number of

explanatory variables is low (s� q).

V. IMPLEMENTATION OPTIMISATIONS

A. Parallelisation

The protocol can easily be run in a number of parallel

processes: each sample is treatable independently of the others,

meaning that the total computation time can theoretically be

divided by up to S, given enough CPUs. In practice, we would

want to avoid revealing the particular sign of the inner product

from a single sample, but practical limitations (the large value

of S and limited availability of CPUs) would always guarantee

that each process would still handle a sufficiently large number

of samples at a time to prevent such tying.

B. Fast Re-Encryption

Because modular exponentiation is costly and our protocol

uses a large number of re-encryptions (which require one

modular exponentiation each time), we designed a method

that uses a finite set of pre-generated exponentiated random

values to perform fast re-encryption (FRE) in the Paillier

cryptosystem.

For judiciously chosen values of k and z (see security

proof below), we can replace all calls to algorithm 2 in

the main protocol by calls to algorithm 5 and save a large

amount of computation without loss of security. Although

this optimisation does not affect the asymptotic computational

complexity of our protocol, it offers much better amortised

cost, as can be seen from the computational cost analysis

in section IV-D3 and the implementation test in section VII,

in particular when the number of explanatory variables to be

tested, s, is small compared to the number of samples used,

S (typically S = 103 or S = 104, while s is in the order of

102).

As can be easily seen, after the z modular exponentiation

in the set-up (executed once for the entire life of the cryp-

tosystem’s keys), the protocol only requires k multiplications

to re-encrypt each value.

Proof of correctness is trivial if we note that this algorithm

is equivalent to k executions of algorithm 2.

For security, we first remark that, aside from the general

proof outline below, an adversary who could hypothetically tie

re-encrypted values across all samples in our protocol would

only be able to infer statistical information on the distribution

of x2 across y (values q1, . . . , qm in section II), but no

information about the actual individual values of elements of

y or y(i), as the semantic security of their initial encryption is

guaranteed and their values are not used at any point during

shuffling.
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Algorithm 5 Fast Re-Encryption Method in Paillier Cryp-

tosystem

parameters: Choose k and z such that they satisfy the

security requirements (e.g. k = 20, z = 1024).

one-time setup: Generate z random values r′i ∈ ZN and

store the modular exponentiated values: [r1, . . . , rz] where

ri = r′Ni mod N .

procedure FASTREENCRYPT(x)

input: Encrypted value x = E(p)
output: Encrypted value y = E(p) such that x and y are

statistically unrelated

Pick k random elements of Z with replacement:

z1, ..., zk
y ← x
for all zi do

y ← y · zi mod N
end for
Return y

end procedure

For the sake of brevity, we only give the outline for an

informal proof of security of this protocol, based on the

security of algorithm 2:

Considering the scenario of an IND-CPA game where the

adversary has so far received n ciphertexts of the same

plaintext, generated by re-encryption using algorithm 5, we

study the difficulty of telling an (n+1)th encryption apart from

an unrelated ciphertext with probability significantly higher

than chance.

With the same notations as algorithm 5, we note Ri =
ri1ri2 . . . rik the blinding factor used during the ith FRE

and assume a worst-case scenario where the adversary learns

each Ri values separately. Because of the negligibly small

chance for accidental collision and the construction rules for

Ri, distinguishing the (n + 1)th re-encryption from another

encryption with better probability than chance would require

finding a combination of, possibly non-unique, Ri (i ≤ n), in

which Rn+1 can be expressed. That is, finding two unordered

collections S1 and S2 of (possibly non-unique) values between

1 and n, such that:

Rn+1 =

∏
i∈S1

Ri∏
i∈S2

Ri
(4)

The security of the protocol therefore relies on the difficulty

of finding the solution to problem 4, when it exists, which

cannot be done by the adversary in polynomial time.

C. Early-Stopping

In the particular case where Bob can (or must) learn

information on the final p-value attached to each covariate

x1i, we can send samples in small increments (large enough

to provide enough uncertainty about the value of t
(i)
1 − t̂1

for a specific sample i) and remove an explanatory variable

x1k from the protocol as soon as the p-value is guaranteed

to exceed the chosen significance threshold (this reveals how

many samples were needed to establish significance, which in

turns leaks critical information on the significance of the p-

value). Because in practice, we expect far more non-significant

than significant p-values, this quickly reduces the portion of

the s explanatory variables that must be treated with each batch

of samples.

VI. COMPARISON TO OTHER METHODS

To the best of the authors’ knowledge, the present work is

the first proof and implementation of a secure protocol to di-

rectly perform statistical testing on a logistic regression model

(with data shared vertically between parties). Although many

protocols for privacy-preserving GWAS already exist (such

as secure computation of χ2-statistics based on contingency

tables [27]), they do not account for covariates that might

be possible confounding factor in the model (e.g. important

clinical data, such as smoking status) and affect the patient’s

outcome.

Fienberg et al. proposed a secure protocol to learn the

parameters of a logistic regression model [28], [29], [2].

Once obtained, these parameters could be used at a relatively

small cost to securely compute a p-value. As such, Fienberg’s

protocol for secure logistic regression (hereafter referred to as

FSLR) is the closest alternative we know of that can perform

such a test. We therefore used it as a baseline for comparison

with our method.

Fienberg et al. do not provide a direct analysis of the com-

plexity in homomorphic operations, but estimate the number

of homomorphic operations needed by their protocol which

lets us estimate a lower bound for the complexity in modular

exponentiations in ZN (we ignore the comparatively much

cheaper multiplications in ZN ):

Using the same notations as this paper, FSLR requires

O(qd2 + d3 log d) execution of their oblivious multiplication

protocol and O(qL′) executions of the GT comparison proto-

col described in [22], where d is the number of features used

for the logistic regression and L′ is the sampling size for their

approximation of the sigmoid function. For our use, both d and

L′ can be seen as constants. Furthermore, we know that the GT

comparison protocol they use requires O(logN) encryptions

and homomorphic operations. A very loose lower bound on

the computational complexity of their protocol (in numbers of

exponentiations in ZN ) would therefore be: O(q + q logN).
Additionally, each iteration of their algorithm has a commu-

nication round complexity in: O(L′P 2(qd2+d3 log d)+L′q) ∈
O(q) (P being the total number of parties, here constant and

equal to 2).

TABLE I
ASYMPTOTIC COMPLEXITIES OF PPELR COMPARED TO FSLR

FSLR PPELR
Round Complexity O(sq) O(1)
Computational Complexity in E O(sq + sq logN) O(s log q + q)

From the summary in table I, we can see that while the

asymptotic computational complexities of the two algorithms
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are comparable, our approach requires a great deal less

communication rounds between the two parties, which would

give it a significant advantage in real-life applications where

network latency might be an issue (the product of s and q
would easily be in the order of 106).

Furthermore, we can note that, while it is difficult to

evaluate the exact number of operations needed by FSLR, the

constant terms are extremely high (L′ needs to be at least

500 or 1000 to get stable results), whereas ours are fairly

small, in particular when using the FASTREENCRYPT method

described in subsection V-B. This is clearly illustrated by the

difference in execution time between implementations of the

two protocols (see section VII).

VII. IMPLEMENTATION AND TESTING

We implemented our protocol in C++ using the publicly-

available Privacy-Preserving Protocol Framework1 with 1024-

bit encryption in the Paillier cryptosystem. We made and

tested two versions of the algorithm: PPELR uses the reg-

ular REENCRYPT procedure described in subsection IV-A1,

while PPELR+ implements the optimised FASTREENCRYPT

procedure from section V-B instead.

For comparison, we used a Java implementation of the

FSLR protocol (slightly modified to use a polynomial approxi-

mation instead of the histogram approximation originally sug-

gested by Fienberg et al.), also relying on Paillier encryption

with 1024 bits.

We used experimental data collected from a cohort study

on genetic variants linked to chronic kidney disease [30].

The experiment gathered clinical and Single-Nucleotide Poly-

morphism (SNP) data for q = 4257 patients that were also

clinically assessed for high blood pressure (hypertension):

y ∈ B
s. In the clinical data, we selected smoking status, a

factor widely known to interfere with blood pressure [31], as

a confounding variable (x2). The experiment measured up to

345 SNPs, for a total of 690 boolean variables (x1i) accounting

for both full dominant and full recessive model of each SNP’s

minor allele.

Using high blood pressure and smoking status infor-

mation as Alice’s input, we computed p-values for s =
1, 3, 10, 50, 100 randomly chosen SNP variables (as Bob’s

input). For each value of s, we averaged the running times of

10 successive runs of the program. The sampling parameter

S, was set to 1000, a value that gives us enough precision to

safely rule out non-significant SNPs.

When using the FSLR protocol to compute p-values it is

necessary to train a separate model for each SNP, meaning that

the computing time for s SNP variables is very exactly s times

the computing time for a single variable. Additionally FSLR

requires choosing the maximum number of iterations over

which to refine the regression parameters. Our testing showed

that 5 iterations gave a somewhat satisfying convergence for

the log-likelihood of the estimated parameters (using a non-

oblivious solver to provide the optimal value).

1https://github.com/david-duverle/pppf

Of the 100 first SNP variables tested with our protocol, 6

were shown to be associated with the outcome at a significance

level of 5%, of which one was still significant (p = 0.0045)

after Bonferroni adjustment for multiple hypotheses testing

(k = 100).
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Fig. 2. Comparison of time performances for our protocol against FSLR:
the large difference in time complexity can be readily observed in the much
steeper growth (measured on a log-scale) for FSLR compared to our methods.

All computation times were measured on a single Intel

Core i7 2.7Ghz CPU. The average computation times of

each method for the different values of s are summarised

in figure VII. As we can observe, not only is PPELR’s

computational time growing much slower in the number of

SNPs handled, but the constant factor is many orders of

magnitude lower: obtaining p-values for 100 SNP variables

would take more than 27 days with FSLR, whereas our method

can give such a result in 3.23 hours (6.43, if not using FRE).

We can also see that our FRE technique practically erases

the constant computational cost (mainly caused by the initial

generation of re-encrypted randomised samples), leading to a

significant time gain, especially for smaller numbers of SNPs:

it takes PPELR+ 7 minutes (418s) to test a single SNP, versus

more than 2 hours (7,702s) for PPELR.

Additionally, we implemented and tested the ‘early-

stopping’ variant of our protocol described in section V-C

(noted Semi-PPELR), where both parties de facto learn the

p-values for each variable (but all input still remains private).

As an early-stop threshold, we used the (very conservative)

significance threshold of 0.01, without further accounting for

multiple hypotheses testing. Furthermore, we only eliminated

variables that had already exceeded the final p-value ratio,

rather than run a statistical estimate based on the ongoing
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Fig. 3. Reduction of the number of SNPs (s) still tested as more samples
are returned. From an initial number of 690 SNP variables, only 45 are still
considered potentially significant (at significance level 0.01) after 200 samples
have been run (13, after 700 samples).

number of samples tested (which would presumably prune an

even larger number of variables during the earlier steps).

As can be seen in figure VII, most of the SNP variables are

very quickly removed from consideration by the algorithm,

explaining the much lower computational times in figure VII.

Total running time on the full set of SNP variables (s = 790)

with Semi-PPELR was less than 2 hours and a half (8470s).

VIII. IMPROVEMENTS AND FUTURE DIRECTIONS

Among the more immediate improvements to our protocol,

we plan to test the use of more efficient additive cryptosys-

tems, such as Damgård-Jurik cryptosystem’s generalisation of

Paillier’s [32], which would be likely to decrease the constant

factor cost of the computations.

We are also considering the use of so-called “somewhat-

fully” homomorphic encryption, such as provided by Ring-

Learning With Error (RLWE) encryption [33], which could

help provide a more efficient way to run our comparisons. The

additional use of RLWE’s plaintext packing techniques [34]

could prove extremely beneficial to our problem setting, which

typically involves large arrays of binary values.

In terms of the algorithm itself, we are planning to extend

its capabilities, by formalising the use of multiple covariates,

using Markov chain Monte Carlo methods [17], as well as

studying variants of the oblivious set-up where the data might

be shared horizontally, rather than vertically (multiple institu-

tions sharing the same variables over different populations).

IX. CONCLUSION

In this work we have demonstrated the first use of a

sampling-based method to perform exact statistical testing on

logistic regression models in a privacy-preserving context. As

we have shown, our method is not only as secure and accurate

as existing methods, but provides a marked improvement in

both theoretical, and practical, performances over the closest

existing equivalent.

In its current implementation, our protocol can be used to

provide exhaustive statistical testing of large data sets (tested

on a data set of over 4200 instances with 690 explanatory vari-

ables) while accounting for confounding factors, and produce

results in a matter of minutes, with further room for improve-

ment through parallelisation. Such performances finally make

covariate-aware GWAS analysis in privacy-preserving context,

a practical possibility with real-life genomic data.

A fully functional and reusable implementation of our

protocol is available online2.
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