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Abstract—As genomic data becomes widely used, the problem
of genomic data privacy becomes a hot interdisciplinary research
topic among geneticists, bioinformaticians and security and pri-
vacy experts. Practical attacks have been identified on genomic
data, and thus break the privacy expectations of individuals who
contribute their genomic data to medical research, or simply
share their data online. Frustrating as it is, the problem could
become even worse. Existing genomic privacy breaches rely on
low-order SNV (Single Nucleotide Variant) correlations. Our
work shows that far more powerful attacks can be designed if
high-order correlations are utilized. We corroborate this concern
by making use of different SNV correlations based on various
genomic data models and applying them to an inference attack on
individuals’ genotype data with hidden SNVs. We also show that
low-order models behave very differently from real genomic data
and therefore should not be relied upon for privacy-preserving
solutions.

I. INTRODUCTION

The rapid progress in genomic research and application
raises serious privacy concerns. Various privacy problems
have been revealed, and various privacy-preserving solutions
have also been proposed. Many solutions focus on preventing
an adversary from accessing individuals’ sensitive genome
sequences [1], [2], [3]. However, as described by Wang et
al. [4], who show that an adversary can learn an individual’s
identity from published p-values (of statistics indicating the
relation between SNVs and a disease) and linkage disequilib-
rium (correlation among SNVs) data, the outcome of genomic
computation might leak sensitive genomic information. The
privacy loss due to the availability of LD is also studied by
some other work in genomic privacy [5], [6].

In genetic research, it is believed that higher-order correla-
tions produce better models of genome sequences [7], [8], [9].
This implies that the above work can lead to more privacy loss
if the higher-order correlations are integrated. Also, making
use of the higher-order correlations, researchers can upgrade
the existing privacy-preserving solutions that are originally
designed on low-order correlations, and protect genomic data
against stronger adversaries. For instance, Humbert et al. [10]
propose a method to optimize the research utility of an indi-
vidual’s shared SNPs while satisfying privacy constraints from
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both an individual and his family members, by incorporating
pairwise LD into part of their algorithm. So, by adapting
the privacy constraints, we can, in principle, enhance the
protection against a stronger adversary that uses high-order
correlations for inference attacks. In this paper, considering
different genomic data models, we demonstrate the privacy
implications of different SNV correlations empirically with
various inference results. Our work will help researchers to
further understand the genomic privacy problems and design
robust privacy-preserving solutions for genomic data even if
information about high-order genomic correlation is available
to an adversary.

The complex high-order correlation arises from the pattern
of genetic recombination on chromosomes. Researchers have
proposed and used methods to model genome sequences
directly based on genetic recombination [11], enabling them
to mimic the high-order correlations among SNVs. In this
paper, we perform inference attacks with different genomic
data models, including a first-order Markov model based on
pairwise LD, multiple high-order Markov models built on real
genomic datasets, and a genetic recombination model. The
results show that high-order correlation indeed provides more
information for inference attacks than low-order models.

The contribution of this paper can be summarized as
follows:

• Based on several different genomic data models, we
perform inference attacks to quantify individuals’ ge-
nomic privacy;

• To further understand the characteristics of genomic
data, we project the real genomic data and synthetic
data generated with different models to two dimen-
sions using principal component analysis, thereby
visualizing and quantifying high-order correlation ef-
fects.

II. TECHNICAL PRELIMINARIES

A. Genomic Background

In this section, we introduce the genomic background
necessary to understand our methodology. Figure 1 provides
an overview of the terminology.
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Fig. 1: Genomic background. Each of human’s 23 pairs of chromosomes contains a large amount of genetic information,
including millions of Single Nucleotide Variants (SNVs), the most common genetic variation. The alleles on one chromosome
are collectively referred to as the haploid genotype, and the pairs of alleles on a pair of chromosomes are called the diploid
genotype. When two SNVs located on the same chromosome are far from each other, they are likely to be separated by a
recombination event during the meiotic process, which leads to a weak Linkage Disequilibrium (LD) between them.

1) Single Nucleotide Variant: Even if most of the sequence
of any individual genome is identical to the reference hu-
man genome, each of us has about four millions differences,
called variants. The most common genetic variants are single
nucleotide variants (SNVs), where different alleles (A, T, C,
or G) are observed at the same chromosomal position. Most
SNVs are bi-allelic, i.e. there are only two possible alleles
at that position: a major allele observed at higher frequency
and a minor allele observed at lower frequency. For simplicity,
our work only considers autosomal chromosomes, which are
always inherited in pairs. As a consequence, there are three
possible states for each SNV, i.e., (0; 1; 2) , depending on the
number of minor alleles it carries.

2) Haploid and Diploid Genotypes: In this paper, we
consider an individual’s genomic data as a sequence of SNVs
— called the diploid genotype — each of which takes values
in {0, 1, 2}. As shown in Figure 1, an individual’s haploid
genotype is a sequence of alleles on one chromosome, in
contrast to the diploid genotype on a pair of chromosomes.

3) Linkage Disequilibrium: Due to the inheritance mecha-
nism, and in particular to the recombination process happening
during meiosis, there is a non-random correlation between
some alleles. Indeed, alleles that are close to each other on
the same chromosome are more likely to be inherited together

than would be expected by chance. This is known as linkage
disequilibrium (LD). The correlation between pairs of SNVs
has been well defined in several human populations, however
the high-order correlation we use in this paper has been less
explored.

4) Recombination: During meiosis, the pairs of parental
chromosomes exchange DNA segments, leading to a novel
combination of alleles that is passed on to progeny. The
process is called recombination. The strength of the LD in
a region depends on the recombination rate, which is variable
across the genome. Genetic variants mapping to regions with a
lower recombination rate are in stronger LD. Hence, genomic
researchers propose modeling LD based on the recombination
rates among SNVs, which we discuss in Section III-A3.

B. Adversary Model

In this paper, we consider a scenario where a victim
contributes his genotype for research, or uploads it for medical
test, or simply shares it for recreational purposes such as
ancestry finding. Due to privacy concerns, he might want to
hide some sensitive SNVs, such as those related to a genetic
disease. An adversary is assumed to observe the victim’s
genotype with hidden SNVs. His objective is to infer the
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missing SNVs. For such an inference attack, the adversary has
access to necessary resources in order to build various genomic
data models, such as allele frequencies, linkage disequilibrium,
genetic recombination rates and sampled diploid and haploid
genotypes in the same population as the victim. A well-
known example in such a scenario comes from James Watson’s
decision to share his personal genome by releasing it on a
publicly accessible scientific database except for his APOE
gene (a gene associated with late onset Alzheimer’s disease)1.
However, Nyholt et al. show that Dr. Watson’s APOE risk
status can be easily and accurately predicted using publicly
available data, such as HapMap data [12]. Another example
is genomic data sharing websites where users publish some of
their genetic variations online, such as OpenSNP [13]. Though
not considered here, it is worth noting that a stronger adversary
might also have access to pedigree and phenotypic information
about the target. We leave exploration of this inference attack
combining familial relationships, phenotypic data and high-
order SNV correlations for future work.

C. kth-Order Markov Chain

In a probabilistic model of genome sequences, each se-
quence can be represented as a sequence of genetic variants
(SNVs) SNV1, SNV2,· · · , which are ordered increasingly by
their physical genomic positions. Each SNVi takes a value
from the set {0, 1, 2} representing major homozygous, het-
erozygous, and minor homozygous diploid genotypes, respec-
tively.

A kth-order Markov chain is a sequence of random SNVs
where the probability of SNVi taking a particular value is only
dependent on the values of k preceding SNVs.

Pk(SNVi) = P (SNVi|SNVi−1, SNVi−2, · · · , SNVi−k) (1)

To use Markov chains to model genome sequences, we
need to build a model which estimates the probability of SNVi

being equal to 0,1 or 2. For instance, in a 1st-order model, the
probability of each value in position i depends on the value of
the previous position and therefore 9 probabilities need to be
computed for each position: P (0|0), P (0|1), · · · , P (2|2). Note
that in the genomics field, researchers are used to defining a
hidden Markov chain that is useful for genotype imputation,
and we will also introduce such a concrete model in Section
III-A3. But be aware that it represents a totally different
meaning from the Markov model we define above.

III. METHODOLOGY

In this section, we formalize our methodology by decom-
posing it into the several key components necessary for an
inference attack to take place.

A. SNV Correlation Modeling

In genomics, researchers have proposed various methods to
model the correlation across the genome sequence. Here we
describe some state-of-the-art options.

1James Watson is one of the co-discoverers of the double-helix structure of
DNA in 1953.

Fig. 2: An example (adapted from [11]) showing how the
haploid genotype h4 is interpreted as an imperfect mosaic
of a given set of haploid genotypes {h1, h2, h3}, based on
recombination and mutation. Each column of circles represents
a SNV locus on one chromosome, with colors black and
white denoting two different alleles. The imperfect nature
(mutation) of the copying process is exemplified at the third
locus, whereas all other parts are exact copies from the existing
haploid genotypes. Note that this shows just one possible
process to get h4 from {h1, h2, h3}, and since there are many
other possibilities, the purpose of this model is to compute
the probability of observing h4 by taking all the possible
underlying processes into account, which constitutes a hidden
Markov model.

1) Using Published Allele Frequencies and Linkage Dise-
quilibria: For each SNV at position i, we can compute the
probability of SNVi being equal to 0,1 or 2 using published
allele frequencies (AFs). Furthermore, LD relations are repre-
sented pairwise in literature and thus they can be used together
with allele frequencies to compute the joint probability of
SNVi and SNVj . Note that the joint probability of three SNVs
(or more) is not computable with only pairwise LD. For each
SNVi, there could exist more than one LD relation; however in
our method, to compute the probability of SNVi being equal
to 0,1 or 2, we consider only the previous adjacent SNV that
usually has the strongest LD with SNVi. In other words, in this
method we build a 1st-order Markov model using published
AF and LD data.

2) Using Genotype Datasets: In general, higher-order
Markov models should perform better than lower-order models
and we would like to use the highest possible order. As LD
relations are only provided pairwise, public AF and LD data
do not capture higher-order correlations (if they exist) and it
is not sufficient to model genome sequences using kth-order
Markov chain where k > 1. To build a higher-order Markov
model, publicly available sequences can be used as training
data in order to build kth-order models for different values of
k. Assume that we have N genome sequences as our training
data. Let F (SNVi,j) represent the frequency of subsequence
SNVi,j that contains SNVs between SNVi and SNVj . The
kth-order model is then built by computing:

Pk(SNVi) =

{
0 if F (SNVi−k,i−1) = 0
F (SNVi−k,i)

F (SNVi−k,i−1)
if F (SNVi−k,i−1) > 0

(2)
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3) Using Genetic Recombination Rates: High-order SNV
correlation is a result of different genetic recombination rates
on different positions across the genome sequence. This pro-
vides a different method to model the high-order correlation,
where researchers relate LD patterns to the underlying re-
combination rate [11]. Assume we have a set of t haploid
genotypes {h1, h2, · · · , ht}. The model is developed to find the
conditional distribution of the next observed haploid genotype,
Pr(ht+1|h1, · · · , ht). An example is shown in Figure 2. Each
allele of ht+1 can be thought of as having been created
by “copying” (an exact copy, or an imperfect one, leading
to a mutation) the corresponding part of h1, h2, · · · , or
ht. Intuitively, we think of ht+1 as having recent shared
ancestry with the haploid genotype that it copied in each
segment. The copying process is further assumed to be Markov
along the chromosome. In other words, assuming one part
of ht+1 comes from hi, the next adjacent part could be
copied from any of the t haploid genotypes and the jumping
probability depends on the recombination rate between these
two parts. Note that an extremely large recombination rate
makes the two parts become independent, equivalent to a low
LD value. To compute the probability of observing a particular
haploid genotype ht+1, we must sum over all possible event
sequences of recombination and mutation that could lead to
ht+1. The Markov assumption allows us to do this efficiently,
using standard forward-backward algorithm for hidden Markov
models [14]. Note that in the forward algorithm, we could
compute the probability of observing a prefix sequence of
ht+1, from the first position to the ith position, denoted by
h1,i
t+1. Hence the conditional probability of observing the ith

allele, Allelei, given all preceding alleles is computed as:

P (Allelei|Allelei−1, · · · ,Allele1) =
P (h1,i

t+1)

P (h1,i−1
t+1 )

(3)

More details can be found in [11]. The model extension
from haploid genotype to diploid genotype is available in [15]
whose algorithm was implemented in a genotype imputation
software called IMPUTE. In our work, we adapted the algo-
rithm to our framework and implemented it in Python.

B. Inference Attack

We define the inference attack as finding the value of
unknown SNVi given the probabilistic modelling of genome
sequences which represents the probability of SNVi taking
each value of the set {0, 1, 2}. In other words, we assume that
the attacker has a genome sequence with some unknown SNVs
and a probabilistic model of genome sequences. Then given
the genome sequence and the model, the attacker estimates
the value of unknown SNVi. The overall framework is shown
in Figure 3.

To model this attack, we first split the given dataset
of genome sequences into the training and test dataset. We
then use the training dataset to build different models using
different methods. Next, in each sequence in the test dataset,
we hide a specified number (denoted by s) of SNVs selected
randomly and use each model to predict the hidden SNVs.
The indices of the hidden SNVs are x1, x2, · · · , xs. For each
hidden SNV, the predicted value is the one with the highest

conditional probability in the corresponding model. In the end,
we estimate the error in inferring the value of the hidden SNVs
using different models. To this end, we quantify the average
estimation error as follows:

E =

∑s
i=0 |SNVp

xi
− SNVr

xi
|

s
, (4)

where SNVp
xi

represents the predicted value of SNVxi and
SNVr

xi
refers to the value of SNVxi in the real dataset.

IV. EVALUATION

In this section, we first evaluate the performance of in-
ference attack by considering the different methods to model
genome sequences and then compare the average estimated
errors. Then to better compare the characteristics of the differ-
ent genomic data models, we randomly generate samples with
each of the models and observe the resultant distributions. We
reduce the dimensionality of the samples and project the real
and the generated ones into a two-dimensional space for the
purposes of visualization.

A. Dataset

The dataset used in these experiments is a publicly avail-
able one from the HapMap project [16]. It comprises the
diploid genotypes for non-redundant SNP2 assays of the chro-
mosome 22 of 165 HapMap subjects, who are all Utah Resi-
dents with Northern and Western European Ancestry (CEU).
We used the genotypes from phase III released in May 2010,
including 17715 diploid genotypes in each sequence. A haploid
genotype dataset, including 200 haploid genotypes that comes
from the same population, was used to build the recombination
model. Allele frequencies, pairwise linkage disequilibria, and
recombination rates were also used to build the corresponding
models.

B. Inference Attack Results

In this experiment, we first split the whole dataset, includ-
ing 165 sequences, into the training and the test dataset. We
randomly selected 100 sequences as the training data and used
the other 65 sequences as the test data. To build our models,
we used the training dataset and six methods, the 0th through
4th-order Markov chain models (M0, M1, M2, M3 and M4
respectively) and the recombination model (RM). In addition,
we used allele frequencies and linkage disequilibrium data to
model genome sequences of CEU population (M1-LD). Next,
to perform the inference attack and estimate the inference error,
we followed the following steps:

(i) hid 1771 randomly selected SNVs, which is about
10% of the total number of the SNVs, in each genome
sequence in the test dataset.

(ii) used each model to predict the hidden SNVs.
(iii) measured the estimated error as described in Section

III-B.
(iv) repeated steps 1 to 3 ten times.

2Single Nucleotide Polymorphism. It is a similar term as SNV, except that
SNP usually refers to SNV with minor allele frequency larger than 0.01.
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Fig. 3: Framework to quantify genomic privacy via inference attack with SNV correlation. To model the correlation, adversaries
build the kth-order Markov model based on various types of knowledge, such as allele frequencies, pairwise linkage
disequilibrium, recombination rates, diploid genotype and haploid genotype datasets (e.g. the HapMap Project [16]). The average
estimation error is used to evaluate the performance of different models.

(v) averaged the estimated errors for each genome se-
quence.

Figure 4a illustrates the average estimation error of inferring
hidden SNVs based on different models on the test data.

As Figure 4a indicates, by increasing k, the average esti-
mation error decreases, which illustrates that the higher-order
Markov chain could increase the accuracy of the attack. How-
ever, for k > 3, not much improvement can be observed, which
shows the limitation of building kth-order Markov model on
diploid genotype datasets. Indeed, the plots for k = 5, 6 and 7
were heavily overlapping with that for k = 4 and they were not
included in the figure to improve the visibility of the existing
curves. Furthermore, it can be seen that the recombination
model performs much better in predicting hidden SNVs as
it considers all the correlations between SNVs to generate
the model. Moreover, Figure 4a illustrates that the Markov
models with k > 1 built using the training dataset and the
recombination model perform much better than the model built
using AF and LD data and they can predict hidden SNVs more
accurately.

We also performed the same experiments but hid a larger
number of SNVs (7086, nearly 40% of the total number) and
the result can be seen in Figure 4b. As expected, the overall
performance of different models are slightly worse when a
larger number of SNVs is required to be inferred. Yet, the av-
erage estimation errors are mostly below 0.1 with the recombi-
nation model. The inference results with recombination model

convey an important message: individuals’ genomic data can
be accurately inferred even when a large part of data is hidden.
It also indicates a promising improvement over state-of-the-
art genomic data inference attacks that only consider pairwise
SNV correlations, such as the attack proposed by Humbert et
al. in kin genomic privacy, taking familial relationships into
account [6]. We leave this to future work.

As seen in the above results, the recombination model
provides a relatively more accurate estimation of the hidden
SNVs. Figure 5 shows the overall performance of this model
in a comprehensive way. We hid different percentages of SNVs
and computed the corresponding estimation errors after using
the recombination model. With only SNV correlations, the
result indicates the power of an adversary by making use of a
good genomic data model.

C. Visualizing and Quantifying High-Order Correlation Ef-
fects

To further understand the characteristics of genome se-
quences and the effects of high-order correlations between
SNVs, we conducted experiments to observe the distribution
of sample data generated with different models. In the first
experiment, we generated 100 random samples using 1st-
order Markov model, the model based on public AFs and
LDs, and the genetic recombination model. We then applied
principle component analysis (PCA) to the real data (165
samples) in order to reduce the dimensionality of the data
for better visualization. We extracted the first two principal

36



(a) Average estimation error on 10% hidden SNVs

(b) Average estimation error on 40% hidden SNVs

Fig. 4: Average estimation error using different models to infer
(a) 10% unknown SNVs, and (b) 40% unknown SNVs. M0,
M1, M2, M3 and M4 represents 0th, 1st, 2nd, 3rd, and 4th-
order Markov chain built on the diploid genotype dataset;
M1-LD represents 1st-order Markov chain built with public
pairwise LD; RM represents recombination model.

Fig. 5: Average estimation errors for the recombination model.
x-axis is the percentage of hidden SNVs, and y-axis is the
average estimation error in the test dataset.

Variance
Component 1 Component 2

SyntheticData (M0) 0.923 0.837
SyntheticData (M1) 1.415 1.245

SyntheticData (M1-LD) 1.402 1.315
SyntheticData (M2) 1.841 1.551
SyntheticData (M3) 2.042 1.863
SyntheticData (M4) 2.171 2.113
SyntheticData (M5) 2.362 2.158
SyntheticData (M6) 2.402 2.351
SyntheticData (M7) 2.450 2.490

SyntheticData (RecombModel) 2.743 2.682
RealData (Training) 2.675 2.753

RealData (Test) 2.885 2.656

TABLE I: Variances of different models on the two principal
components. The recombination model produces synthetic data
that has a highly similar variance to that in real data, whereas
other Markov models’ performance improves as the order
increases. Though not the best, the 6th-order or 7th-order
models provide a reasonable simulation of real data.

components and projected different datasets on these two
components to show how different models comply with the real
data. Figure 6 provides the 2D visualisation of the synthetic
sequences generated using the 1st-order Markov model, the
recombination model, and the 1st-order Markov LD model as
well as the training and the test data.

As Figure 6 shows, the synthetic genome sequences gen-
erated by the 1st-order model built on the training dataset
and the LD model built on the public AF and LD data have
quite similar distributions as they are both based on 1st-
order Markov chain method. This demonstrates that publicly
available genome sequences can be used as training data to
model genome sequences, even though the number of the
publicly available genome sequences is quite small. Further-
more, Figure 6 demonstrates that the synthetic data being
generated by the recombination model has closer distribution
to the training and test data, compared to the distribution
of the synthetic data generated by 1st-order model built on
the training dataset and the LD model. This illustrates the
effect of higher-order modelling as the genetic recombination
model considers all the correlations between SNVs and builds
a higher-order model.

For better understanding of the effects of higher-order
modelling, we further used our training dataset to build the
kth-order Markov models for k = 2, 3, 4, 5, 6, 7 and generated
100 synthetic sequences using each model. Using PCA, we
then mapped the synthetic sequences generated using the 6th-
order Markov model, the 7th-order Markov model, and the
recombination model, as well as the training and the test data
which can be seen in Figure 7. As it shows, synthetic data
generated by using higher-order Markov models have closer
distribution to the distribution of the training and test data and
hence with higher-order Markov models, the characteristics of
the genome sequences can be better represented. But still, even
the 7th-order Markov model is far not enough to represent
a real genomic data model, compared to the performance
of a recombination model. A numerical comparison of the
variances of different models on the two principal components
are shown in Table I.
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Fig. 6: 2D visualisation of the synthetic sequences generated using the 1st-order Markov model (M1), the recombination model
(RM), and the 1st-order Markov LD model (M1-LD) as well as the training and the test data.

Fig. 7: 2D visualisation of the synthetic sequences generated using the 6th-order Markov model (M6), 7th-order Markov model
(M7), and the recombination model (RM), as well as the training and the test data.
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V. DISCUSSION

Although higher-order models are preferred for the in-
ference attack, directly building the models on a genotype
dataset (Section III-A2) is not a scalable solution. As the order
grows, the number of conditional probabilities that need to be
estimated expands exponentially. Since the available genotype
dataset is not large (165 samples), it might lead to an overfitting
model if the order is too high, and thus the model would have a
low statistical significance. In this work, we build the Markov
models up to order 7, which is quite a high order considering
the size of the genotype dataset. But with the recombination
model, the number of parameters to be estimated is only linear
with the number of SNVs. Indeed, only the recombination rates
between every two adjacent SNVs need to be estimated. Hence,
the recombination model is the genomic data model that should
be used in practice, rather than the kth-order model built on
a genotype dataset. For a proof of concept, we discuss and
use them together in this paper so that it is straightforward to
observe how the model’s order influences genomic privacy.

Our results build bridges between the diverse practices of
evaluating genomic privacy in a genetic data sharing scenario.
While some studies use pairwise LD to build models for such
an evaluation ([4], [5], [6]), there is already practice in the
literature where the recombination model is used for inferring
genotypes that should not be released, like James Watson’s
ApoE gene status [12]. We have shown that pairwise LD in-
formation is not sufficient to quantify the sensitive information
that will be leaked by such data releases once the SNV data
is shared; indeed, there is a gap between the quantification
with pairwise LD and the recombination model, which shows
the large amount of sensitive information contained in the
high-order SNV correlation. It gives researchers the potential
to improve existing methods for the evaluation of genomic
privacy under different scenarios. For instance, Humbert et
al. [6] propose a graphical model to quantify kin genomic
privacy in a genetic data sharing scenario that involves family
members. By approximating high-order SNV correlations, the
work shows an improvement of inference accuracy when
the model integrates multiple pairwise LDs for each SNV.
As there is no evidence that such an approximation with
multiple pairwise LDs is sufficient, it seems plausible that we
could improve on their results by combining their graphical
model with the recombination model. Our future work will
focus on the integration of high-order SNV correlation into
the measurement of genomic privacy in various scenarios,
including kin genomic privacy, in order to make more realistic
and comprehensive assumptions about the adversary’s power.

VI. RELATED WORK

Much prior research has identified privacy breaches in
genomic data, but most of this has relied on low-order SNV
correlation. After Homer et al. [17] published their results on
inferring individuals’ contribution in genomic research, people
become more concerned about the privacy leakage from a
variety of analytical outputs from genomic research, including
minor allele frequencies, χ2-statistics and p-values; many such
outputs were even removed from open-access databases. Even
though Homer’s attack relies on certain assumptions that might
not hold in practice [18], such as the acquisition of the target’s
genome sequence and independence between SNVs, it does

highlight the potential privacy threats arising from publishing
genomic data and genomic computation results. A subsequent
line of studies refined the above attack and thus unveiled yet
more vulnerabilities of genomic data, [19], [20], [21]. Wang
et al. [4] propose a more powerful re-identification attack by
making use of p-values and linkage disequilibrium, which
indicates that the privacy threat is more serious than what
is shown by Homer’s attack. Ayday et al. [5] quantify the
privacy loss in a scenario of privacy-enhancing medical test
and personalized medicine due to the inclusion of pairwise LD.
Humbert et al. [6] propose a strong genotype inference attack
by making use of both familial relationship and pairwise LD.
Erlich and Narayanan [22] provide a comprehensive review
about existing genetic privacy breaching techniques, including
identity tracing attacks, SNP inference attacks and attribute
disclosure attacks. Moreover, they show how an adversary can
use the result of one attack as the input of a further attack,
which chains the attacks as a complete pipeline, worsening
the privacy breach that might arise from a single attack. Our
work in this paper further explores the privacy problems that
arise when people publish their genomic data online by com-
paring the inference performance based on different orders of
correlation. The higher-order SNV correlation provides more
information than the first-order correlation for an adversary
and therefore represents a more realistic representation of an
informed adversary.

The scenario we consider in this paper is probably best
exemplified by the case of James Watson hiding his ApoE
gene information that has been shown to be associated with
Alzheimer’s disease, when he shared his sequenced genome
in public databases. Nyholt et al. [12] show that such gene
information can be accurately estimated with the help of well-
established genotype imputation techniques that use linkage
disequilibrium and other released SNVs. Their study shows
the difficulty of concealing SNVs in genomic data sharing. We
provide a review on existing genomic data models of different
Markov orders and discuss their implication for privacy under
inference attacks.

VII. CONCLUSION AND FUTURE WORK

Different genetic data models provide different levels of
inference power for an adversary, depending on the order of
SNV correlation that is captured by the models. Starting from
a 0th-order Markov chain (namely, assuming independence of
SNVs), we show how the inference power gradually improves
as the order increases. Capturing the highest order of correla-
tion, the recombination model provides the best accuracy, and
it is what an informed adversary will probably use. Hence, to
give a reasonable evaluation of the privacy situation of sharing
genetic data, one should consider the high-order correlation to
avoid underestimating the power of a potential adversary. In
our future work, we will provide frameworks to incorporate
the high-order SNV correlation in the quantification of ge-
nomic privacy in various data sharing scenarios, such as for
GWAS research and kin genomic privacy. On the genomic data
protection aspect, we will look to develop privacy-preserving
solutions that are robust against adversaries using high-order
SNV correlations.
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