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Abstract

The scarcity of qubits is a major obstacle to the practical usage of quantum computers in the
near future. To circumvent this problem, various circuit knitting techniques have been developed
to partition large quantum circuits into subcircuits that fit on smaller devices, at the cost of a
simulation overhead. In this work, we study a particular method of circuit knitting based on
quasiprobability simulation of nonlocal gates with operations that act locally on the subcircuits.
We investigate whether classical communication between these local quantum computers can help.
We provide a positive answer by showing that for circuits containing n nonlocal CNOT gates
connecting two circuit parts, the simulation overhead can be reduced from O(9™) to O(4") if
one allows for classical information exchange. Similar improvements can be obtained for general
Clifford gates and, at least in a restricted form, for other gates such as controlled rotation gates.

1 Introduction

One of the major challenges of near-term quantum computation is the limited number of available
qubits. The problem will remain pronounced in the early days of quantum error correction, since a
considerable amount of physical qubits will likely be required to realize a single logical qubit. This
motivated a significant amount of research on techniques, sometimes called circuit knitting, that allow
us to simulate a quantum computer with more qubits than physically available [1-4]. Circuit knitting
could be of central importance for the first practical demonstrations of a quantum advantage for a useful
task. One possibility to realize circuit knitting is using the technique of quasiprobability simulation,
which has previously gained much interest in the fields of quantum error mitigation [5-9] and classical
simulation algorithms [10-14].

For an arbitrary quantum circuit we can group all the qubits into two separate regions A and
B, such that ideally there are only few gates acting on both regions at the same time, as seen on
the left-hand side of Figure 1.} The method of quasiprobability simulation allows us to obtain the
expected value of the measurement outcomes of this circuit by only sampling outcomes from circuits
where the nonlocal gates are probabilistically replaced by local operations, as seen on the right-hand
side of Figure 1. That means, instead of having to use one large quantum computer to simulate the
full circuit, the outcome of the circuit can be estimated with two smaller quantum computers acting
only on A and B. The cost of this technique is a sampling overhead that scales exponentially in the
number of nonlocal gates involved in the circuit.?

In principle, quasiprobabilistic circuit knitting does not require any sort of classical communication
between the two smaller quantum computers during the execution of the circuit. The main question of
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1Here we consider cutting the circuit into two parts for simplicity, the technique can be straightforwardly generalized
to involve more cuts.

2The quasiprobability simulation constructs an unbiased estimator for the measurement outcome of the nonlocal
circuit. This means it preserves the correct expectation value but the variance is increased which gives rise to the
sampling overhead [5,6,15].
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Figure 1: The nonlocal circuit on the left can be simulated with local circuits on the right using
quasiprobability simulation. If the optimal quasiprobability simulation is performed on each gate

Uy, Us, Us individually, then the total simulation overhead is given by vs(U1)%vs(Uz2)?ys(Us)?, as
described in the main text.
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this work is whether allowing the two computers to exchange classical information during the circuit
execution can reduce the sampling overhead. We consider three settings:

1. Local operations (LO): The two computers can only realize operations in a product form
A ® B where A and B act locally on A and B, respectively.

2. Local operations and one-way classical communication (LOC%): The two computers can

realize protocols that contain local operations from LO as well as classical communication from
Ato B.

3. Local operations and classical communication (LOCC): The two computers can realize
protocols that contain local operations from LO as well as two-way classical communication
between A and B.

Note that in the LO and LOC% settings, one does not necessarily require two separate quantum
computers. Instead, one can run the two subcircuits in sequence on the same device. The classical
communication in the LOCC setting can then be simulated by classically storing the bits sent from
A to B. In contrast, the LOCC setting does require two quantum computers that exchange classical
information in both directions.

To quasiprobabilistically simulate a nonlocal gate corresponding to the unitary channel U, one
requires a so-called quasiprobability decomposition (QPD)

U= aF, (1)

where F; are operations that our hardware can realize, i.e., F; € S where S = LO, S = LOC% or
S = LOCC depending on the considered setting. The coefficients a; are real numbers which might take
negative values (hence the “quasi” in quasiprobability). During the circuit execution, the gate U gets
randomly replaced by one of the gates F;. The sampling overhead of the quasiprobability simulation
is given by k2 where £ is the one-norm of the coefficients, i.e. k := Y, |a;|. Therefore it is desirable to
find an optimal quasiprobability decomposition with smallest possible x. The smallest achievable x for
a gate U described in the setting S € {LO, LOCC,LOCC} is denoted by vs(U) and we refer to it as
the y-factor of U (see Definition 2.1). Since the LOCC setting is strictly more powerful than LOCC,
which in turn is itself more powerful than LO, we have

Toce(U) £ v 65aU) < yo(U). (1.2)

When simulating a single nonlocal gate U via an optimal QPD, the number of samples required
to achieve a fixed accuracy increases by vs(U)? compared to directly running the nonlocal gate on
a large quantum computer [5,6, 15]. If the circuit contains n nonlocal gates Uy, ...,U, and the
optimal quasiprobability simulation is performed separately for each of these gates, the overall sampling
overhead is given by [], vs(U;)?. For n identical nonlocal gates U, this sampling overhead scales as



v5(U)?" = exp(O(n)), which emphasizes that the number of nonlocal gates n may not be too large. At
the same time, it highlights the importance of choosing a setting S where the corresponding ~-factor
vs(U) is small. In this work, we ask the question how much classical communication can help for

circuit knitting. This requires a good understanding of the optimal sampling overhead -y for the three
settings S € {LO, LOCC,LOCC} and how they differ.

Results Computing the «-factor for a given unitary is a nontrivial task as it is given via a complicated
optimization problem (see Definition 2.1). We show that for a large class of two-qubit unitaries U,
including all Clifford gates as well as certain non-Clifford gates such as controlled rotation gates
CRx (), CRy (0),CRz(#)® and two-qubit rotations, Rxx(#), Ryy (), Rzz(0)* there is no advantage
in having classical communication when quasiprobabilistically simulating a single instance of the gate
with local operations, that is

Tocc(U) =Y 656U) = o(U). (1.3)

In fact, we prove a closed-form expression for the y-factor as shown in Theorem 4.3 and Corollary 4.4.
This is the first time that an exact characterization of the optimal sampling overhead is found, as
previous works [3, 16] only showed upper bounds. Table 1 gives an overview of gates for which we
provide an analytical formula for the y-factor under LO and LOCC.

Clifford gates non-Clifford gates
. n-qubit gates | gates defined in Theorem 4.3
two-qubit gates others
forn >3 e.g. CRz(0) & Rzz(0)
LO Corollary 4.4 unknown Theorem 4.3 & Corollary 4.4 | unknown

YLOCC Corollary 4.4 Theorem 5.1 | Theorem 4.3 & Corollary 4.4 | unknown

Table 1: Overview of nonlocal gates for which we have an analytic understanding of the optimal
sampling overheads y1,0 and yLocc.

At first sight, Equation (1.3) might seem discouraging, as it suggests that classical communication
does not help for quasiprobabilistic simulation of nonlocal gates. However, the statement only asserts
that classical communication provides no advantage for simulating a single instance of the gate U and
things change drastically when considering a circuit with many instances of the same nonlocal gate.

We present a novel technique utilizing bidirectional classical communication between A and B to
reduce the overall sampling overhead for a circuit containing n instances of some nonlocal Clifford gate
U from yrocc(U)?" to WI%)CC(U)Q” where

noce(U) = Locc(US™)™.
We prove that 'YI(jé))CC (U) < yLocce(U) for any entangling Clifford gate U. Put differently, we show that
utilizing the optimal quasiprobability simulation for each nonlocal gate individually is not optimal, and
we propose a method that can significantly reduce the sampling overhead by making use of classical
communication.

For example, the overhead of simulating n nonlocal CNOT gates is reduced from O(9™) to O(4™)
since YLocc(CNOT) = 3 but 14 (CNOT) = (27+! — 1)/7 and thus 1\ (CNOT)2" = O(4™). By
a similar argument, the sampling overhead of the SWAP is reduced from O(49™) to O(16™). If one
restricts oneself to the LOCC setting instead of LOCC, we show that a reduction of sampling overhead
is still possible, albeit not as strongly as above. More specifically, we show that for CNOT gates under

3For 0 € {X,Y, Z}, CRo(0) denotes a controlled R, () gate with rotation angle @, where Ry (0) == emige,
4For o € {X,Y, Z}, the Ry (#) gate is defined by the two-qubit unitary efi%g@g for some real number 6.



the LO@ setting the sampling overhead can be reduced to O(8"), which lies in between the LO and
the LOCC scenarios.

The central idea behind our technique is to realize the desired unitary via gate teleportation [17].
For instance, a CNOT gate can be realized by consuming a preexisting Bell pair |¥) shared between
A and B using a simple LOCC protocol, as depicted in Figure 2. In case we have n nonlocal CNOT
gates we can generate all the required n Bell pairs at the same time, at the cost of an additional
memory overhead (see Figure 2). Interestingly, a joint local simulation of n Bell pairs is considerably
cheaper than locally simulating n-times a single Bell pair. In technical terms this is captured by a
strict submultiplicativity of the ~-factor, i.e.,

YLoce(J0)E") = 2" —1 < 3" = yocc(|¥))", (1.4)

for n > 1. The formal statement justifying Equation (1.4) can be found in Corollary 3.4. Since the gate
teleportation protocol works for arbitrary Clifford gates, our method can be generalized accordingly
and reduce the sampling overhead for arbitrary Clifford gates (see Theorem 5.1). We also briefly
discuss controlled-rotation gates as example of non-Clifford gates, and show that an adapted variant
of our technique can also reduce the sampling overhead in certain parameter regimes.
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Figure 2: Graphical explanation of how to realize two CNOT gates between two parties A and B in
a LOCC setting via gate teleportation. The wavy line depicts a Bell pair shared between A and B.
By generating the two Bell pairs simultaneously (instead generating a single Bell pair twice), we can
utilize the submultiplicativity of the 7-factor under the tensor product to reduce the total sampling
overhead.

Our results, summarized in Table 2, show that classical communication can be helpful to con-
siderably reduce the sampling overhead when using circuit knitting techniques to perform nonlocal
computations locally. Current research efforts in building quantum computers strongly suggest that
these results may be useful in the close future as planned devices will be scaled up by connecting
smaller chips, first via a classical and later via a quantum link [18].

Clifford gates non-Clifford gates
. n-qubit gates | gates defined in Theorem 4.3
two-qubit gates others
forn >3 e.g. CRz(0) & Rzz(0)
CC helps for X unknown X unknown
single instances Corollary 4.4 Theorem 4.3 & Corollary 4.4
CC helps for v v (v) unknown
multiple instances Theorem 5.1 Theorem 5.1 | Section 5.2 for CRz(6) gate

Table 2: Overview of nonlocal gates for which classical communication (CC) does or does not help for
circuit knitting (denoted by a v* or X respectively).

Open questions Our work provides a powerful framework to realize circuit knitting, but it remains
an open problem to identify useful applications where this framework fits well. Ideally, the considered



circuits should have an almost local structure in the sense that there are only few nonlocal gates that
have to be simulated. If one wants to use circuit knitting to demonstrate a quantum advantage, it is
furthermore necessary that the local computations are themselves out of reach for a classical computer,
because otherwise the knitting could be simulated classically.

Furthermore, the generalization of the presented technique to non-Clifford gates is more complicated
and not well understood. In Section 5.2, we show that our method can be adapted for controlled-
rotation gates CRx () and reduce the sampling overhead when 7/3 < 6 < 57/3. It remains unclear,
whether the sampling overhead could be reduced even further or at all for values of 6 € [0, 27] outside
of the above range (see Figure 6).

It can also be noted that Table 1 and Table 2 have a few empty entries corresponding to gates for
which it is currently unknown what the optimal sampling overhead is as well as if classical communi-
cation helps for single or multiple instances. Solving these problems would be interesting, however at
the same time these gates can be avoided in practice by decomposing them into gates for which we
have a complete understanding, at the cost of an additional overhead due to the decomposition.

Relation to existing circuit knitting techniques Circuit knitting through quasiprobability sim-
ulation of nonlocal gates has already been proposed previously [3,16]. However, previous works only
focused on the LO setting and did not consider classical communication between the involved parties.
Furthermore, previous work proposed explicit quasiprobability decompositions without any evidence
for optimality. We show that the quasiprobability decomposition proposed in [16] are optimal for a
certain class of two-qubit unitaries. Other existing circuit knitting approaches, such as [1,2], do not
precisely specify the exponential scaling and state an overhead scaling as 2°(™), whereas our work
makes a more precise statement. We quantify the exponential sampling overhead as O(k™) where we
aim for finding the smallest possible constant k. For practical applications, a smaller basis of the
exponential scaling can make a large difference. Instead of cutting individual gates, as we do in this
work, it has also been proposed to perform time-like cuts [2,3]. Quasiprobability simulation also has
certain advantages compared to the VQE-type entanglement forging approach [4], most notably that
it works for arbitrary circuits.

Relation to resource theory of magic Many ideas in our work find a counterpart in the resource
theory of magic [11,19,20]. For instance, we replace nonlocal operations by local operations that
consume some preexisting entangled state. This is analogous to realizing a non-Clifford gate using a
Clifford gadget that consumes some preexisting magic state. While magic is the resource required to
enable nonclassical computation, entanglement is the resource required to enable nonlocal computa-
tion. When using quasiprobability simulation to simulate non-Clifford gates with Clifford gates, the
relevant resource monotone to measure the sampling overhead is the robustness of magic. Similarly,
the sampling overhead in our scheme is captured by the robustness of entanglement instead.

Structure Section 2 formally introduces the basic concepts of circuit knitting via quasiprobability
simulation. In Section 3 we discuss optimal QPDs for the local preparation of entangled quantum
states. We show that there is a one-to-one connection between the v-factor and an entanglement
measure called robustness of entanglement [21]. As mentioned above, the optimal decomposition of
gates can be reduced to states in some instances via gate teleportation, and therefore this section
serves as a central tool for subsequent results. In Section 4 we describe upper and lower bounds
for the ~-factor of gates, which coincide for a wide range of two-qubit uniatries and hence give us a
complete understanding about the optimal sampling overhead for these gates. Finally, in Section 5 we
explain how a circuit with many nonlocal gates can be simulated locally more efficiently using classical
communication.



2 Circuit knitting using quasiprobability simulation

Consider two quantum systems A and B. Let L(A) denote the set of linear maps from A to A and
Z(A) = L(L(A)) the set of linear superoperators from A to A. The set of completely positive trace-
nonincreasing maps acting from A to itself is denoted by CPTN(A) C #(A). Note that any general
trace-nonincreasing map can be physically realized by postselection on a corresponding generalized
measurement.®

In the setting of quasiprobability simulation, CPTN(A) does not represent the most general oper-
ations that can be realized on a quantum computer. In fact, some non-positive superoperators on A
can be simulated with some appropriate post-processing, as long as they are in the set

D(A) :={€ € S(A)|3ET,E~ € CPTN(A) such that £ =T — €~ and €T + &~ € CPTN(A)} .
(2.1)

The subtlety of considering D(A) instead of CPTP(A) is explained in more detail in Appendix A and
will not play a significant role for the results in this manuscript. The set of local operations LO(A, B)
is defined as all maps on A ® B in a product form A ® B where B € D(B) and A € D(A).

LOCC(A, B) is defined as the set of all maps that can be realized as a protocol containing only local
operations in LO(A4, B) and classical communication between A and B. Note that the formal definition
of LOCC is notoriously complicated due to the possibly unbounded number of classical communication
rounds and the fact that later local operations can in general depend on all the previous communication.
The interested reader may consult [22] for more details. Finally, LOCC(A, B) is defined as the set of
all maps that can be realized as a protocol containing only local operations in LO(A, B) and classical
communication from A to B.

Consider a quantum circuit on which we want to apply quasiprobabilistic circuit knitting. We first
group the involved qubits into two systems, denoted A and B. For simplicity, we first consider the
case where there is only one single nonlocal gate U acting on both A and B, i.e., we can write the
channel capturing the evolution of the quantum circuit as Gy o o G; where U is the unitary channel
corresponding to U and G; only act locally on A and B. Assume that the resulting state of our circuit is
measured according to some local observable O 1 ® Oz and that we want to determine the corresponding
expectation value of the outcome tr[(Oz ® Og)G2 oU 0 G1(]0)X0| 55)] where |0X0] 55 is the initial state
where all qubits are in the |0) state. If we are given a QPD for ¢ as shown in Equation (1.1), we can
write

tr[(0z ® O)G2 oU 0 G1(|0X0] 25)] = Zpitf[(OA ® O0p)Ga2 0 F; 0 G1(|0)X0] 45)] ksign(a;),  (2.2)

3

where k= ), |a;| and p; = |a;|/k is a probability distribution. Following Equation (2.2) we can
estimate the expectation value of the large circuit using Monte Carlo sampling: For each shot of the
circuit, we randomly replace the nonlocal gate & with one of the local gates F; with probability p;.
The measurement outcome of this circuit is then weighted by xsign(a;). By repeating this procedure
many times and averaging the result, we can get an arbitrary good estimate of the desired quantity.
One can verify that the number of shots to estimate the expectation value to some fixed accuracy
increases by 2 [5,6,15].

The above procedure can be straightforwardly applied to circuits containing n nonlocal gates
Uy,...,U, for n € N. For each of these n gates we require a QPD and we denote the associated
sampling overheads by k1, ..., k,. During each shot of the circuit that is executed, each gate gets in-
dependently randomly replaced by one of the gates in its decomposition. The total number of samples
of the circuit therefore increases by []\, x7.°

i

5See [6] for an in-depth explanation of how to include postselection in a quasiprobability simulation.
SNote that this total sampling overhead scales exponentially in n which emphasizes that the method is designed for
knitting a reasonable number of gates.



To minimize the sampling overhead, it is desirable to use QPDs with the smallest possible sampling
overhead (denoted k above). Such QPDs are therefore called optimal QPDs. We call the smallest
achievable value ~y-factor.

Definition 2.1. The y-factor of £ € (A ® B) over S € {LO(A,B),LOC%(A,B),LOCC(A,B)} is
defined as

~vs(€) == min { i|ai| = iai]—]— where m > 1, F; € S and a; € R} . (2.3)

=1 =1

We explain in Appendix B why the minimum in Equation (2.3) is indeed achieved. Since in many
cases the involved systems A and B are clear by context, we often shorten the notation and simply write
1.0(E)s Yoaa(€), and yLocc(€). As a minor abuse of notation, for a unitary acting on the system
A® B we denote by v5(U) the v-factor of the unitary channel induced by U. Note that Equation (1.2)
follows directly from the definition. The ~y-factor is submultiplicative under the tensor product.

Lemma 2.2. Let & € y(A1®Bl), & € y(Ag@Bg), and S € {LO(A1®A2,Bl®Bg), LOC%(Al ® Ao,
B ® Bg), LOCC(A1 ® A2, B1 ® Bg)}. Then

v5(&1 ® E2) < v5(€1) vs(&2) -

Proof. Let & =3, a; ;F; ; be the QPD that achieves the minimum in Definition 2.1 for j = 1,2. This
directly gives us a QPD

E10& =) arjaz,Fi ©Foj,.

J1,J2
The one-norm of these quasiprobability coefficients is precisely vs(€1)vs(E2). O

As we will see later, for many unitaries the y-factor is not only submultiplicative, but in fact even
strictly submultiplicative under the tensor product. This property will be central in reducing the
sampling overhead in our technique. Another important property of the y-factor is that it is invariant
under local unitaries.

Lemma 2.3. Consider unitaries Us®@Up and VA® Vg acting locally on A and B, respectively. Denote
by U,V € LO(A, B) the induced quantum channels acting on the system A® B. For all £ € S (A® B)
and S € {LO(A, B),LOCC(A, B),LOCC(A4, B)} we have

Ys(UoEoV) =7s(E).

Proof. Any quasiprobability decomposition of £ of the form £ = ). a;F; automatically induces a
quasiprobability decomposition of ¢ o £ oV of the form Y o E oV = 3 . a;ld o F; oV with identical
sampling overhead. Similarly, any quasiprobability decomposition of f o €0V, i.e.,UoE0V =", a;G;
generates a quasiprobability decomposition of £ of the form & = Y, a; U 0 G; o V™! with identical
sampling overhead. Notice that i o F;0V € Sand U~ 'oG;oV~! € S. Therefore, the quasiprobability
decompositions achieving the minimum in Equation (2.3) for £ and U o £ o V must have identical
sampling overhead. O

3 Local quasiprobability decompositions for states

Consider a bipartite quantum state pap. The ~-factor of pap over S € {LO(A, B), LOC%(A,B),
LOCC(A, B)} is defined as

Ys(pap) = min {75(5) &€ S(A® B) st. £(|0)0]aB) = pAB}, (3.1)



where [0)0|4p denotes some fixed product state.” This quantity characterizes the optimal sampling
overhead required to generate the bipartite state pap using quasiprobabilistic circuit knitting. The
following result asserts that classical communication does not change the sampling overhead for the
task of state preparation. Denote by SEP(A, B) the set of separable quantum states on A ® B.

Lemma 3.1. For any bipartite density operator pap we have

YLo(pas) = Y oae(PaB) = yLocc(pas)

where
yLocc(pap) = min {aJr +a_:pap=asps —a_p—,p+ € SEP(A, B) and ax > O} . (3.2)

The proof is given in Appendix C.1. It turns out that yocc(pap) is an entanglement measure for
the state pap. More precisely, it is directly related to a well-studied entanglement monotone called
robustness of entanglement [21], which is defined as

FE = i
(paB) , in R(paglloag) ,

where R(papl|loap) = ming>o{t : % € SEP}.
Lemma 3.2. For any density operator pap we have yLocc(pas) =1+ 2E(pap).

Proof. Because tr[pap] = 1, Equation (3.2) implies ay — a_ = 1. Therefore we can write

YLocc(pap) = min {1 +2a_ :pap=(1+a_)py —a_p_,pr € SEP(A,B) and a_ > 0}

=1 +2min{t cpap = (14+t)py —tp_,pr € SEP(A4,B) and t > 0}

tp_
=1+ 2min {¢: % € SEP(A, B),p_ € SEP(A, B) and t > 0}

=1+ 2E(pAB).
O

As a consequence from Lemma 3.2, v,0cc inherits many properties from the robustness of entan-
glement, such as

o Fuaithfullness: yLocc(pap) = 1 if and only if pap separable.
e Monotonicity: For any LOCC protocol £: yLocc(E(par)) < yLocc(pan).

e [nvariance under local untiary: yrocc((Ua ® UB)pAB(UI‘ ® U};)) = yrocc(pap) for unitaries
Ua,Up acting on A and B, respectively.

The original motivation for the robustness of entanglement was to measure how much noise one can
add to a state before it becomes separable. One can view Lemma 3.2 as a new operational interpretation
of the entanglement measure: The robustness of entanglement characterizes the simulation overhead
of preparing some entangled state with local operations. For general mixed states pap computing the
robustness of entanglement is nontrivial since even determining if p4p is entangled (i.e. E(pag) > 0)
or not (i.e. E(pap) = 0) is known to be NP-hard [23]. Luckily, for pure states detecting entanglement
is much simpler and can be done for example via the Schmidt coefficients. Similarly, it has been
shown that for pure states there is an explicit expression for the robustness of entanglement, which
by Lemma 3.2 gives us an explicit expression for the y-factor of the optimal QPD.

7In our setting where A, B are multi-qubit systems, one would typically consider it to be the product state where all
qubits are in the |0) state.



Lemma 3.3 ( [21]). Let |¢)ap be a bipartite state with Schmidt coefficients {c;}i. Then

2
E([$)vl) = <Z ai> - 1.
Furthermore, the following QPD

(WXl = (1+ E([¢)XyD)p" — E(lu)Xv)p

uhere ™ = i Togs sl € SBP and p* = sy (Kol + E(liwo™) € SEP i
optimal.

Note that there is a simple way to compute the Schmidt coefficients {c;}; of |¥)ap. For pap =
|¥)1)| aB, the eigenvalues of p4 are exactly given by {a?};.

Corollary 3.4. The vy-factor for the local preparation of n Bell pairs {|¥;)a,p, }7y for A=A1®...Q
A, and B=B1 ®...® B, is given by

Yoccas) (VX V1la, B, @ ... @ [V XWpla,B,) =2""" - 1.

Proof. Note that n Bell pairs have 2" Schmidt coefficients which are all equal to (1/v/2)". As a
result, Lemma 3.3 together with Lemma 3.2 implies the assertion. o

From Corollary 3.4 we see that the optimal sampling overhead is strictly submultiplicative under
the tensor product. More precisely, for a Bell state |¥) we have

\/VLOCC(A1®A2:31®BZ)(I‘I’X‘PlAlBl ® [ U)N¥[a,8,) = VT <3 =m0cc(a:m) (1UNP]4E).

This shows that locally preparing two Bell states at once is cheaper than individually preparing two
Bell states in sequence. The reason is that in the parallel preparation process we can make use of
entanglement between Ay, As and Bi, Bs, respectively.

4 Optimal decompositions for single instances

The goal of this section is to understand the optimal sampling overhead for a single instance of a two-
qubit unitary U with local operations with or without classical communication. In technical terms,
we want to characterize yLocc(U), v oga(U) and y.0(U). We already know the trivial relation
from Equation (1.2). Our main result (see Theorem 4.3 and Corollary 4.4) is that for a large class of
two-qubit unitaries, all three quantities are equal. We show this result by first finding a lower bound
to ynocc(U) and compare that to a previously known upper bound [16] to o (U) and then showing
that both bounds coincide for our considered class of two-qubit unitaries.
For a unitary Uap on A ® B its Choi state is defined as

|Pu)aape = Uap @ 1ap) (|¥)aa @ |V)pp) ,

where A’ and B’ are identical copies to the systems A and B, respectively. The states |¥) 44, and
|¥) s are maximally entangled states between A and A’, or between B and B’ respectively.

Lemma 4.1. Let Uap be a bipartite unitary with Chot state |®y)aa pp that has Schmidt coefficients
{a;}; when considered as bipartite state over the systems A® A’ and B ® B’. Then,

Yocc(U) > yLocc(|Pu)X®y|) =2 <Z ai> —1.



Proof. The desired statement follows from a simple resource-theoretic argument. The Choi state |®y)
of U has vocc(|Pu)Pu]) = 2(3°; a;)> — 1 by Lemma 3.3. Since the Choi state can be physically
realized with an instance of U, its y-factor cannot possibly be larger. O

Any two-qubit unitary has a KAK decomposition
Uap= (Vi@ Va)exp(i0x X @ X +i0yY QY +i0,Z® 2) (V3@ Va) , (4.1)

for some single-qubit unitaries Vi, Vs, Vs, Vy, and Ox,60y,0z € R such that |0z] < 0y < 0x < 7/4.
Evaluating the exponential function, this can be rewritten as

where ug, u1,ug,us € C depend on 0x, 0y, 0z and fulfill Z?:o |ui|? =
Lemma 4.2 ( [16]). For any two-qubit unitary U we have
o) <1+ > (Jwiv] + ujuy| + [uu} — ujul]) .
i#]
Theorem 4.3. Let U be a two-qubit unitary with parameters Ox, 0y, 0z according to the KAK decom-
position from Equation (4.1) such that one of the following two conditions holds:

1. 0 =0
2 0x =0y =0y = 1.
Then,
Lo (U) =7 0aa(U)

= yLocc(U)
=1+ 4|sinfx cosfx| + 4| sin Oy cos by | + 8| sin O x cos O x sin Oy cos Oy |

lge)

where {a;}; are the Schmidt coefficients of the Choi state of U between A® A’ and B® B’.

To prove this, we show that the lower bound from Lemma 4.1 and the upper bound from Lemma 4.2
coincide, which then implies the assertion by Equation (1.2). The detailed proof is given in Ap-
pendix C.2. We give some examples of two-qubit gates of which we can determine the ~y-factor us-
ing Theorem 4.3.

Corollary 4.4. For following two-qubit gates
o two-qubit Clifford gates
e controlled Rotation gates CR.(0) for o € {X,Y,Z} and 6 € [0, 27]
o two-qubit rotations Req(0) = exp (—ibo ® o) for o € {X,Y,Z} and 0 € [0, 27]
there is no advantage in using classical communication for a single gate instance, i.e.,
YLocc(CNOT) =19, ,5a(CNOT) = y,0(CNOT) =3
YLocc(ISWAP) = v, (e (ISWAP) = 41,0(iISWAP) =
YLocc(SWAP) = v, (aa( (
yLOCC (CR ) YLoTE (CRU(9 ) = o (CRU(9 ) =142 Sln(9/2)|
( (

foro e {X,Y,Z} and 0 € [0,27r].

10



Note that every two-qubit Clifford gate is equivalent up to local unitaries to either the identity gate
1, the CNOT gate, the iSWAP gate or the SWAP gate. Therefore, due to Lemma 2.3, the ~y-factor
of any two-qubit Clifford gate is either 1,3, or 7 accordingly. To prove Corollary 4.4, it suffices to
show that the assumption of Theorem 4.3 is satisfied for the considered gates. The proof is given
in Appendix C.3.

For the gates specified by Theorem 4.3 and Corollary 4.4 for which we have an analytical under-
standing of their optimal sampling overhead, we also explicitly know an optimal QPD. Since the upper
bound from Lemma 4.2 is shown to be tight, the QPD introduced in [16] is optimal.

5 Reducing overhead for multiple instances

Under LOCC, a CNOT gate and a Bell pair denoted by |¥) can be considered equally powerful
resources: One can generate a Bell pair using a CNOT gate (see Figure 3a) and one can realize
a CNOT gate using gate teleportation by consuming a preexisting Bell pair (see Figure 3b). This
implies that under LOCC it is equally hard to simulate a CNOT gate than it is to simulate a Bell
pair, i.e., vLocc(CNOT) = ypocc(|¥XP]). Therefore, we can reduce the problem of quasiprobability
simulation of n CNOT gates dispersed throughout our circuit to the quasiprobability simulation of
n Bell pairs at the corresponding locations, without any loss of optimality. The major advantage of
working with states instead of gates is that we can generate the nonlocal resources in parallel and thus
make use of the strict subadditivity of the v-factor discussed in Corollary 3.4.

0) —{H—
&)
|0) ———&—
(a) Generating a Bell state with a CNOT (b) Generating a CNOT with a Bell state

Figure 3: Depiction why a CNOT gate and a Bell state are equally powerful resources under LOCC.
The wavy line depicts a Bell pair.

More precisely, one can generate the required Bell pairs all at once and store them until they are
consumed via gate teleportation. This procedure is conceptually depicted in Figure 2. Compared
to naively applying the optimal QPD from Section 4, the sampling overhead for simulating a circuit
with n nonlocal CNOT gates can be reduced from v1,o0cc(CNOT)?" = yrocc(|PXP[)?" = 9" to
A (CNOT)?" = ypocc (N |®™)2 = (274! — 1)2 = O(4™) by Corollary 3.4.

The technique above comes with the drawback of requiring additional quantum memory to store
the Bell states. Indeed, if one where to generate all n Bell pairs at the very beginning of the circuit,
the size of this additional memory would grow linearly with the number of n nonlocal CNOT gates.
This is inconvenient, as the limited number of qubits precisely is the motivation for circuit knitting
in the first place. For practical purposes, it is more useful to generate a fixed number k < n of Bell
pairs at a time and then, once all k Bell pairs have been consumed by gate teleportation, reuse these
2k qubits to generate new Bell pairs. Choosing the size k of this entanglement factory comes with a
tradeoff: Choosing k smaller results in a reduced memory footprint of the method and increasing k
decreases the effective y-factor per CNOT gate, which is given by

1/k
FYSE))CC(CNOT) = (’yLocc(CNOT(gk)) = (2k+1 — 1)1/k . (51)

Figure 4 graphically visualizes the tradeoff between reducing the effective sampling overhead at the
cost of a larger quantum memory. Note that limy_, o 'yI(ngC(CNOT) =2 < 3 =710cc(CNOT). The
overall sampling overhead for the full circuit consisting of n nonlocal CNOT gates is 'yI(ngC (CNOT)?".
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— ¥ . (CNOT) see Equation (5.1)
2.75 | |
2.5 |
2.25 |
2 : ‘ *
1 5 10 15 20

k

Figure 4: Grpahical visualization of the tradeoff between the entanglement factory size k£ and the
effective sampling overhead for a CNOT gate 'yI(JkO)CC(CNOT).

5.1 General Clifford gates

The main ingredient that enables us to use the submultiplicativity of the y-factor under the tensor
product is the ability to realize a gate with a LOCC protocol that consumes a preexisting entangled
state. The gate teleportation protocol can be generalized to realize any bipartite unitary Uap given
access to its Choi state |®Py)aapp [17]. Let us denote the system on which the gate is be applied
A® B. Both parties perform Bell measurements across A’ and Aor B' and B’ respecitvely. According
to the obtained measurement outcomes, some correction operation has to be applied on A® B. When
U is a Clifford gate, this correction operation is an element of the Pauli group and can therefore be
realized locally.® For example, Figure 5 depicts the gate teleportation of a general two-qubit unitary
U, and the correction operation U(oy; ® oij)UT is Pauli when U is Clifford.

|O> T W
:|0) & ? —

) Ul: Uoge ® 0i5)UT Uly)
5|0)—.T - F .

Figure 5: Graphical explanation of a gate teleportation protocol for a two-qubit gate U. We realize
the gate U with the help of its Choi state (prepared by the dotted box) and a correction operator
Uoi; ® Ukl)UT, where 0;; == Z'XJ. For Clifford gates U the correction operator is local and hence we
can simulate U with the Choi state and LOCC.

By using this gate teleportation protocol, the technique for reducing the overhead for multiple
instances of a CNOT gate can be straightforwardly generalized to reduce the sampling arbitrary
Clifford gates. We summarize the result of this section:

Theorem 5.1. Let Uap be a Clifford unitary with a Choi state |®y)aapp that has Schmidt coeffi-
cients {a; }; when considered as bipartite state over the systems A® A" and B® B'. Then

K3

yLoce(U) = yLoce(|Pu)X®y|) = 2 <Z ai) - 1. (5.2)

8Recall that the Clifford group on d qubits Cy is defined as Cyq = {d-qubit unitaries V : VPV = P,}, where Py is
the Pauli group on d qubits.
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For a memory overhead of 2k qubits for k € N, our method can achieve an effective v-factor of

1/k
18 eU) = (roce (@) @y|®)) /* = (2(2;%)2’“ - 1) . (5.3)

i

Proof. Under LOCC we can prepare the state | &) using an instance of the gate U, and similarly we
can realize U using gate teleportation, which consumes the state |®). This implies that y.occ(U) =
YLoce(|PuXPy|). Equation (5.2) directly follows from Lemma 3.2 and Lemma 3.3.

Following the idea sketched in the main text, we can reduce the simulation of k£ nonlocal instances
of U to the preparation of |®;/)®*. Denote the Schmidt coefficients of |®1/) by a1, ..., . Then the
Schmidt coefficients of |®¢)®* are given by &;, ., = Hle «;, where j; ranges over {1,...,m}. By
invoking Lemma 3.3, we obtain

YLoce(|Pu X Py |®F) = 2( ‘ Z di1x~~~vjk)2 —1= Q(Zai)zk -1

J1sJk 4
which gives us the effective y-factor described in Equation (5.3). O

Entangling Clifford unitaries U satisfy (3, @;)? > 1. For such unitaries Theorem 5.1 implies that?

7£]800(U) <~vLocc(U) for k>1.

This shows that the presented protocol via gate teleportation indeed reduces the sampling overhead
for multiple instances of the nonlocal gate U. For a circuit with n instances of U the total sampling
overhead is then given as 71(478(3@((])2” = O((>, i)*™), which recovers the O(4™) and the O(16™)
scaling for the case of CNOT and SWAP gates, respectively.'?

5.2 Non-Clifford gates

For non-Clifford gates U, the simple correspondence under LOCC between the gate and its Choi state
via the gate teleportation circuit from Figure 5 does not hold anymore, because the correction operator
in the gate teleportation protocol is no longer local. As a result, a different LOCC protocol would need
to be used in order to realize the gate using a preexisting entangled state. In the following we consider
the CRx(#) gate as a case study of a non-Clifford gate and we show that our method can reduce
its sampling overhead at least for certain values of 8. We want to characterize its lowest achievable
effective y-factor (i.e. the effective sampling overhead per gate) in the limit where the number of gates
goes to infinity. Note that this discussion analogously holds for all gates that are equivalent to the
CRx gate up to local unitaries, such as CRy,CRz,Rxx,Ryy and Rzz (see Equation (C.4)).

As we have seen in Corollary 4.4, one can achieve a y-factor of 1 4 2|sin(6/2)| in the LO setting,
so this represents an upper bound to the best possible effective y-factor that we can hope to achieve.
By an argument analogous to the proof of Lemma 4.1, the asymptotic effective y-factor of a CRx(6)
gate cannot be lower than lim, e YLocc(|Pcry () PRy (0)|€™)Y™ = 1 4 |sin(6/2)|: The value 1+
|sin(#/2)] is the lowest possible effective y-factor with which a [®¢g (s)) can be prepared, and since a
CRx(0) gate can be used to realize a |Pcr, (9)) state, its lowest effective y-factor cannot possibly be
lower.

With this in mind, we know that the lowest achievable effective vy-factor lies between 1+ |sin(6/2)]
and 1 + 2|sin(6/2)], as seen in Figure 6. It has been shown [24, Theorem 2|, that any controlled
rotation gate can be realized with some LOCC protocol which requires a single Bell pair. Since the
effective y-factor of creating a Bell pair is 2, we can therefore upper bound the lowest achievable

9This can be verified by induction.
10Recall that the Schmidt coefficients for a CNOT gate are a; = ap = 1/\/5 and for a SWAP gate a1 = ag = a3 =
ag =1/2.
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effective y-factor of the CRx () gate by two and it must therefore lie somewhere in the gray region
of Figure 6. Notice that this implies that classical communication can reduce the sampling overhead
of the CRx (0) gate for /3 < 6 < 57/3. For the remaining values of 6, it is an open question whether
classical communication can reduce the sampling overhead.

3 T ISR T
/// \\\ - - - upper bound 1 + 2|sin(6/2)]
D — A S S e upper bound 2
/] A lower bound 1 + |sin(6/2)|
4 \
. k
/// \\\ ® limg 'YI(JO)CC (CNOT) =2
4 \
4 \
1 / | | | \
0 /3 & 5m/3 2w
0

Figure 6: Known upper and lower bounds for the optimal effective y-factor of a CRx(6)-gate under
LOCC in the limit where the number of gates goes to infinity. The precise value is only known for
0 € {0,27} as well as § = 7 where the gate becomes a CNOT. In the gray area the currently best
known upper and lower bounds do not match.

5.3 Omne-way classical communication

It turns out that our technique can also be applied in the LO@ setting, but only with a smaller
reduction of sampling overhead. The gate teleportation in Figure 2 can be simulated in LOCC by
post-selecting the measurement outcome on circuit B to have the outcome 0, allowing us to forgo the
classical communication from B to A. The postselection step increases the overhead by a factor of
two, since a measurement outcome 0 only happens with probability 1/2. As a result the total sampling
overhead for simulating a circuit with n nonlocal CNOT gates under LO@ scales as O(8"), which is
still an improvement over the O(9™) under LO.

Acknowledgements We thank Sergey Bravyi, Julien Gacon, Jay Gambetta, and Stefan Woerner for
helpful discussions. This work was supported by the Swiss National Science Foundation, through the
National Center of Competence in Research “Quantum Science and Technology” (QSIT) and through
grant number 20QT21_187724.

A Non-positive superoperators in quasiprobability simulation

In this section we briefly outline why we allow for certain non-trace preserving and non-positive oper-
ations in our quasiprobability decompositions, i.e. why we define LO(A, B) as

{A® B|A€D(A),BD(B)} (A1)
instead of
{A® B|A € CPTP(A),B € CPTP(B)}. (A.2)

It was realized in [6] that it can be useful (or often even necessary) to include trace-nonincreasing
maps in quasiprobability decompositions. This can be done because any trace-nonincreasing map
can be effectively simulated by some measurement process and post-selection of the corresponding

14



measurement outcome. More precisely, any map £ € CPTN(A) can be extended to a trace-preserving
map: 3F € CPTN(4) s.t. £+ F € CPTP(A). To simulate &£, one can perform the trace-preserving
completely positive map

pa > E(p)a @[0)0[g + F(p)a @ [1)1[E, (A.3)

where E is a qubit system. One then measures E in the computational basis and postselects for the
outcome 0. In practice, this is done by multiplying the final outcome of the circuit by 0 in case the
measurement outcome 1 is obtained.

This trick was later generalized by Mitarai and Fujii [3,16] who realized that one can even consider
a non-completely positive map &, as long as it can be written as a difference of completely-positive
trace-nonincreasing maps that add up to another completely-positive trace-nonincreasing map, i.e.
E=Et—&,EF € CPTN and £t + £~ € CPTN. The idea here is very similar: any such map can
be simulated using the trace-nonincreasing completely positive map

pa = ET(p)a @ |0)X0p +E7(p)a @ 11|, (A.4)

measuring the qubit F in the computational basis and and correspondingly weighting the final mea-
surement outcome of the circuit by +1 or —1 depending on the outcome.

B The v-factor is well-defined

In this appendix we briefly argue why the minimum in Equation (2.3) is achieved and therefore why
the ~-factor is well-defined. Assume that the set S is compact. This implies that the convex hull

conv(S) == {Zpi]:i F, €S8, p; > O,Zpi = 1}

is also compact. Consider the quantity
A(€) == min {a+ +a_:&=ayFy —a_F_ where Fy € conv(S) and ay > O} .

The expression (&) is well-defined, since it optimizes a continuous function over a compact set.!* Any
QPD of the form £ = a; Fy —a_F_, F1 € conv(S) can be brought to the form £ =3, a;F;, F; € S
while retaining the identical sampling overhead by definition of the convex hull. Similarily, any QPD
of the second form can be brought to the first form by defining a4 = Zmim i, G_ = ZMKO a;,
Fy= i D ia, >0 Fiand Fo= L > i:a, <0 Fi while retaining the same sampling overhead. Therefore,
the well-definedness of 4(£) implies that the minimum in Equation (2.3) is achieved.

Note that the conventional definition of the set of LOCC protocols is actually not a closed set [22].
Instead, for our purposes, we choose LOCC(A, B) to be the set of LOCC protocols with bounded
number of rounds, where the bound can be chosen to be arbitrary large. It has been shown that finite
round protocols do form a compact set [22]. This minor technicality is of little significance for our
work, since it turns out that the optimizer of Equation (2.3) is often a LOCC protocol with few rounds.

C Proofs

To improve readability of the manuscript we shifted some proofs to this appendix.

1'We do not have to consider a4 to be arbitrarily large, as we know that for any £ € .7 (A ® B) there exists a QPD
with finite sampling overhead [6].
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C.1 Proof of Lemma 3.1

Denote the right-hand side of Equation (3.2) by vsgp(pap). We only have to show that ysgp(pan) <
voocc(pap) and yLo(pas) < Ysep(pap). The desired statement directly follows directly from Equa-
tion (1.2).

Consider £ € /(A ® B) to be the map that minimizes Equation (3.1) and let & = >, a;F;
be the quasiprobability decomposition that achieves the lowest sampling overhead in the definition
of vocc(€). The map F; can be written as the difference F; = F; + — F; _ of two completely-
positive trace-nonincreasing LOCC maps F; +. It is a well-known fact that the set of states achievable
under such maps, without any given entanglement, is precisely the set of separable states and hence
o+ = F; +(]0X0| ap) are separable states with tr[o; 4] + tr[o; ] < 1.

This allows us to write

p = Z ;05 4+ —Qi0;— = A4 04 —A_0_,
i
where
ay = Z |as|tr(o,+] + Z |as|tr[o;, ]
i:a; >0 1:a;<0
a_ = Z la;|tr[os,—] + Z la;|tr[o; 4]
i:a; >0 1:a,<0
and

1
opi=— | > lailoiy + > lailos | € SEP(4, B),

a+ i:a; >0 i:a; <0
1

o_ = — Z |£Li|0'i7, + Z |ai|0¢,+ S SEP(A,B)
a— i:a; >0 i:a; <0

This implies

Ysep(paB) < ay +a- = Z |ai| (05,4 + 0i,—) < Z |a;| = yocc(paB) -
- .

K2

For the second inequality, we consider the ay+ and p+ which achieve the minimum in Equation (3.2).
Since the p4 are separable, we can write them in the form p; =3, p4 04 i @Ty 4, p— =D, P—i0— ;i ®
7_ ; for some probability distributions p+ ; and some set of states o+ ;, 7+ ; on A and B respectively.
Take F, ;, F— ; € LO(A, B) to be the operations that prepare the state oy ; ® 74 ; respectively o_ ; ®
7_ ;. One has

yolpas) < oD arpyiFri— Y ap ;F ;)

i J
< Z a+p+,i+ Z a—p—.j
i J

=aqy+a_

= ”YSEP(PAB) )

which proves the assertion. o
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C.2 Proof of Theorem 4.3

Since the v-factor is invariant under local unitaries (see Lemma 2.3), we can without loss of generality
assume that U = exp(ilx X @ X +i0yY ® Y +i027Z ® Z). We show under the given assumptions that
the lower bound from Lemma 4.1 and the upper bound from Lemma 4.2 coincide which then proves
the assertion by Equation (1.2). Suppose first that Assumption 1 is fulfilled, i.e., 8z = 0. We then
have

Du) = Y lij)an @Ulij)as
i,j=0,1
. . 1
_i0xXaXp i0yYaY) . . . .
=X Fatpeliiats o Z_Ej i) arli) ald) Bl3) B/
1
25(cos9X11A113+1sin9XXAXB)(cos9y]lA]lB+isin9yYAYB)(|OOOO)+|0011>+|1100>+|1111>)
1
=—((cos 0 x cos by +sin b x sin Oy + +(cosbtx cos by —sin b x sin Oy +
5 0 0 in 6 x sin 0000 1111 0 0 in 6 x sin 0011 1100

+(icosfx sin Oy +isinOx cos By)(]0101)+|1010))+ (isinfx cos by —icosOx sin 9y)(|0110>+|1001>)) ,

where the the second step uses that X, Xp and Y,Yp commute. The penultimate step follows from
Sylvester’s formula. To find the Schmidt coeflicients we need to compute the singular values of following
matrix

1
D=-
2 0 a4 a3 0
(65) 0 0 (651
for a; := cosfx cosby + sinfx sinfy, as := cosbfx cosby — sinfxsinfy, asz := icosfxsinfy +
isinfx cosfy, and a4 := isinfx cosfy — icosfx sinfy. The singular values and thus Schmidt co-

efficients of D are {|cosfx cosfz|, |cosfx sinfz|, |sinfx cosfy|, |sinfx sinfy|}. Lemma 4.1 thus
gives

YLo(U) = 2(] cosOx| + |Sin9X|)2(|cosﬁy| + |Sim6‘y|)2 -1
=1+ 4|sinfx cos x| + 4| sin Oy cos Oy | + 8| sin Ox cos Ox sin Oy cos Oy | . (C.1)

We next show that the upper bound from Lemma 4.2 coincides with Equation (C.1). To do so we
first determine the coefficients ug, u1, ua, us according to Equation (4.2). Therefore we write

exp(i0x XaXp +1i0yYaYp)
= exp(ifx X4 Xp)exp(ily YaYp)
(cosOxT1alp +isin0xXaXp)(cosbylalp +isinfyYaYp)
= cosfx cosOylalp +isinfx cosOy XaXp +icosOxsinfyY Yg —sinfxsinfy Z47Zp.

So we have ug = cosfx cosfy, u; = isinfyx cosfy, us = icosfyxsinfly and ug = —sinfx sinfy.
Notice that all u; are only real or imaginary. This implies that [u;u} +wuju; |+ [uju} —uwju;| = 2|u;l|u;|.
Therefore, Lemma 4.2 gives

o (U) <1+ 4dfuolus| + 4|uolua| + 4fuol lus| + 4|ual[ug| + 4fur|[us] + 4|uslfus]
=1+ 4|sinfx cosOx| + 4| sin Oy cos Oy | + 8| sin O x cos Ox sin by cos Oy | . (C.2)

Combining Equation (C.1) with Equation (C.2) proves the assertion.
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Suppose next that Assumption 2 is fulfilled. In this case the gate is locally equivalent to a SWAP
gate. For the lower bound, this means that the Choi state is essentially 2 Bell pairs and thus Corol-
lary 3.4 and Lemma 4.1 imply

Yocc(U) > 7. (C.3)

For the upper bound, we first determine wug, u1, ug, ug by writing
exp (igXAXB n igYAYB n igZAZB) — exp (i%XAXB) exp (i%YAYB) exp (igZAZB)

1
:—(]lAﬂB + iXAXB)(]lAﬂB + iYAYB)(ﬂAﬂB + iZAZB)

2v2
g 1+ XaXp + YaYe + ZaZs)
=5 s als AXB+YaYp+ ZaZB),
which implies ug = 41 = us = uz = 21\% This means that |u;u} + wjuf| + |u;u} — uju| = 1/2 and
hence according to Lemma 4.2
’YLO(U) S 77

which together with Equation (C.3) proves the assertion. Note that
1+ 4|sinfx cosOx| + 4| sin Oy cos by | + 8|sinfx cosfx sin by cosfy | =7

foroxzeyzozzﬂ'/ll. O

C.3 Proof of Corollary 4.4

We start with the R,,(f) gate. By using an appropriate local basis transformation and invok-
ing Lemma 2.3, we can restrict our considerations to the Rxx () gate, which is iself equivalent to
the Rxx(—0) gate up to local unitaries. Rxx(—0) is already in the form of the KAK decomposition
with (0x,0y,02) = (6/2,0,0). By Theorem 4.3, this directly implies

6 0
singcosﬁ’ =1+ 2|sinf)|.

Locc (Rxx(=0)) = v oz (Rxx(=0)) = 1o (Rxx(—0)) =1+4

Next we consider the controlled-rotation gate CR,(6). Again, by using an appropriate basis trans-
formation on the target qubit, we can restrict our considerations to the CRx (6) gate. It is equivalent
to the Ry x(—0/2) gate up to local unitaries:

CRx(0) = (H ® Rx(0/2))Rxx(-0/2)(H ® 1), (C4)
where H is the Hadamard gate and 1 the identity gate. Hence, we have
YLOCC (CRX (9)) = ’YLO(% (CRX (6‘)) = YLO (CRX (6‘)) =1 + 2| sin(6‘/2)| .

As mentioned in the main text, every two-qubit Clifford gate is equivalent (up to local unitaries)
to either the identity gate I, the CNOT gate, the iSWAP gate or the SWAP gate. By Lemma 2.3, it
therefore suffices to only consider these four gates. The identity gate trivially fulfills 0x = 6y = 0z = 0.
The CNOT gate has a KAK decomposition with angles (6x = /4,0y = 0,0z = 0), the iSWAP gate
has (0x =7/4,0y = /4,07 = 0), and the SWAP gate has (0x = 7/4,0y = /4,07 = w/4) [25]. As
a result, Theorem 4.3 implies

"yLocc(CNOT) = VLO@(CNOT) = ’}/Lo(CNOT) =3
YLOCC (ISWAP) = VLO@(ISWAP) = YLO (ISWAP) =7
YLOCC (SWAP) = VLO@(SWAP) = YLO (SWAP) = 7,

which completes the proof. O
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