Computational Intelligence/olume 14, Number 2, 1998

USING DIAGRAMS TO UNDERSTAND GEOMETRY

ROBERTK. LINDSAY
Mental Health Research Institute, University of Michigan, Ann Arbor

This paper describesRCHIMEDES-STUDENT, @ computer program that constructs and modifies its own repre-
sentations of diagrams from instructions supplied by a human who is demonstrating a theorem of geometry. The
program’s representation permits it to make inferences from its constructions and to find a justification for the
conclusion of the theorem. It is argued that the sort of perceptual reasoning displayed by this program represents
one important aspect of understanding because it relates the abstract mathematical theorem to knowledge of spa-
tial relations. For humans this approach grounds abstraction in experience and thus provides a more compelling
demonstration than a formal proof. BecangeHIMEDES-STUDENTIs a well-defined computer program, it provides
a precise suggestion of how this aspect of understanding can be achieved.

Key words:diagrammatic reasoning, imagery, geometry, understanding, spatial reasoning, knowledge repre-
sentation.

1. INTRODUCTION

Theorems of plane geometry are generally illustrated in textbooks by diagrams. For most
students a diagram facilitates following or discovering a proof. The diagram also appearsto be
valuable, perhaps essential, for literally and figuratively seeing the meaning of the theorem and
understanding why it is interesting. Indeed formal proofs often add little to the understanding
afforded by diagrams coupled with informal explanation, particularly for people not trained
in mathematics. This paper is an exploration of the computational processes that underlie
such use of diagrams as aids to understanding geometrical propositions.

Aproofinthe modern, post-Hilbert sense is a sequence of statements in a precisely defined
formal language composed of strings of characters from a finite alphabet. Each statement
is justified by applying precise rules of deduction to preceding statements, such as axioms,
previously proved lemmas, and theorems. Diagrams can have no essential placstiicthis
sense of theoremrovingbecause they have no accepted syntax or semantic theory specified
in the standard logical formalism. This is not an inherent limitation of diagrams and several
recent efforts have attempted to fill this vacuum; see Barwise and Etchemendy (1990, 1992),
Kaufman (1991), Shin (1991, 1992, 1995), Stenning and Oberlander (1992), Barker-Plummer
and Bailin (1992), and Wang (1995), whose work is discussed further below. Although the
several formal theories of diagrams that have been thus proposed are not fully general, it is
fairly certain that no substantive obstacle stands in the way of further developments.

Nonetheless, diagrams, even without a formal theory, clearly serve for humans a useful
heuristic and pedagogical purpose that extends well beyond geometry textbooks, and includes
the understanding of nongeometric mathematics, of physical principles, and even of informal
biological and social theories. Diagrams and other graphical illustrations are ubiquitous
conveyers of meaning and intuition even without a formal theory. There is much anecdotal
evidence for this claim, as well as a number of systematic studies of the use of visual images
in scientific discovery (e.g., Miller 1984; Thagard & Hardy 1992).

In contrast to the formal proofs alluded to above, geometry is generally introduced to
students by a combination of diagrams and quasi-formal “textbook proofs.” Although text-
book proofs lack the rigor of fully axiomatized formal proofs, they maintain the sentential,
sequential proof structure while permitting more flexible use of natural language. Thus they

Address correspondence to the author at the Mental Health Research Institute, University of Michigan, 205 Zina Pitcher
Place, Ann Arbor, Ml 48109; e-mail: lindsay@umich.edu.

(© 1998 Blackwell Publishers, 350 Main Street, Malden, MA 02148, USA, and 108 Cowley Road, Oxford, OX4 1JF, UK.

USING DIAGRAMS TO UNDERSTAND GEOMETRY 239

” ”

employ flexible forms of reference (e.g., “the preceding,” “see example 3,” “similarly,” etc.).
They also may omit explicit justification of facts that are true in the accompanying diagram,
such as that a construction must yield a particular ordering of objects, that a point must lie
within a figure rather than outside it, and so forth. The sorts of arguments that have been
found pedagogically most useful are a hybrid of less than rigorous verbal arguments and less
than rigorous diagrammatic illustrations.

Some mathematicians and teachers have attempted to produce textbook proofs that use
bare minimum of sentential representation and argument. Nelson (1993) calls these “proofs
without words” although they are not proofs in the strict sense. Furthermore, they are not
“without words” for most contain some verbal symbols; those that do not are seldom com-
prehensible without additional verbal cues from a teacher. Because the emphasis of such
exercises is both to demonstrate to the student that a conjecture is correct and to give it some
intuitive interpretation, they are better called “diagrammatic demonstrations.” They are com-
pelling presumably because we are adapted to a world where geometric and physical laws
prevail, and thus our nervous systems provide computational mechanisms that are efficient
at reflecting these laws. A diagram that illustrates a mathematical relation by showing in
essence that it is an accurate reflection of the behavior of objects in space provides an under:
standing because it grounds the abstraction in our customary experience. If the abstractions
thus interpreted, are consistent with that experience, they are understood and believed. If
not, they are either disbelieved or not understood, or else other means, generally much more
abstract and indirect, must be brought to bear. The latter would be the case, for example,
with quantum electrodynamics for which there may be no experience-based model that can
play the role of understanding mediator.

Rather than discuss the general case of experience-based cognition, understanding, an
learning, this paper addresses the more narrow issue of the role of two-dimensional diagrams
in expressing mathematical concepts. Specifically, the paper is limited to a particular investi-
gation of the role of geometric diagrams in tirederstandingf geometric propositions, such
as theorems. The proposal will be illustrated by a detailed description of how a particular
computer program addresses this particular problem ARGEIMEDES- STUDENT program to
be described “understands” a demonstration in the sense that it can construct an appropriate
diagram from propositional instructions and can verify that the conclusion of the demonstra-
tion is true because it follows from knowledge the program has about certain types of objects
and their spatial relations.

When observing plane geometric diagrams for the purpose of thinking about geometry,
we generally focus on their spatial properties and choose to ignore such features as texture
color, perspective, depth, and most other features of pictures and images. Of course, the
spatial properties of real physical objects are not inherently visual; unlike visual properties
such as color, they are accessible through tactile or auditory channels even to the blind.
Thus, although the full range of visual features are not fully exploited in geometric reasoning,
diagrammatic representations are in another important sense more general than visual images

2. RELATED WORK

Artificial intelligence research on theorem proving began with the Logic Theorist of
Newell, Shaw, and Simon (1957). In their work theorem proving was characterized as a search
for a sequence of syntactic transformations that will convert givens into a conclusion. Other
early work on automatic theorem proving also concentrated on nongeometric mathematics and
was thus restricted to the discovery of rule sequences without the assistance of a diagrammati
interpretation. Some of this work departed from the Logic Theorist model of heuristic search

240 GOMPUTATIONAL INTELLIGENCE

of a problem graph, and explored the use of syntactic manipulations that offered little intuitive
assistance to a human, such as the resolution method (Robinson 1965) and model-eliminatior
(Loveland 1968).

A variety of means have been used to provide for computers an understanding of ge-
ometry with the aid of diagrams. One was the use of diagrammatic information to aid the
discovery of sentential proofs. The Geometry Machine (Gelernter 1959b; Gelernter, Hansen,
& Loveland 1960) attempted to discover axiomatized, formal proofs by searching a problem
graph of possible deduction rule applications, but augmented this search with a heuristic that
rejected attempts to prove any statement that was false in a diagram supplied (as a set of poin
coordinates) to the program. Additionally, it employed a rigorous method of detecting “sym-
metries” in the set of statements. Thatis, it could detect statements that were equivalent under
a substitution of variable names (Gelernter 1959a). The resulting propositional-diagram hy-
brid succeeded in discovering proofs, but clearly failed to use the full range of assistance
available from diagrams.

Others, following in the tradition of Gelernter, have also coupled a heuristic search of
statements and rules with a diagram representation that can be used to guide the searct
Barker-Plummer and Bailin (1992) constructed a theorem-proving system for set theory
that extracts information from its representation for diagrams, provides a decomposition
of the theorem into lemmas, and orders them into an overall proof plan. The Koedinger
and Anderson (1990) model embodies diagrammatic information and they find that this
substantially improves performance, and also makes it more similar to the problem-solving
strategy of experts. They explicitly provide (rather than produce by a program) a set of
prototypical diagrams and associated information that serve as a classification of problems.
This classification aids theorem proving by focusing the program’s attention to the appropriate
category with which specific hints are associated. Diagrams per se are not available to
the programs, and cannot be modified or used to form new conjectures, nor are geometric
constraints used to draw inferences.

Still other projects have employed diagrams and diagrammatic information in a variety
of ways in attempts to embody in computer models some of the methods that intuitively
seem to be those employed by humans, as opposed to those that seem unlikely to be (fol
example, see Larkin & Simon 1987; Novak 1977; McDougal 1993; Narayanan 1992; and
Glasgow & Papadias 1992). Although some empirical work has been done to test the claim
of psychological validity, generally the models at present can make only limited experimental
predictions.

Another way to bring diagrams into a programmed model of geometry is to formalize
diagrams in a style similar to the style of formalized language, as mentioned above. Anumber
of recent efforts have been directed toward this goal with some success. Kaufman (1991)
devised a formal theory that can represent both physical and geometric properties of some
simple objects and can be used to prove such things as that a string can be used to pull but no
to push. Shin (1995) has developed a formalization whose rules refer to canonical diagram
elements and define manipulations of them. Stenning and Oberlander (1991, 1992, 1995)
also introduced algorithms for manipulating Venn diagrams. Barwise and Etchemendy (1990,
1992) have developed a programmed system that helps students reason about both first-orde
logic and diagrams by integrating propositional statements and graphical interpretations in a
common system, accessible to the students by a graphical interface and based on precise rule
for manipulating the representations. The system has been pedagogically useful, suggesting
again the value and perhaps necessity of diagrammatic interpretations in the understanding o
propositions. Wang (1995) has introduced a more general descriptive language for diagrams
and has devised a semantics for the language that maintains important logical properties
such as consistency and soundness. This permits the representation of diagrams in a forma

USING DIAGRAMS TO UNDERSTAND GEOMETRY 241

calculus, although the diagram elements are not perceptual objects. None of these theorie:
specify precisely how objects can be recognized in a real diagram or a digitized picture, but
work from a description of a diagram.

The work of Chou (1988) (building on work of Wu 1978 and Ritt 1938) introduced a
combination of diagram and algebra to produce a theorem prover of scope and power. A
diagram for a proposition is drawn and one point is assigned specific numerical coordinates
(typically the origin) to fix the location of the diagram, and a line through that point is selected
as determining the x-axis so that points on it have y-coordinates of zero, thereby fixing the
orientation of the diagram. Variables are introduced for the x-coordinates of the other points
on that line and for both coordinates for those other points that can be chosen arbitrarily.
Finally, other variables are introduced for point coordinates that are dependent on the original
assignments and variables. The hypotheses and conclusion of the theorem are stated in termr
of a set of simultaneous equations that relate all of these variables. An algebraic algorithm is
used to determine if the system of equations has a solution; if so, the proposition is a theorem.
An important side effect of this procedure is that it identifies special conditions that must
hold for the theorem to be valid. Matsuyama and Nitta (1995) also extended Wu's algebraic
method by integrating it with logical problem graph reasoning methods to widen the scope of
applicability beyond Chou's system. These methods use a diagram in a substantive way, but
the algebraic inference procedures do not embody an intuitive spatial semantics that makes
the deduction clear, at least to the nonalgebraist.

Still another approach to exploring the cognitive role of diagrams is to manipulate rep-
resentations of diagrams directly, rather than work from descriptions of classes of diagrams.
One version of this approach is the work of Furnas (1992) who defined problem solving as
a series of applications of rules that find patterns in bitmaps and transform them into other
patterns, thereby requiring no sentential reasoning at all. Edwards (1996) introduced a similar
idea. Anderson and McCartney (1995, 1996) defined a system of picture element manipu-
lation processes that can be combined according to explicit rules into programs that solve
problems strictly by manipulating pixel arrays.

A different variation is the use of simulation processes that operate on bitmap representa-
tions of diagrams. This is an intuitively natural approach that has been discussed informally
for many years, and has been the basis of some specialized models (e.g., Funt 1976, 1977
1980; Larkin 1983; Gardin & Meltzer 1989; and Shrager 1990). There is a body of evidence
supporting the intuitive notion that people reason, atleastin some cases, by “running” a mental
model of a situation, even though the model may not be veridical (Johnson-Laird 1983; Yates
et al. 1988; Hegarty 1992; Hegarty & Ferguson 1993; Hegarty & Just 1993; Clement 1994).

Imagining an event and watching it unfold in the mind’s eye is a common experience
of most people. These commonplace observations have frequently been cited as the basit
for at least some aspects of human thought. Many have suggested a motion picture analogy
wherein one observes a movie in the head. However, the experience is not limited to the
recall of specific past events, but can be used to run thought experiments that envision how
an event might play out, or to plan a method of accomplishing something, such as building
a house or going on a trip. Such imaginations can in fact be counterfactual, as in dreams
or when subjects incorrectly imagine how a physical event would unfold. For example,
many people image that a stone swung in a circle on the end of a string would fly directly
away from the center of rotation if the string would break. This and similar errors have
been experimentally documented (see McCloskey, Caramazza, & Green 1980; Caramazza
McCloskey, & Green 1981; McCloskey & Kohl 1983; and McCloskey, Washburn, & Felch
1983). These observations make clear that the imagination is not simply a replay, but is under
cognitive control, that is, it i€ognitively penetrableto use the terminology of Pylyshyn
(1980, 1984).

242 GOMPUTATIONAL INTELLIGENCE

It does not follow from these facts, however, that mental imageepnisely penetrable.

There may well be certain aspects of it that cannot be altered by choice or the application of
tacit knowledge (see Pinker 1985, p. 44). Furthermore there may be aspects of images thal
provide important inferences if allowed to proceed “automatically” without being explicitly
altered, even though they are alterable. This is the case for nonpictorial representations as
well. Consider a chess player generating a tree of possible moves. Clearly the direction of
growth of this tree is under the cognitive control of the player, but it is constrained to be a
tree of possibilities consistent with the rules of the game. There are well-studied perceptual
phenomena, such as apparent motion, which show that the perceptual system is primed tc
interpret ambiguous stimulus conditions in certain ways, corresponding to the “most likely”
interpretation, even when that interpretation is not correct (Shepard & Zare 1983; Shepard
1994). Conceivably there may be similar biases in favor of certain imaginal manipulation of
mental contents, eveninthose cases where a variety of results could be imagined. Determining
which aspects of images are and are not penetrable and what these biases are is an importal
but difficult theoretical and empirical problem.

Without a precise model of how images are represented and how they may be controlled
cognitively, the motion picture or thought-experiment model can contribute little to a scientific
understanding of thinking. The present work attempts to supply such a model by exploring this
approach in the context of employing diagrams to understand mathematical ideas. Although
the simulation approach differs from heuristic search in a space of propositions and from
translation to a logical calculus, there is no claim that simulation processes are antithetical
to other uses of diagrams, or that propositional reasoning is not involved in understanding
geometry. Rather it seems likely that humans employ a wide variety of methods acting in
concert to achieve their ends.

Closely related to the work described in this paperaGLAB (Borning 1981) and
the geometric constraint engine of Kramer (1992). Although it did not employ a general
simulation methodTHINGLAB provided means for (1) defining classes of geometric (and
other) objects, (2) specifying constraints among them and among their parts, and (3) defining
special methods for maintaining each constraint as a user made alterations to the diagrarr
through a graphical interface. IHINGLAB the emphasis was on supplying a user with an
extensible system that could be used to explore the results of change subject to constraints
The present work also employs constraint maintenance, but does so within a simulation
paradigm. In the work described here the emphasis is on devising a program that can itself
recognize and record the effects of actions prescribed by a human instructor. Although the
goals of theTHINGLAB project differed from the present work, the constraint maintenance
functionality required is similar. In a loose sense, the present work attempts to model what
the THINGLAB userdoes, but only in the context of geometric problems.

Kramer's method establishes a series of movements of objects in three-dimensional space
that will bring them into conformity with a given set of constraints among points, lines, and
figures (for example that two points have zero distance between them, or that a line is tangent
to a circle). The method does not rely on the solution of algebraic equations, but analyzes
the degrees of freedom each component has and systematically chooses a plan that will
positionally fix objects in sequence.

3. DIAGRAMMATIC DEMONSTRATIONS
A diagrammatic demonstration is a series of steps that involves in a substantive way

the construction and observation of a diagram to illustrate a proposition. For example to
demonstrate that the area of a parallelogram is equal to the product of the lengths of its base

USING DIAGRAMS TO UNDERSTAND GEOMETRY 243

FIGUREL. The area of a parallelogram is the same as the area of a rectangle of the same base and altitude.

GIGI®I®le] J@l _

900000 O
000000 e
00000000

OlelCeloe|e
O00eDen
0000 0

FIGURE2. 143454 ---+ (2n — 1) = n? (after Nelson 1993).

and altitude (see Figure 1), a teacher might draw a parallelogram, construct a perpendicular
from one vertex to the opposite side as shown, “slide” the resulting triangle to the other side,
point out that a rectangle has now been formed, that the rectangle has the same area as th
parallelogram because the rigid translation of the triangle did not alter area, and if the student
knows the formula for the area of a rectangle, the correctness of the target proposition will
be apparent.

Such demonstrations are not limited to geometry; for example number theory is a favorite
topic as well. Figure 2 is one of many examples found in Nelson (1993). It illustrates the
arithmetic proposition that the sum of the firsbdd integers isi>. This demonstration is
slightly more subtle, and it may be necessary for the teacher to provide additional hints. In
this example shading is used to illustrate that increasimg1 adds a half “border” to the area
of the previous square, and the number of additional circles is always the next odd number.
The demonstration turns on the geometric property that the area of a square with sides of
lengthn is n?, with the circles standing proxy for length units (small squares would perhaps
be more precise, but circles usually suffice and make theirerositymore prominent).

Diagrammatic demonstrations in most cases employ verbal symbols to state the con-

244 GOMPUTATIONAL INTELLIGENCE

jecture, as names for components of the diagram needed to specify construction sites anc
make other references, and as algebraic or verbal statements of intermediate propositions
Nonetheless, the nonverbal aspects of the diagram play substantive roles. In general the
diagram makes use of the spatial relations inherent in the paper on which they are drawn.
For example, placing A to the left of B and B to the left of C necessarily results in A being
to the left of C; this transitivity of “to the left of” is captured by the topological properties of
the paper. Similarly, geometric properties such as lengths of line segments are recorded anc
“enforced” by the properties of the paper.

It will be noticed that most of the creative work of a demonstration is done by the teacher.
By limiting the task to understanding demonstrations provided by others, the additional com-
plications of theorem invention and proof discovery are avoided. The remaining task however
is by no means trivial. The constructions must actually be performed and recorded, the stu-
dent must understand how to perform specified alterations (rigid translation in the example of
Figure 1) in such a way that geometric constraints are maintained, new facts that result from
constructions and alterations (such as the materialization of a rectangle) must be noticed, it
must be confirmed that some objects are composed of others (in Figure 1 that the original
parallelogram is partitioned into a quadrilateral and a triangle and that the final rectangle is
partitioned into the same quadrilateral and an equivalent but displaced triangle), and a searct
may heed to be conducted through known general algebraic or geometric knowledge (such
as transitivity of equivalence relations) to find support for the putative conclusion.

4. THE ARCHIMEDES REPRESENTATION

Any representation system must specify three things: the syntax of the basic data structure
formats in which information is stored, precise definitions of the processes that may be used
to create specific models, and precise definitions of the processes used to access a mode
The first component of a representation has been given various names by those who attemp
a clear distinction between it and the processes. | haveraae@.indsay 1961), Larkin and
Simon (1987) usdata structureand Tabachneck, Leonardo, and Simon (1994 Yaiseat,
but none of these terms clearly embodies the distinction sought and none has been widely
adopted. | have more recently usegresentation-propeflLindsay 1988) and will continue
to do so in this paper, although it is perhaps awkward.

Failure to specify the process components of a representation invariably leads to con-
fusion. This is amply illustrated in the “imagery debates” that have been pursued for years
(Kosslyn 1976, 1993; Kosslyn & Hatfield 1984; Kosslyn & Pomerantz 1977; Pylyshyn 1973,
1981; Shepard & Cooper 1982; Glasgow 1993). In the present work an attempt has been
made to identify precisely a set obnstruction processebat form a basis set from which all
constructions are made by composition. The set of construction processes therefore provides
a functional description of some of the abilitieSA®fCHIMEDES-STUDENT. This is an attempt
to divorce the functional description from the computational implementation, in the sense that
if the underlying representation-proper is altered and a different computational architecture
is used (such as a neural net or cellular automaton) the behavior of the system might become
more (or less) efficient, but the analysis of the representation problem would be unchanged.
Correspondingly, there is a set of functionally describedeval processethat access the
representation-proper to determine properties of the instance currently represented.

A specific physical situation or event is represented Inycale] whose structure obeys
the formation rules of the representation-proper and which can be altered and accessed by tht
construction and retrieval processes. For example, architectural drawings are a knowledge
representation system whose construction processes use T squares and pencils and whot

USING DIAGRAMS TO UNDERSTAND GEOMETRY 245

retrieval processes use human vision, supported by knowledge of the notational conventions
of the system. We of course do not have a computational description of these processes.
The representation-proper is a set of certain configurations of graphite on pieces of paper
(those that contain lines, text, etc. in certain but not all arrangements). The object at 1600
Pennsylvania Avenue in Washington, D. C. could be modeled on a specific set of pieces of
paper with specific placements of graphite, called “plans and elevations of the White House.”

ARCHIMEDES-STUDENT is an application of a more general system caledHIMEDES
that defines a representation system for diagrams. Thus, for example, the White House plans
might be represented lRCHIMEDES. The construction and retrieval processes in this case
would be List Processor (LISP) functions, and the representation-proper would be the abstract
set of LISP structures that could in principle be created with these functionsrR@nMEDES
model of the White House plans (not of the White House) would be a specific set of LISP
expressions that preserve some of the information from the architectural drawings, which in
turn preserve some of the information from the physical structure in Washington.

ARCHIMEDES-STUDENTCcOmMbineRCHIMEDESWiIth procedures for following a sequence
of steps provided by someone attempting to demonstrate a geometric proposition such as ¢
theorem. A demonstration is presented toAREHIMEDES-STUDENT program as a series of
demonstration steps consistingaifnstructionsntermingled withpropositional-notations,
instructions-to-obseryeand agoal statement The goal statement is a statement of the
theorem/relation to be demonstrated. The constructions are instructions on how to construct
and alter the diagram to illustrate the theorem/relation. One type of construction specifies that
a new segment or other component of the diagram is to be created with a specified relation to
already created components. A second type of construction spegitiation constraints
These are properties that the program is to attribute to already existing components, such as
that a specific segment must remain of fixed length or that a specific object is rigid. Situation
constraints are in contrast to the constraints that follow from spatial properties (topological
and geometric relations) that are inherent in the representation scheme itself and are always
enforced. A third type of construction issimulation constructionin which one or more
objects is moved with the remaining components being altered as required by the spatial and
situation constraints of the problem. Propositional-notations permit the explicit introduction
of algebraic and geometric knowledge that has not been previously available to the system,
for example, a formula for the area of a figure. Instructions-to-observe are attention-focusing
directions that limit the program’s search in cases where that search is costly.

Although the program can work from a script, it is generally more convenient to use it
interactively. After each construction step the program creates or alters its representation and
in the process creates names for the points and other components that it defines (the user coul
supply these names if desired), and these names (single characters for points, for example
can then be used to refer to the points when specifying future steps. The program does not
allow the user to refer to objects by pointing, although this could be readily implemented.

The ARCHIMEDES-STUDENT program represents a diagram by means of three structures
in computer memory: a two-dimensional array of points with integer-valued coordinates, an
explicitly connected network of these points, and a set of frames encoded as LISP structures.
Each point (pixel) constructed is placed at a specific location in a two-dimensional array by
assigning it specific integer indices (coordinates). Each named segment is represented a:
a list of the points lying between its endpoints. Because the indices are integers, the pixel
array is quantized. This means that line segments are not idealized smooth lines except
when they run along a principal horizontal, vertical, or diagonal axis. The segment point
indices are computed by the Bresenham/Pittway MidpointLine algorithm (Foley et al. 1990).
“Anti-aliasing"—the addition of extra pixels to make a display of the segment less jagged
in appearance to a human viewer—is not used. The algorithm determines a unique but not

246 GOMPUTATIONAL INTELLIGENCE

necessarily straight sequence of pixels between any two points, but the movement of one enc
point by even one pixel, even in the direction that best approximates extending the length of
the line, could cause other segment points to move as well. The representation is also used tc
produce a display for the user to observe, but the display is not in any sense directly observed
by the program, which can only access its representation of the diagram.

The points of the array are also explicitly linked, using the usual LISP conventions, by
associating each point with a list of its neighbors. This information is redundant in that
it can be derived from coordinate information, but is included to make some connectivity
computations possible without arithmetic operations.

The program can represent other geometric objects in addition to points and line segments,
namely angles, triangles, squares, rectangles, parallelograms, quadrilaterals, and polygons
Each geometric-object type has an associated LISP-structure type. These are data types C
Common LISP that define classes of representations with given properties (slots) that can
be assigned specific values. Each specific geometric object of which the program is aware
in a particular diagram has ame and that name is associated with a specific instance
of a LISP structure for its type. The LISP structure contains other information (via slots
and values) about any situation constraints that have been imposed on the geometric object
Associated with the LISP structure of the name is an instance of another LISP structure
(the gridobjec) that contains information about the specific components of the geometric
object; these components are similarly described and ultimately they refer to specific point
coordinates. To illustrate, the LISP-structure formats for a square are shown in Figure 3 along
with a specific instance. Status and constraint slots record situation constraints. Status slots
contain one of a set of symbols, sucHiaedor arbitrary. Situation slots contain an arbitrary
LISP predicate; a new constraint is added by combining it by conjunction to the old one, thus
the default (always true) predicate is “(and t).” LISP structures for other geometric objects
are defined in an analogous manner.

Each of the geometric objects is defined in terms of its component points and segments,
and segments are defined in terms of their endpoints. Each endpoint of a segment, and
hence each vertex of another geometric object, is named. The collection of LISP structures
that are part of a particular representation (model) determine the set of geometric objects of
which the program is “aware” and for which it has names. This collection includes every
geometric object whose construction the user has instructed. It also includes other geometric
objects that may arise indirectly by construction. For example constructing the diagonals
of a parallelogram indirectly creates eight triangles. Humans generally, but not always,
noticethese indirectly constructed geometric objects as a matter of course. The program
does likewise by examining its representation after each demonstration step and augmenting
its inventory of geometric objects. However, unlike for humans whose visual perception is
extremely efficient at such noticing, this step is sometimes computationally expensive for
the present implementation aRCHIMEDES, and can produce a profusion of objects that
are irrelevant to the demonstration. Consequently it is possible for the user to instruct the
program not to notice everything automatically. In that case it is necessary for the user to
use an instruction tobserve—that is, confirm the existence of—those geometric objects that
will turn out to be essential to the demonstration.

For many computations, most notably the simulation constructions, the points of a seg-
ment between its endpoints are not directly involved. All simulations are movements of
named points, with segments and other geometric objects “going along for the ride.” By this
I mean that as the endpoints are moved the segment points are reconstructed by the algorithn
when needed. Thus the jaggedness due to the coarseness of quantization has no direct effe
on these computations. On the other hand, some computations involve edge following and
marking. For these computations each specific connecting point is visited.

USING DIAGRAMS TO UNDERSTAND GEOMETRY 247

A squarename is a structure recording information about a named square;
it has the following features with values of the indicated

type: '
(displayform of type string)
(gridsquare of type gridsquare)
(sizestatus of type symbol)
(sidelengthconstraints of type predicate)
(orientationstatus of type symbol)
(orientationconstraints of type predicate))

A gridsquare is a structure recording information about a square; it has the
following features with values of the indicated type:
(names of type list-of-squarnames)
(vertex-1 of type pointname)
(vertex-2 of type pointname)
(vertex-3 of type pointname)
(vertex-4 of type pointname)
(side-1 of type segmentname)
(side-2 of type segmentname)
(side-3 of type segmentname)
(side-4 of type segmentname)
(sidelength of type real-number)
(side-1-bearing of type real-number))

Example: Lisp symbol abcd might be bound to the following structure
(displayform "abcd")
(gridsquare alpha)
(sizestatus 'fixed)
(sidelengthconstraints (and t))
(orientationstatus 'arbitrary)
(orientationconstraints (and t))

Example: gridsquare alpha might be bound to the following structure:
(names (abcd))
(vertex-1 a)
(vertex-2 b)
(vertex-3 ¢)
(vertex-4 d)

(side-1 ab)

(side-2 bc)

(side-3 cd)

(side-4 ad)
(sidelength 12)
(side-1-bearing 30))

FIGURE3. Examples of name and grid structure representations.

248 GOMPUTATIONAL INTELLIGENCE

The object types such as triangles are devices that permit expressing certain general-
izations. For example, a right triangle object will be associated with any right triangle,
independent of position, orientation, and scale. This is important to enable the discovery and
expression of generalizations, as described in Section 9.

5. CONSTRUCTION AND RETRIEVAL PROCESSES

Construction processes modify the representation of a diagram and retrieval processes
access information about a diagram from its representation. These sets of processes art
intertwined, in that performing a construction often requires obtaining knowledge about
the current diagram and construction processes employ retrieval processes to obtain this
information. In writing theaARCHIMEDES program, an attempt has been made to distinguish
these two classes of process and to identify them by name. Each process is a LISP function,
although in general they are executed for their side effects (altering the memory state) rather
than their value.

The names of the functions have been chosen to be descriptive. By convention, most
construction process names begin with “construct” and most retrieval process names begin
with “retrieve.” However, to avoid excessive awkwardness in names these conventions have
been relaxed as follows. Retrieval functions that “observe” (examine the representation to
verify a statement provided by the demonstrator) begin with that prefix rather than “retrieve.”
Processes that “erase” (by removing parts of a representation) begin with that prefix rather
than with “construct.” Composite processes that “notice” (both examining the representation
and constructing newly found geometric objects) begin with that prefix. Construction pro-
cesses that simply record propositional information use the prefix “remember.” Additionally,
retrieval processes that test for a condition and evaludtadmr false(that is, processes that
are predicates) use the prefix “p-”" reversing the LISP convention of ending predicate names
with the suffix “-p.”

If a demonstrator uses the lettaras a parameter, this evaluates to pointname LISP
structure, to which the function is applied. This is the standard form of reference to geometric
objects named by the program. A second form of reference is a gridobject. For example, the
pointname that is the value of the symbdias an associated LISP structure (the “gridpoint”)
that contains information about the array representation of the geometric object, for example
its integer coordinates. The demonstrator can refer to this geometric object by wdting (

a), but this is in general unnecessary as the pixel structures are used only internally.

For each object type there is a process that creates an instance, another that copie:
an instance, and another that erases an instance. For example, (construct-and-name-poir
integer integey creates a pointname using the next unused character as a name and associate
it with a newly constructed gridpoint associated with the indices given as arguments. The
process (construct-straight-paghidpoint gridpoin) finds and marks the pixels between the
arguments and associates the list with the appropriate segment name. There are processe
that create segments perpendicular or parallel to a given segment through a given point; these
use retrieval processes that test for the appropriate relationship. For example, (construct-
and-name-perpendicular-from-pointnasggmentname pointhame direction stop-predicate
creates a segment that beginspatntname(which is onsegmentnameand continues in
direction until stop-predicateevaluates to true. The process (construct-square-on-segment
segmentname directipmises the preceding to construct a square séymentnamas one
side, wherdlirection determines on which side gegmentnamthe square will lie. There
is also a set of construction functions that appropriately record situation constraints, such as
(construct-unfix-pointnampointnamg.

USING DIAGRAMS TO UNDERSTAND GEOMETRY 249

The function (simulation-construction) initiates attempted alterations using the method
described below. The alteration to be attempted is initialized by one of a number of functions
that can be evaluated before calling (simulation-construction). For example, (rotate-rigid-
triangle trianglename pointname clock-direction stop-predi¢astablishes a process that
will apply a movement to one vertex afianglenamein the direction that will rotate the
triangle abouipointnamein either the clockwise or counterclockwise direction ustdp-
predicateis true. Note that the direction of displacement may change as the triangle rotates.
There are similar setup functions for other types of movements.

Other construction functions handle propositional information. For example, (remember-
goal-proposition) records the goal of the demonstration, and (remember-area-equivalence
list-of-objects list-of-objecjgecords the fact that the total areas of the objects on the two lists
are equal.

The noticing functions make use of a process that finds all closed paths, that is, lists of
segments that begin at one point and tie together into a sequence that ends at that point. Othe
functions use this inventory of closed paths to find segments, triangles, etc. by testing to see
which paths meet the requirements of that type; if no LISP object exists for such discovered
objects, they are created and named appropriately.

Observing functions are supplied with lists of pointhames. If these are connected in a
closed path, the appropriate LISP objects defining that object are created (unless they already
exist); if they are not so connected, the function reports a failure to observe. There are also
observing functions for propositional information. These may involve making inferences
based on the previously recorded set of facts. For example, if area equivalences betweer
A and B and between B and C have been recorded, this will confirm the area equivalence
between A and C and record it. If the function is unable to confirm the equivalence, it will
report a failure to observe.

These functions are those that are required by the demonstration to be explained in this
paper. More details about how they operate are given in the illustration. There are other
functions in the system that are not involved in the examples and are not further described in
this paper.

6. IMPLEMENTATION OF COMPUTATIONS

Varieties of skill and knowledge have been represented in a variety of ways in order to
facilitate different styles of computation for the different skills. For example, translations and
rotations that preserve metric properties are readily done arithmetically because arithmetic is
computationally efficient on conventional computer hardware and a model of the Cartesian
plane combined with the conventional distance and angle metrics is a good representation of
geometric properties. Other computations are less efficiently done by arithmetic. Some of
these, such as discovering enclosures, can be done by path following and by using the point
network representation. Other knowledge requires that information must be associated with
particular geometric objects in a diagram, such as properties that define its type (e.qg., triangle),
naming conventions, hypothesized properties that must be maintained (such as the equilatera
property), and hypothesized relations to other geometric objects (such as congruency). This
information is efficiently represented with the LISP structures.

Even with this variety of representations there are certain useful processes that could
better be done by other means, means that could be much more efficiently carried out on
another type of computer, such as an array processor. For example, one way to infer that a
boundary is closed would be to use a "“visual routine” of the sort suggested by Uliman (1985).
Here is one such procedure, based on “color spreading.” Find three adjacent boundary (black)

250 GOMPUTATIONAL INTELLIGENCE

pixels and select two nonboundary (white) pixels adjacent to the central black one but not
immediate neighbors of one another; color one red and the other green. Then iterate, coloring
the neighbors of any red pixel red if they are white or red, but not if they are black, and similarly
for green pixels. Stop if a red pixel is adjacent to a green pixel in the north, east, south, or
west direction; conclude “not closed.” Else, stop when no pixel changes to red or green
during an iteration step or when all pixels are black, red, or green; conclude “closed.” Note
that the structure of the Cartesian plane is exploited by the adjacency calculation, but not
arithmetically. This process would be very fast on a parallel array processor, whereas a path
tracing process would not be aided by parallel operations.

The construction and retrieval processes have been defined in terms of what they ac-
complish with respect to a diagram. For example, the predicate p-equal-length is to respond
affirmatively if and only if the two segments have the numerically same “length.” There are
any number of ways in which the process might be implemented. The implementation of
course depends on the representation-proper. If a segment’s “length” is stored as a digitized
real number in a memory location pointed to by the segment’'s name, then the two lengths
could be retrieved and compared numerically. If segments have associated endpoints that
in turn have associated coordinates (as wiRTHIMEDES), then the lengths can be com-
puted by a metric formula (such as Euclidean distance) and compared numerically. Another
representation might require the counting of pixels. However, these options do not exhaust
the possibilities. For example, lengths could be represented in such a way that the segment
representations could be “moved” to one another and 1-1 correspondence tested; this com:
putation would also work with nonstraight curves. Still other representations might employ
nonstandard digital hardware or nondigital hardware. Of course neural representation must
be possible, although there is at present little knowledge of what form it might take.

These differentrepresentations and different physical implementations willin general lead
to quite different computational speeds. Short computational time is essential to the success
of a model of diagrammatic reasoning. The computations must be sufficiently fast that the
potential efficiency of constraint-based diagrammatic representation is realized if this idea
is to offer any assistance with the frame problem (Lindsay 1988). Furthermore, the relative
time as well as the overall time of certain computations, and how time increases with problem
complexity, must be appropriate if a model is to serve as a detailed and useful psychological
theory rather than only as an instance of artificial intelligence or as a general cognitive theory.
The ARCHIMEDES model does not directly address these efficiency issues. Indeed there are
certain processes in their present implementation on a conventional computer that are clearly
much less efficient than human perception and cognition. For example, noticing a triangle is
based on a search algorithm that is slower and less direct than human perception. This doe:
not automatically invalidate the psychological relevance of this work however. A parallel
array processor or an efficient machine vision program may someday make this noticing
process efficient and bring the speeds of the various processes into proper registration with
human abilities. Inthe meanwhile, the model proposes that certain processes are sufficient for
its diagrammatic understanding tasks, and that they are necessary if the representation-prope
is composed of the postulated geometric objects and relations. This is possible because the
processes have been specified at the level of geometric objects.

7. SIMULATION CONSTRUCTIONS

As construed here, simulation has four aspects: {@récular instance of a situation,
rather than an abstract description of a class of situations, is represented; (2) the parts of

USING DIAGRAMS TO UNDERSTAND GEOMETRY 251

the situation interact according to explicit causal laws; (3) the behavior is restricted to obey
certain constraints; and (4) the process is incremental.

The most straightforward implementation of this process would be to simulate physical
situations by employing the classical methods of mathematical physics. After all, the real
number line is a model of one-dimensional space, including properties such as continuity,
density, order, and direction. Vector algebra introduces dimensionality and permits the defini-
tion of geometric concepts, such as distance, as functions of vectors. The laws of Newtonian
mechanics supplement this mathematical description of space with laws that describe the
acceleration of mass under the influence of forces.

The problem of computational complexity, however, makes this approach, at least in its
most general form, impractical. However, we can restrict the analysis to “critical points,” such
as endpoints of line segments and intersections of curves, and interpolate the connecting lines
and curves. This immensely simplifies the simulation of the behavior of points interacting
under the effects of connectivity. In this way, basic spatial relations may be captured by a
simulation on contemporary hardware and are conceivably done in brain circuitry.

However, the imposition of additional situation constraints, such as requiring certain
pairs of distances to remain equal or requiring that a point remain on a given curve, adds new
computational burdens. Such constraints are essential in the statement of theorems and th
representation of problems and puzzles. As noted, these situation constraints are in additior
to the constraints of space and physics that the representation is supposed to embody. In the
general case, adding constraints within the mathematical framework discussed will lead to sets
of nonlinear equations for which there are no general solution methods that are polynomial
time in complexity. There are alternatives to finding closed algebraic solutions, however.
Kramer (1992) uses degree of freedom analysis to create a system that is able to plan a
sequence of movements that will bring a set of objects into compliance with a collection of
constraints of the sort employed here, even though they begin in an arbitrary configuration
of noncompliance. His system is computationally efficient.

The present problem, however, is even easier because it is computationally much less
expensive tanaintainconstraints under incremental changes than it is to discover a config-
uration that obeys them. Thus, once a diagram has been constructed from a propositional
description, it is possible to forgo repeating that task while generating future legal states with
a high degree of accuracy and much less computation. Modifying diagrams incrementally
provides an envisionment of the geometric system in the sense that qualitative simulations
of kinematics (Forbus 1984) and dynamics (de Kleer & Brown 1984) do for simulated phys-
ical systems. The envisionment may then be used in problem solving and conjecturing by
achieving or failing to achieve certain states.

The simulation-construction function aRCHIMEDES works in an incremental fashion
by making prescribed movements of specified points and then checking to see if the situation
constraints are violated. If no violation has occurred, the program tests to see if a prescribed
stopping condition has been achieved and, if so, returns the resulting diagram and halts with
success. If the stopping condition has not been achieved and no situation constraints are
violated, the program repeats tleigcleby again making the next alteration that is called for.

If one or more constraints is violated as a result of movement during a cycle, the program
enters an inner iteration loop, at eastiepof which the violated constraints are examined.
Each violation yields a stress on certain points. For example, if a segment is too long, its
endpoints are stressed in the directions that move them closer. After all violated constraints
add stresses, net stresses are computed by vector addition and movements are proposed
those grid directions that could reduce the net stress. Generally there are a number of suct
movements and combinations of movements possible, and the one leading to the least overal
stressinthe diagramis chosen. This may or may not resultin the satisfaction of all constraints;

252 GOMPUTATIONAL INTELLIGENCE

if not, the others are tried in turn until one is found that produces a constraint-satisfied diagram
(at which point the inner iteration ends and the next cycle is begun), or all have failed. If
all fail, the best is chosen and another step taken to resolve the impasse. If success is no
achieved in this manner, and the stopping condition has not been achieved, the simulation
ends with failure.

8. DIAGRAMMATIC DEMONSTRATION OF THE PYTHAGOREAN THEOREM

The program has been applied successfully to several demonstrations, one of which will
be described in detail here. The example is a diagrammatic demonstration of the Pythagorear
theorem: The square of the length of the hypotenuse of a right triangle is equal to the sum
of the squares of the lengths of the other two sides. This demonstration is one of many such
to be found in Loomis (1940). The diagrams for the complete demonstration are given in
Figure 4; the reader may wish to examine this figure before reading the explanation in order
to understand better what is involved and to see why the demonstration is usually compelling
to those who understand it.

Understanding the relation between the diagram and the algebraic statemertt that C
A2 + B? involves identifying the algebraic squaring of a number representing the length
of a segment with the geometric square constructed with that segment as one side. This
identification is merely implicit in the program, which has no independent representation of
the algebraic relation, nor indeed any substantial knowledge of algebra. For the program, the
task is simply to find a justification for each of the prescribed demonstration steps, such that
the area of the hypotenuse square (which the program knows only as a particular square name:
abde)is rearranged into two smaller squares that can be superimposed respectively on the othe
two initial squares. Thisisthe only sense in which the program understands the demonstration.
Note that this understanding is limited to the particular diagram. Understanding that the
relation is true of right triangles in general is not automatically achieved by following this
one case, but requires additional methods discussed later.

The construction steps for this demonstration are given in Figure 5 and are cross-
referenced to the diagrams of Figure 4. Names of points appear in Figure 4 at the steps
when they are constructed. To keep the figure uncluttered a name is not repeated unles:s
the point moves. To make the transcript of steps easier to follow, Figure 6 shows in one
drawing most but not all of the constructed lines and point names. The following describes
more specifically what computations underlie each of these steps. Each demonstration step i
sequentially passed to a loop that executes its functions, then notices changes (new geometri
objects) that have arisen, then displays the results.

Step 1 sets a paramet@ompliance to 1. This parameter determines the coarseness with
which the program observes its representation. For example, a retrieval function that is asked
to determine if two points are at the same location will reply affirmatively if and only if the
distance between them is less than or equal to the compliané¢eorpliance of 1 means
that this will occur only if the points are identical or one point apart in a principal (above,
below, left, or right, but not diagonal) direction.

Step 1 creates three point objects with names a, b, and c and assigns them to the coordinate
specified. It then constructs three segment objects and assigns them names ab, bc, and a
it also makes ba an alias for ab, etc. It then constructs the list of segment points for each
of these segments and marks all these points “black.” Finally, it constructs a triangle object
whose component sides and vertices are appropriately referenced, and names the object ak
with aliases achb, bac, bca, cab, and cba. The aliases are defined merely so that the user doe
not need to know the details of a naming convention in order to reference an object. Other

USING DIAGRAMS TO UNDERSTAND GEOMETRY 253

18 18-21
w__ % W %

FIGURE4. Diagrammatic demonstration of the Pythagorean theorem.

254 GOMPUTATIONAL INTELLIGENCE

Pythagorean Proof Demonstration for ARCHIMEDES-STUDENT
This is a list of steps that is sequentially executed by the construct-notice loop

;STEP 1
;Constructing right triangle
(setf *compliance 1)
(construct-and-name-point 200 200)
(construct-and-name-point 240 170)
(construct-and-name-point 240 200)
(construct-and-name-triangle-from-names a b c)

;STEP 2
;Constructing square on the hypotenuse
(construct-and-name-square-on-segment ab :clock-direction t)

;STEP 3
;Constructing square on the long-leg
(construct-and-name-square-on-segment ca :clock-direction nil)

;STEP 4
;Constructing square on the short-leg
(construct-and-name-square-on-segment be :clock-direction t)

;STEP 5
;Set target of demonstration: abde = acfg + cbih
(remember-goal-proposition (list 'equal-area (list 'abde) (list 'acfg 'cbih)))
(setf *notice-flag nil)

;STEP 6
;Constructing extension of long-leg-square side
(construct-and-name-segment-extension-to-segment ag a de)

;STEP 7
;Constructing extension of short side leg
(construct-and-name-segment-extension-to-segment bi b aj)

;STEP 8
;Constructing perpendicular to first construction
(construct-and-name-perpendicular-from-pointname aj ¢)

;STEP 9
;Observe Decomposition: abde = akb + ael + lej + bkjd
(observe-decomposition abde (list 'akb ‘'ael 'lej 'bkjd))

;STEP 10
;Constructing and rotating triangle akb/mnb
(construct-copy-of-point a) ;this is m
(construct-copy-of-point k) ;this is n
(construct-and-name-triangle-from-names m n b)

(remember-area-equivalence (list 'akb) (list ‘'mnb))

;The following sets goal (stopping-condition) and also defines the

;perturbation that will be made at the start of each simulation cycle

(rotate-rigid-triangle 'mnb 'b '(p-retrieve-colinear (locus bm)(locus bd))
:clock-direction nil)

(construct-unfix-points m n) ; This tells simulate what is moveable

(simulation-construction :namedpoints '(m n b) :namedsegments ‘(mn nb bm))

FIGURES. Steps of the diagrammatic proof of the Pythagorean theorem. Continued following pages.

USING DIAGRAMS TO UNDERSTAND GEOMETRY 255

;STEP 11
;Constructing and rotating triangle ael/oep
(construct-copy-of-point a) ;this is o
(construct-copy-of-point 1) ;this is p
(construct-and-name-triangle-from-pointnames o € p)
(remember-area-equivalence (list 'ael) (list 'oep))
(rotate-rigid-triangle 'oep 'e '(p-retrieve-equal-locus o d)
:clock-direction t)
(construct-unfix-points o p) ;This tells simulate what is moveable
(simulation-construction :namedpoints (o e p) :namedsegments '(oe ep po))
;STEP 12
;Observe Area-equivalence abde = mnb + oep + ¢jl + bkjd
(observe-area-equivalence (list 'abde)
(list 'mnb 'oep 'ejl 'bkjd))

(setf *notice-flag nil)

;STEP 13
;Observe Polygon
(observe-polygonbk1lepn)
(setf *notice-flag nil)

;STEP 14
;Observe Decomposition: bklepn = mnb + oep + ¢jl + bkjd
(observe-decomposition bklepn (list 'mnb 'oep ‘ejl 'bkjd))
(setf *notice-flag nil)

;STEP 15
;Constructing segment jq
(construct-and-name-segment-extension-to-segment 'lj j 'pn)

;STEP 16
;Observe Decomposition
(observe-decomposition bklepn (list 'lepq 'bkqn))
(setf *notice-flag nil)

;STEP 17
;Constructing and translating square rsuv/bkqn
(setf *compliance 0.5)

(construct-copy-of-square (locus 'bkqn))
(remember-area- equlvalence (list 'bkqn) (list 'rsuv))
(translate-rigid-square 'rsuv 'north '(p-retrieve-equal-locus r f))
(construct-unfix-points r s u v) ; This tells simulate what is moveable
(simulation-construction :namedpoints '(r s u v)

:namedsegments '(rs su uv vr))

;STEP 18
;Constructing and translating square wz$%/lepq north, then east
(construct-copy-of-square (locus 'lepq))
(construct-remember-area-equivalence (list 'lepq) (list 'wz$%))
(translate-rigid-square 'wz$% 'north '(p-retrieve-equal-locus % a))
(construct-unfix-points w z § %) ;This tells simulate what is moveable
(simulation-construction :namedpoints (wz$ %)

:namedsegments '(wz z$ $% %w))
(translate-rigid-square 'wz$% 'east '(p-retrieve-equal-locus % h))
(construct-unfix-points w z § %) ;This tells simulate what is moveable
(simulation-construction :namedpoints '(w z $ %)

:namedsegments '(wz z$ $% %w))

256 GOMPUTATIONAL INTELLIGENCE

;STEP 19
;Observe Decompositions rsuv=acfg & wz$% = cbih
(observe-decomposition rsuv (list 'acfg))
(observe-decomposition wz$% (list 'cbih))

(setf *notice-flag nil)

;STEP 20
;Observe Area-equivalences bkqn=acfg & lepg=cbih
(observe-area-equivalence (list 'bkqn)(list 'actg))
(observe-area-equivalence (list 'lepq)(list 'cbih))
(setf *notice-flag nil)

;STEP 21
; Verify target proposition
(observe-target)

(setf *notice-flag nil)

;End of Demonstration

FIGURES. Continued.

o] q d-m-o n

FIGURE6. Names of points in the Pythagorean theorem demonstration.

polygons can be referred to by any sequence of vertex names that follows the perimeter in
either direction.

Steps 2, 3, and 4 construct squares on each side of the triangle. This entails the con-
struction and naming of new point and segment objects, and all of these are thus known to
the program. The actual construction of a square requires the construction of perpendiculars
from its endpoints, and then the connection of the new points to form the fourth side. Notice

USING DIAGRAMS TO UNDERSTAND GEOMETRY 257

that it is necessary to specify a parameteck directionthat determines on which side of the
segment the square is to be constructed. By convention, the primary name of a segment is
the concatenation of the names of its endpoints in alphabetical order. Thus if the user refers
to a segment as ba, its primary name is still ab and the “direction” of the segment is from
point a to point b. Thelock-directionparameter when set tomeans that the square is “to

the right of” the directed segment, that is, to follow the perimeter one moves from a to b and
then turns clockwise 90 degrees.

Step 5 specifies the statement that is to be demonstrated. In this instance it is introduced
as soon as the diagram contains the figures to which it refers, but it could be introduced at
a later time as well. The statement is simply stored until the program is instructed to try to
verify it. Note again that the statement is specific to this particular instance, and thus is not
an accurate statement of the universal generalization that applies to all right triangles.

Step 5 also set¬ice-flag tonil. By default this parameter is set tat the start of
each demonstration step, and when that is the case the program makes a systematic scan
its representation at the completion of each demonstration step and notices any objects tha
it has not previously noticed, that is, for which it has no LISP-structure. As noted above, this
can be computationally costly in a complex diagram, primarily because there are many such
objects. For example, if two named points b and c are identified on a segment ad, there are
six segments identified: ab, ac, ad, bc, bd, and cd. Furthermore, any three of these might
form a triangle; in fact none do because all such triangles are degenerate, but this must be
determined. This again is a process that human perception appears to do effortlessly, but
which requires extensive arithmetic computation with the present representation. A human
can readily identify all of these segments and “triangles,” but is likely not to do so unless they
become important. Thus in some cases the program may notice more than a human normally
will.

The noticing program considers only named points—those that have been specifically
identified by the demonstrator either by direct reference or because a construction requires
them. If a construction results in the crossing of two segments and the intersection is not
specifically pointed out, neither that point nor the four new segments containing it will be
recognized automatically, unless they are found in the process of looking for new figures.
In this case the program will see fewer objects than a human perceiver presumably will
normally see. Thus the program makes specific predictions about which newly emergent
diagram features will be noticed, and these predictions could be compared experimentally to
typical human performance.

A similar issue arises in the case of relations among objects. Again, new relations such
as congruency or equality can arise by construction. These can be many and varied, and nc
attempt has been made to have the program automativatige them. Therefore, critical
relations that arise must be pointed out to the program by the demonstrator with an instruction
to observehem.

Steps 6, 7, and 8 perform basic construction processes at the designated places in the
diagram. The procedure for doing these particular constructions is to identify a target and
mark each point of the target a nonblack “color.” Points are then added to the segment being
constructed until a point of the target color is encountered, then all points are repainted black.
Line segments are extended one point at a time by moving to the next point that best approx-
imates the direction of the original segment, or, in the case of constructing perpendiculars,
in the direction of the negative reciprocal of the target’s slope. In general, directions are
determined arithmetically.

Inthe example, the demonstrator avoids some problems by specifying the end from which
an extension is to be made (note the middle argument in the construction functions), but a
program that does more than follow a demonstration will need to be equipped with the ability

258 GOMPUTATIONAL INTELLIGENCE

FIGURE7. Constructing the intersection of two segments.

to determine the direction from a point to a line (and the related ability of determining on
which side of aline a pointlies). One way of doing this has been implementetfiIMEDES;

it is based on a form of Euclid’s parallel postulate. If an end of one segment is connected to
the end of the other it forms a transversal (say from b to d in Figure 7). The measures of the
corresponding interior angles then indicate whether the lines converge in the directions of the
connected ends (when the sum exceeds 180 degrees) or of the opposite ends (when the sum
less than 180 degrees), or if the lines are parallel and hence do not converge (when the sum i
exactly 180 degrees). The actual computation is slightly more complex because the program
has no direct way of knowing that the points are at “the same end” and so must consider the
case where, say, b and ¢ were connected. This can be detected, however, because one or bo
interior angles is greater than 180 degrees. Thus it is possible to write a general function
that extends a pair of nonparallel segments until they intersect. This function is based on
arithmetic computations and is rapid, but it does not seem to be as direct as human visual
perception.

Step 9 is an instruction to observe that the hypotenuse square has now been decompose
into four objects, that is, that the four objects are entirely contained within the boundary of
the square, and every point within the square is contained in exactly one of the four objects.
The program verifies that this is the case. Such a computation could be done by arithmetic on
coordinate points, but this would be very complex and in the general case of arbitrary shapes
might be intractable. One alternative would be to use a “color spreading” visual routine such
as that described earlier. This method does not well match the current implementation and
hardware, so a boundary following algorithm is used instead. To begin, each point on the
boundary of the putative container is marked red. Next each point on the boundary of each
putatively contained object is considered in turn. If a boundary point is black (that is, it has
never been visited), it is marked green. If itis red (that is, it lies on the container boundary)
it is marked blue. If itis green (that is, it has already been found as a noncontainer boundary
of a contained object) it is marked yellow. If it is blue or yellow, the function immediately
returns nil because this is a third tracing of an exterior or interior boundary, indicating that
two contained objects are superimposed. After each object has been boundary colored, it

USING DIAGRAMS TO UNDERSTAND GEOMETRY 259

remains only to determine that the container boundary is entirely blue and that there are no
green (unvisited) points on contained boundaries.

However, there is an additional difficulty that arises because of the way segment points
are constructed. For example, even if segments ab and ac are collinear, unless they lie along
a principal direction or principal diagonal, their segment points may differ in a few cases
because of the Bresenham/Pittway algorithm. In all such cases, the segment points of the
overlapping portions will be within one pixel of one another. Therefore, before a final color
check each boundary point on the container is again examined to detect near misses. If a
boundary pointis red and it has a red neighbor, both are colored blue. The contained object
boundaries are also reexamined, and if a boundary point is green its neighbors are examined
If any is green, both are colored yellow; if any is red, both are colored blue. After this, if the
claim is true, the container boundary is entirely blue and there are no green (unvisited) points
on contained boundaries.

Steps 10 and 11 are the first simulation constructions in this example. Each rotates a
triangle about one of its vertices until a stopping condition is met. Each involves making a
copy of two vertices of a triangle (exclusive of the pivot vertex) and defining the new triangle
formed by the pivot vertex and these two new named points. The program is also told to
make note of the fact (without confirming it) that the original triangle and its copy have
the same area. This is necessary so that the program can later trace through the history o
area equivalences to establish the goal statement. The function rotate-rigid-triangle does not
do the actual simulation, but sets the stage for it. This function specifies that the triangle
is rigid (that is, its sides are of fixed length) and that the vertex closest to the pivot vertex
is to be repeatedly subjected to a displacement in a direction that produces rotation in the
indicated direction. (The direction of the vertex displacement will change automatically as
the triangle rotation proceeds.) Again, note that the demonstrator selects whether the rotation
is clockwise or counterclockwise, and he will presumably pick the direction that results in
the lesser amount of rotation to the stop condition. Finally, all points in the diagram save
the two vertices that will move are marked fixed in location in order to avoid any attempts
to move them during the simulation. Should the simulation fail to be possible under these
conditions, it would stop and report the failure. In this example, the simulation will succeed.

Finally, the function (simulation-construction) is called. It is told which objects are
involved so that it can focus its processing on a single component of the diagram. The
simulation is an iteration that repeatedly moves one or more points and checks for constraint
violations, as described earlier.

Step 12 is aninstruction to observe an area equivalence. Thisis confirmed by substituting
equivalences from the remembered list of known equivalences until a match to the target is
achieved. This is straightforward, but the program does not attempt an exhaustive check of
all possible substitutions. Rather, it considers them in the order presented. This means that
the demonstrator can make the problem harder or even impossible by pointing things out in
a different order. The order chosen in this example makes the task easy, as it does for humar
students who also could be confused by less straightforward teaching. Noticing is turned
off after the demonstration step because nothing has been constructed (although the progran
does not directly know this; it could find out, but at some effort).

Step 13 is aninstruction to observe that a new object, a 6-sided polygon, has emerged. To
do this requires the discovery of some new segments and the creation of their LISP structures,
as well as the verification that the figure is closed, and the construction of its LISP structure.
Once this has been done, Step 14 instructs the program to observe that this new object is
a composition of four other objects, and this is verified by the same algorithm used earlier.
Again, noticing is turned off for these steps.

Step 15 constructs a short segment that partitions the polygon in a new way. Noticing,

260 GOMPUTATIONAL INTELLIGENCE

turned on by default, results in the noticing of two new squares formed by the construction of
this segment. Step 16 instructs the program to notice that the polygon is composed of these
two squares.

Steps 17 and 18 are again simulation constructions, namely translations of the new
squares. As before, copies of the squares are made so the old ones are left behind, they ar
marked rigid, and stopping conditions are specified. Step 18 is a sequence of two translations.
Here note thatcompliance is set to 0.5 meaning that points are considered to have identical
position only if their coordinates are identical. This results in stopping conditions being
exactly met and avoids premature stopping. This works because the translations are along
principal directions. The tailoring ofcompliance to the situation is straightforward and
it avoids some difficult technical problems that arise when results are only approximate.
However, the burden of choosirigompliance is clearly an unnatural one for constructing
diagrammatic demonstrations, and is a problem that needs to be addressed.

Step 19 consists of two instructions to observe “decompositions” but in these cases the
decompositions are the limiting case of the container and the contained being superimposed.
Nonetheless, the check is made by the previously mentioned method rather than by checking
superposition of vertices.

Step 20 has two parts, each of which involves checking, by substitution of previously
remembered equivalences, that the components of the polygon are area equivalent to the
original squares on the sides of the right triangle. Finally, Step 21 asks the program to verify
the target proposition. It does this by transitive substitution of area equivalences.

9. GENERALIZATION AND LEARNING

Understanding must entail more than following isolated examples. One essential ad-
ditional feature is the ability to remember what was understood, that is, to learn, and to
generalize the specific instance to an appropriate class of other instances to, at least, allow
recognition of other cases of the same sort to which the previous experience can be applied.

One of the often-cited limitations of diagrammatic reasoning is the lack of obvious ways
to reach or even represent general conclusions. A specific diagram is of a specific size,
location, orientation, and so forth. Thus an image of, say, a triangle, must be the image of
a specific triangle: it may be an equilateral triangle or a scalene triangle, but it cannot be
both at once. Natural and artificial languages, on the other hand, allow the specification of
general classes of objects and general statements with syntactic constructs such as variable:
guantifiers, and Boolean connectives.

One suggestion that addresses the limitation to specific instances is to break a problem into
cases, to select a representative instance of each case, and to demonstrate that the conclusit
holds for each of these instances. This is how Johnson-Laird (1983) proposed to handle
generalization with his theory of mental models. For example, to demonstrate a general
theorem for triangles by this method, one would choose an arbitrary length for one side
and construct on it a set of specific but varied instances, each of which represents a class
of triangles, such as acute, right and obtuse. For each specific instance it would then be
determined by construction that the theorem held.

However, the argument underlying the generalization-by-case method requires knowl-
edge of a number of facts that must somehow be known to the system. In this example, one
fact is that only relative, not absolute, segment lengths are important. This justifies the choice
of an arbitrary first side length, which merely sets the scale of the diagram. A second is the
classification of angles into three categories; but there is no a priori reason to know that 45
degrees is not an important special case (it sometimes is). Furthermore, not all selections of

USING DIAGRAMS TO UNDERSTAND GEOMETRY 261

points and segment length are guaranteed to result in a triangle: the sides must satisfy the
triangle inequality, and each angle must be less than 180 degrees. This information is not
represented in a form that is available to the program. Therefore, either this knowledge is as-
sumed as additional knowledge unrelated to the system’s knowledge of space, or the methad
must “know” that repeated failure to construct even one triangle is not sufficient reason to
give up trying other values. Thus, generalization by casesupposea way to construct an
exhaustive set of cases, and the successful generation of an appropriate set of cases require
substantial geometric and other knowledge. | will say that such knowledg@genouso

the simulation and representation model.

Simulation offers another approach for generalizing because it permits running “experi-
ments” that show how some parts of a diagram co-vary with changes in others. By observing
the interactions of diagram components as one property is varied, a person can frequently
come to understand a geometric relation in a deeper sense. For example, one property of ¢
diagram, say a segment length, may be altered through a continuous range of values without
explicitly changing other properties, but allowing them to vary as required by the spatial and
situation constraints. The diagram is observed to determine other properties that are alterec
in a way that correlates with the manipulation. For example, as the length of the side of a
triangle varies, the size of the opposite angle will also vary. Such experiments also support
understanding of algebraic as well as geometric relatioxFCHIMEDES-STUDENT can be
instructed to perform these manipulations and observations.

This method can at times reveal certain critical properties. In the above demonstration
of the Pythagorean theorem, no explicit mention is made that the triangle in question must
be a right triangle. That limitation could be illustrated to the program by giving it non-right
triangles and showing that the demonstration does not go through, and a program could
be written to compare the successful examples with the nonsuccessful ones to discover the
critical feature. However, such a program would not of itself provide the basis for any insight
into the significance of the right angle.

We might, however, haveRCHIMEDES-STUDENT sweep the “right” angle from less than
90 degrees to more than 90 degrees while holding other components fixed to show that the
“hypotenuse” varies with the “right” angle, and so does the area of its square. It can also be
seen that the squares on the other legs remain unchanged. It has been previously demonstrate
that the sum of those areas equals the area of the largest square when the altered angle is €
degrees. Combining these observations shows that a right angle is a critical, or watershed,
value for the relation between these areas. This is one way of seeing that the Pythagorear
relation is false for non—right triangles without examining an unlimited set of specific cases
or knowing how to select a complete set of representative cases.

An example of generalizing by simulation and cases is illustrated by some experiments
in which ARCHIMEDES was applied to the triangle congruency theorems, e.g., two triangles
are congruent if they have two sides and the included angle congruent (SAS), two angles and
the included side congruent (ASA), or all three sides congruent (SSS), but are not necessarily
congruent if they have three congruent angles (AAA), two sides and a nonincluded angle
congruent (SSA), or other combinations of components in correspondence.

Here is one way the congruency theorems have been demonstratedH®EDES. It,
too, requires the assumption of exogenous knowledge and still runs into the generalization
problems, but it is often revealing to a human. Choose three noncollinear points at random
and connect them to form a triangle. Fix certain measures, such as two sides and the includec
angle. That is, annotate the representation of the constructed triangle (i.e., its situation
constraints) to indicate that the measures must remain fixed. Instruct the program to attempt
to alter those sides and angles that are not fixed, using its simulation algorithm. If the
simulation is unable to alter the triangle, conclude that its shape is fully determined by the

262 GOMPUTATIONAL INTELLIGENCE

specified features, else thatitis not. For many students, this method provides an understanding
of the congruency theorems that is lacking from a deductive proof because it demonstrates
the interactions among sides and angles in terms of perceptual processes.

Again, the problem arises as to what isahitrary triangle. The SSA case is particularly
instructive here, because if the constructed triangle happens be a right triangle, then it will
indeed be unalterable, leading to a false conclusion. Furthermore, if the triangle is not a
right triangle, then although there could be two possible solutions, they cannot be smoothly
transformed into one another by the simulation algorithm without passing through a range
of values that violate a constraint, and the algorithm does not permit this. One step toward
generality is to apply the procedure to several randomly chosen sets of vertices for each
case with the understanding that all must pass the test. This reduces the probability of
being mislead by a special case, and is generally convincing to people, though it is not
a mathematical certainty. However, the knowledge that using several cases increases the
likelihood of a conclusion being correct is aga&xogenougnowledge.

These examples illustrate how simulation can be used to generalize beyond a single case
by showing how spatial constraints interact to determine the relationship among diagrammatic
features. Simulation could conceivably be used to demonstrate other generalizations as well,
notably asymptotic behaviors, periodic relations, and some symmetric relations. In all of
these cases, making substantive use of such information requires exogenous knowledge, the
is, knowledge that is not explicitly embodied in the existing representation and simulation
system. As noted above, either such knowledge must remain implicit in the use of the system,
or it must be represented in ways that the program can manipulate. To achieve the latter, there
is no alternative to a predicative representation of what appears to be inherently predicative
knowledge. Thus generalization and understanding must involve verbal representations,
although representations need not be exclusively verbal.

The use of object frames IRRCHIMEDES is a mechanism for introducing a form of
guantification over variables and specifying classes of objects that are independent of location,
scale, and orientatiomARCHIMEDES has been extended to employ the abstraction power of
the frame system to permit it to learn lemmas. This will be illustrated by the following
example, based on another proof of the Pythagorean theorem, this one attributed to Euclid;
see Figure 8. Like the earlier example, it involves the partitioning of the hypotenuse square.
However, the initial partition is of the pentagon formed by the hypotenuse square combined
with the original right triangle. The partition components are triangles. There is a symmetry
to the procedure that provides opportunity to exploit the diagram class abstraction method.

After construction of the triangle and squares, the next portion of the demonstration is
the construction of segment CE, thus forming the triangle ACE, then construction of line
EJ parallel to AC, thus forming parallelogram ACJE, with diagonal CE. The demonstration
then proceeds to show that the two triangles composing the parallelogram are congruent. It
does this by the (laborious) simulation method that rotates one of these triangles through 180
degrees around one of the common vertices (say C), and then translates it along its long side
until the two triangles are superimposed, establishing that they are of equal area (since they
are congruent). Another simulation step establishes that the smaller triangle ACK is of equal
area to triangle EJL, from which it follows that the parallelogram ACJE is equal in area to
AKLE (recall the example from Figure 1), the larger of the two rectangles into which the
hypotenuse square is partitioned by segment KL. Thus it has been demonstrated that triangle
ACE is half the area of that larger rectangle.

Segment FB is now constructed, thus forming triangle FBA. With the construction of FM
parallel to AB, a new parallelogram FMBA is formed with diagonal FB. We could demonstrate
that the area of this triangle is half the area of the square ACGF by simulation: a rotation
and translation of FBA and a translation of FMG to superimpose ABC as before. However,

USING DIAGRAMS TO UNDERSTAND GEOMETRY 263

G
H
F M
C |
A K_|B
J
E L D

FIGURES8. A proof by Euclid of the Pythagorean theorem.

if the system could recognize that this situation is “the same as” the previous demonstration,
the simulation steps could be avoided and the conclusion drawn immediately.

To do so, a representation calledignature(following the terminology of Wang 1995)
is introduced that characterizes a diagram component with which a conclusion is to be asso-
ciated. The representation specifies the elementary figures which compose it (e.g., a parallel-
ogram and two triangles), how they are related (for example the triangles share a side, which
is the diagonal of the parallelogram), and any stated constraints on these components or thei
components that are extant in the generating instance (none in the present case), the defau
being that if no constraints are present in the generating figure, none are involved in the sig-
nature. The second process needed is one that can find in an arbitrary diagram representatio
any instance of this signature. Associated with the signature is a list of conclusions (e.g., that
the triangles are congruent and of equal area). As presently implemented, it is necessary for
the demonstrator to instruct the system when it should construct a new signature, what its
components are (how they are related is determined by the program), and what conclusions
are to be recorded.

The next demonstration step is the show that triangle ACE is congruent to triangle AFB;
this can be verified by rotation of one of these triangles about the common vertex A until the
two are superimposed. This then confirms that the larger partition AKLE of the hypotenuse
square is equal in area to the square ACGF on the leg AC.

At this point, an additional abstraction is often seen by many people, hamely that the
other “half” of the proof—that the smaller rectangle KLDB is equal in area to the square
CBIH on the leg BC—follows by “the same” argument. Indeed it is true that a formal proof
of the two halves is identical except for a renaming of the points. Gelernter (1959a) devised
a method of “syntactic symmetries” that could detect such cases. However, it should be
possible to compute this relation from the diagram, as it were, rather than from the statements
of a formal proof. That is the approach | have taken. To do so requires the formation of a

264 GOMPUTATIONAL INTELLIGENCE

second signature based on the componenttriangles ACE and AFB. This signature also record:
information relating their sides, based on constraints on these sides because they are also side
of squares. The second half of the proof is then the sequential use of the two signatures.
Signatures are similar in concept to the “diagram configurations” of the DC model of
Koedinger and Anderson (1990). In that model, configurations were defined so that the
system, which attempts to prove theorems, can apply similar methods to similar problems,
although the program was unable to discover new configurations by itself. McDougal (1993)
employed case-based reasoning (generalizing from previously solved cases) in his geometry
proof systempoLYA, with similar purpose. IARCHIMEDES, the signatures are to be generated
by examination of specific figures, and are used essentially as lemmas to avoid repeating
simulation steps, which remain the heart of the inference process.

10. DEPICTIONS AND DESCRIPTIONS

Representation has long been recognized to be a key issue in computational modeling
but it remains the source of much confusion and controversy (for example, see Bickhard
& Terveen 1995). This is particularly evident in the continuing discussions of the role of
imagery in cognition. For example, Glasgow (1993) attempted to distinguish descriptions
from depictions but ran into a flood of objections from those who commented on her paper.

The concept of representation is slippery for many reasons, but one of the greatest sources
of difficulty is the still widespread habit of describing a representation merely by writing down
an example, such as a map, and saying nothing about its source or how it is used, that is, the
construction and retrieval processes. Advocates of depictional representations often ignore
the retrieval processes. They choose examples and informally assess “representations” by
looking at them, and thereby underestimate the complexity of retrieval processes because
human perception makes certain observations so effortlessly.

On the other hand, advocates of descriptional representations are prone to ignore the
construction processes needed for propositional representation because human perception ar
linguistic ability so readily translate pictures into verbal descriptions and thence to predicate-
calculus-like notations. Thus a predicate calculus advocate mapn(&dock, table) as
an appropriate and natural representation of a situation where a block is on a table, while
ignoring the processes that construct that representation. In fact, however, the creation of
such sentences either from English statements or from video camera input is nontrivial and
has not been solved except for the simplest cases. Novak (1993) wonders what a propositiona
description of an automobile power steering actuator would look like. Surely it would be
enormously complex, but, more to the present point, the complexity of the construction
process that creates it (from, say, a video input) would be much more so.

Furthermore, a detailed drawing may be reduced to “Gear A is to the left of gear B” thence
to LEFT-OF(A, B). This overlooks the poverty of such descriptions as well as the difficulty of
creating them. A propositional representation suitable for even very simple inferences about
mechanical systems must be vastly more complex. Forbus, Faltings, and Nielsen (1991)
and Forbus (1993) argue that most such inferemoastdepend on complete geometric
descriptions. That argument suggests that propositional descriptions must be extremely
detailed and lengthy for such problems. In fact the mechanical behavior even in the simple
case of two gears depends critically on the exact shapes of the gear teeth, so an adequat
propositional representation must be very detailed. In highly regular cases, such descriptions
may be algebraic, but in general this is not possible. In cases involving mechanical couplings
where metric information is fully known it is possible to represent the possible configurations
of parts using “configuration spaces” (Joskowicz & Sacks 1991) and to abstract these into

USING DIAGRAMS TO UNDERSTAND GEOMETRY 265

qualitatively important classes (Stahovich, Davis, & Shrobe 1996), but this information does
not readily translate into predicate representations that are parsimonious enough for logical
deduction. Because we have no idea how to implement the construction processes that
take diagrams into predicate calculus, the argument that propositional representations are in
principle adequate for any depictionist example simply loses all force.

Thus the practice of ignoring the construction and retrieval processes is particularly
dangerous when dealing with representations that are natural for humans, because what i
seemingly effortless for a human “constructor” or “retriever” may hide enormously complex
processes that are almost totally unknown to us at either the psychological or neurological
levels of analysis. It should be clear, however, that even if a complete neurological, chemical,
and physical description of the processes of human visual perception were at hand, their
classification as depictional or descriptional would depend on what descriptive language
was used to describéhem Thus the processes could perhaps truthfully be described as
propositional, analog, digital, or statistical, among others, and the structures involved could
be described in terms of abstractions like association of concepts, or synapse strengths an
voltages, or energy patterns, or current flows, or quantum mechanical states—all with equal
validity.

From the point of view of psychology or cognitive science, the first order of business is to
discover a functional description of a virtual machine capable of exhibiting performance that
is broadly similar to human performance as described in terms of goals and tasks. A proposed
model of human imagery based on this virtual machine would then need to be implemented
on a real machine in order to evaluate issues of computational efficiency and to compare the
model to human performance on such things as chronometric measures and informational
capacity. The present work is a limited beginning in this direction.

11. DISCUSSION

The work reported here, like most work in cognitive science, is based on the hypothesis
that intelligent systems, including humans, have mental representations of the things they
know and do. There have been two schools of thought about the nature of representations.
One proposes the use of a general representation language, such as a symbolic calculus
that can express arbitrary propositions and imperatives. The other proposes a collection
of representations, each of which is to some degree specialized to an ability. As noted in
Section 10, the distinction does not depend on a pictorial versus verbal distinction. The two
could coexist. The present work explores the specialist school.

The arguments for specialized representations go back to the early literature of artificial
intelligence, and of course have roots much earlier in philosophy and psychology. Amarel
(1962) illustrated the power of specialized representations that make use of mathematical
structure to reflect the natural structure of a problem. Sloman (1971) argued that analogical
representations are often computationally superior to predicate calculus representation, are
notinherently less rigorous, and are appropriate for theories of minds that evolved in a physical
world requiring perception and action. Lindsay (1963) argued that specialized mental models
are appropriate forinference with natural language, and later (1973) pointed out that generality
may be achieved by a general method for creating specialized, efficient representations.

Sloman (1993), Palmer (1978), Lindsay (1988), and others have characterized a class of
representations, sometimes called “natural models,” that cannot be altered in any way that
violates certain constraints. This means that altering the representation leads to the repre-
sentation of other knowledge that is consistent with the original, subject to the constraints.
In contrast, predicate calculus has essentially no a priori constraints on what it can describe,

266 GOMPUTATIONAL INTELLIGENCE

even though it has a highly constrained syntax. Moreover, it permits the use of variables and
guantification. The structure of a particular domain of discourse is provided in a predicate
calculus representation by axioms, and deduction is a general inference method for determin-
ing the consequences of the axiomatized structure. Thus predicate calculus is a very genera
form of representation. However, generality does not guarantee computational advantages,
and may weaken them in particular domains in comparison to a restricted representation that
is tailored to the domain (Lindsay 1973). If the constraints of the representation, whatever
form it takes, can be efficiently maintained, and if they reflect the properties of the subject
of thought, then the representation is a good one. However, some knowledge states canno
be represented by the specialized model: some things cannot be said. The interesting case i
where the things that cannot be said are not interesting or useful and those that can be saic
are manipulable in computationally efficient ways. In the case of diagrams that are tailored
to spatial relations, the domain of application may be large and important. This point has
been made in a variety of terminologies by others as well, for example by Palmer (1978),
Stenning (1993), and Sloman (1993). There are many examples of such representations tha
have been proposed and studied, although the general characterization has not always bee
drawn (see Johnson-Laird 1983).

The essence of a physical diagram is thaeitessarilypreserves topological and geomet-
ric properties of two-dimensional space—it cannot violate them. (Note that this is not true
of a two-dimensional rendering of a three-dimensional object; recall as well the famous and
amusing drawings of Escher.) Thus, for example, when two points are displaced by equal dis-
tances in the same direction, the length of the segment connecting them remains unchanged
The situation is different when we move from the manipulation of real objects in space or
physical diagrams to the use of imagery in minds or data structures in computer memory.
In the latter case we can impose whatever rules we choose. We may for example choose tc
impose rules that reflect the motion of rigid bodies. If points are represented as integer pairs
(coordinates) and equal displacements are made by incrementing the coordinates of each pai
identically, this procedure will assure that the equality-of-segment-length “fact” remains true
in the representation (assuming length is computed as Euclidean distance). This follows from
the laws of arithmetic and algebra, which are efficiently implemented on digital hardware. It
could conceivably follow for other reasons in other implementations. For example, in the real
world, translation of a rigid stick (at nonrelativistic velocities) maintains length by virtue of
the laws of physics (not of mathematics). It is because the laws of physics and geometry may
be veridically reflected (by design) in the mathematics of analytic geometry, and these may be
veridically maintained by computation, that an array representation is able to make (correct)
inferences about imaginary experiments. As noted above, whether these are characterize
as descriptive or depictive representations is a matter of level of analysis and point of view.
Both views are valid and each may be appropriate for different purposes.

On the other hand, we may employ rules (construction and retrieval processes) that
implement nonrigid movemenhRCHIMEDES permits this because situation constraints that,
for example, mark segments as rigid may be omitted. If an endpoint is fixed in location
by a constraint and the other endpoint is moved, the segment length may change. This
representation thus makes it possible to perform a variety of simulations in addition to rigid
body movement.

When the discourse moves to human mental imagery the situation is by no means as clear.
What is clear is that mental imagery is not limited to rigid body movement: we can imagine
many things including objects and events that could not happen in the physical world. 1t does
not follow that the mind can imagine anything whatsoever, or that it can imagine everything
with equal facility. Anassumption of this work is that the human mindisindeed predisposed to
handle certain types of imagery and simulation better than others, presumably those kinds for

USING DIAGRAMS TO UNDERSTAND GEOMETRY 267

which evolution has best prepared us, especially the motion of rigid objects. As noted earlier,
the determination of what is and is not cognitively penetrable in this sense will be difficult.

| have also argued that the recognition, representation, and understanding of mathematical
relations with the aid of diagrams and imagery manipulation requires the use of quantified
predicative knowledge to both state the conditions and the conclusion. There is no such thing
as purely diagrammatic mathematical understanding.

12. SUMMARY AND CONCLUSIONS

One way to view the objective of this research is to contrast it with work on theorem
proving in geometry and other formal domains, wha@vingmeans discovering a sequence
of syntactic transformations on propositions. In contrast, in the present research the transfor-
mations are not syntactic manipulations of linear expressions, but geometric transformations
on two-dimensional diagrams. Thus the “proofs” themselves carry a semantic interpretation,
which for humans relates them to familiar knowledge about the structure of real space and
events.

Note that understanding as here construed does not amount to possessing a representatic
of an item of knowledge. Rather, understanding g@cess In particular, it is the process
of confirming that transformations of representations are correct with respect to the system’s
underlying repertoire of permitted transformations, and thus that the situation, fact, or event
that is understood isonsistentith the system’s “theory” of the subject. This falls well short
of a full explanation of understanding as it is done by human minds, but is a fundamental
component of full understanding.

The work described earlier on formalizing reasoning with Venn/Euler diagrams in logical
calculus fashion applies to descriptions of diagrams, rather than to bitmapped representations
The general approach of these efforts has been to start with an abstracted description of &
limited class of diagrams such as Venn diagrams (rather than, say, an image or bitmap
representation) and construct a linear (predicate calculus) description language and rules
of inference; that is, the efforts amount to expressing a theory of diagrams in a standard,
linear formalism. Work that formalizes the use of Venn diagrams exploits the geometric
and topological properties of diagrams in limited ways, and does so indirectly, by defining
rules for combining diagrams which ensure the essential spatial property (transitivity of the
“contained in” relation) not by actual rigid motion of closed curves, but by definitions that
rely on human perception for recognition. The same is true of Wang (1995), although he
is addressing a wider range of geometric objects. Similarly, the use of occupancy arrays
by Glasgow (1993) employs only a limited set of spatial properties (e.g., adjacency and a
coarse measure of direction) that are preserved and used to make inferences. In contrast
the present work employs general methods for manipulating bitmaps in such a way that all
topological and metric properties of the plane are preserved. All of the approaches, including
ARCHIMEDES, are complementary, not antithetical.

This work has empirical support in the general sense that it is a plausible explanation
of important and still mysterious human abilities. Experimental tests could address certain
aspects of the model. For example, the model exhibits greater success with some orderings
of demonstration steps than with others, and these could be taken as empirical predictions of
human abilities. Also, the model makes predictions about what objects and properties will be
noticed and the order in which they will be noticed—predictions that could be compared to
human performance. The model does not do exhaustive searching of all substitution patternsin
algebraic expressions and will fail to see conclusions that were presented in certain sequences
it is clear that humans find certain orders of presentation easier to follow than others, and

268 GOMPUTATIONAL INTELLIGENCE

thus there is another opportunity for confirmation of the program as a psychological model.
Such experiments have not been done because it is felt they are premature.

The immediate challenge of this research, rather, is to devise methods that are computa-
tionally plausible and accomplish somethiiige human spatial reasoning ability. It aims to
construct not a performance model but a competence model in the sense of Chomsky (1965).
Thus the research is intended to say something about whiatskrequires. Marr (1982) also
suggested that this sort of task analysis should be the first step for either psychological mod-
eling or artificial intelligence. The problem addressed may be characterized as a problem of
cognitive science, or the scientific rather than the engineering thrust of artificial intelligence.

ACKNOWLEDGMENTS

This material is based on work supported by the United States National Science Foun-
dation under Grant No. IRI-9203946 and Grant No. IRI-9526942. The author also wishes to
thank Maija Kibens for assistance with this project.

REFERENCES

AMAREL, S. 1962. On the automatic formation of a computer program which represents a tneSejf-
Organizing SystemdEdited byM. C. Yovits, G. Jacobi, and G. Goldstein. Spartan Books, Washington,
D.C., pp. 107-175.

ANDERSON M., and R. McCARTNEY. 1995. Inter-diagrammatic reasonirig.Proceedings of the International
Joint Conference on Artificial Intelligence, Montreal. Morgan Kaufmann, San Mateo, CA, pp. 878-884.

ANDERSON M., and R. McCARTNEY. 1996. Diagrammatic reasoning and case®roceedings of the Thirteenth
National Conference on Atrtificial Intelligence, Portland, OR. AAAI Press, Menlo Park, CA, pp. 1004-1009.

BARKER-PLUMMER, D., and S. C. BiLIN. 1992. Proofs and pictures: Proving the diamond lemma with the
GROVER theorem proving systerin Reasoning with Diagrammatic Representations. Technical Report
SS-92-02. American Association for Artificial Intelligence, Menlo Park, CA, pp. 102-107.

BARWISE, J., and J. ECHEMENDY. 1990. Visual information and valid reasonihgVisualization in Mathematics.
Edited byE. P. Glinert. Mathematical Association of America, Washington, DC.

BarRwiSE, J., and J. ECHEMENDY. 1992. Hyperproof: Logical reasoning with diagrars.Reasoning with
Diagrammatic Representations. Technical Report SS-92-02. American Association for Artificial Intelligence,
Menlo Park, CA.

BICKHARD, M., and L. TERVEEN. 1995. Foundational Issues in Atrtificial Intelligence and Cognitive Science:
Impasse and Solution. North-Holland, Amsterdam.

BORNING, A. 1981. The programming language aspectHfiGLAB, a constraint-oriented simulation laboratory.
ACM Transactions on Programming Languages and Syst&@s353—-387.

CARAMAZZA , A., M. MCCLOSKEY, and B. GREEN. 1981. Naive beliefs in “sophisticated” subjects: Misconcep-
tions about trajectories of objects. Cognitié&2):117-123.

CHOMSKY, N. 1965. Aspects of the Theory of Syntax. MIT Press, Cambridge, MA.
CHou, S.-C. 1988. Mechanical Geometry Theorem Proving. D. Reidel Publishing Company, Dordrecht.

CLEMENT, J. 1994. Imagistic simulation and physical intuition in expert problem solimBroceedings of the
Sixteenth Annual Conference of the Cognitive Science Society, Atlanta=@ifed byA. Ram and K. Eiselt.
Lawrence Erlbaum, Hillsdale, NJ, pp. 201-206.

DEKLEER, J., and J. S. BowN. 1984. A qualitative physics based on confluenteQualitative Reasoning about
Physical Systemddited byD. G. Bobrow. Elsevier, Amsterdam, pp. 7-83.

EDWARDS, G. 1996. Geocognostics—A new paradigm for spatial information®AAI-96 Spring Symposium
Series, Stanford University, Stanford, CA, pp. 6-14.

USING DIAGRAMS TO UNDERSTAND GEOMETRY 269

FOLEY, J. D., A. \AN DAM, S. K. FEINER, and J. F. IGHES 1990. Computer Graphics: Principles and Practice.
Addison-Wesley, Reading, MA.

ForBus K. 1984. Qualitative process theoyn Qualitative Reasoning about Physical Systefdited by
D. G. Bobrow. Elsevier, Amsterdam, pp. 85-168.

Foraus K. D. 1993. Image and substance. Computational Intellige3(d¢;377-378.

ForBus K. D., B. FALTINGS, and P. NELSEN. 1991. Qualitative spatial reasoning: The CLOCK project. Artificial
Intelligence 51(1):417-472.

FUNT, B. V. 1976. Whisper: A Computer Implementation Using Analogues in Reasoning. Ph.D. dissertation,
Department of Computing Science, University of British Columbia, Vancouver.

FUNT, B. V. 1977. Whisper: A problem-solving system utilizing diagrams and a parallel processing hetina.
Proceedings of the Fifth International Joint Conference on Atrtificial Intelligence, 1JCAI-77, Cambridge,
MA. Carnegie-Mellon University, Pittsburgh, pp. 459—-464.

FUNT, B. V. 1980. Problem solving with diagrammatic representations. Artificial Intelligel®@):201-230.
(Reprinted inR. Brachman and H. Levesque, eds. 1981. Readings in Knowledge Representation. Los Altos,
CA, Morgan Kaufmann, pp. 441-456.

FURNAS, G. W. 1992. Reasoning with diagrams otityReasoning with Diagrammatic Representations. Technical
Report SS-92-02. American Association for Artificial Intelligence, Menlo Park, CA, pp. 118-123.

GARDIN, F., and B. MELTZER. 1989. Analogical representations of naive physics. Atrtificial IntelligeB84,39—

159.

GELERNTER H. 1959a. A note on syntactic symmetry and the manipulation of formal systems by machine.
Information and Contro2:80-89.

GELERNTER H. 1959b. Realization of a geometry theorem proving macHiménternational Conference on
Information Processing. UNESCO House, Paris, pp. 273-282.

GELERNTER H., J. R. FANSEN, and D. W. LOvELAND. 1960. Empirical explorations of the geometry theorem
proving machineln Western Joint Computer Conference, 17. New York: National Joint Computer Commit-
tee, pp. 143-14'Reprinted irE. Feigenbaum and J. Feldman, eds. 1963. Computers and thought. McGraw
Hill, New York.

GLASGOW, J., and D. RrPADIAS. 1992. Computational imagery. Cognitive Scienb&3):355—-394.

GLAsGow, J. I. 1993. The imagery debate revisited: A computational perspective. Computational Intelligence,
9(4):309-333.

HEGARTY, M. 1992. Mental animation: inferring motion from static displays of mechanical systems. Journal of
Experimental Psychology: Learning, Memory and Cogniti${5):1084—-1102.

HEGARTY, M., and J. M. ERGUSON 1993. Strategy change with practice in a mental animation lagkanual
Meeting of the Psychonomic Society, Washington, D.C.

HEGARTY, M., and M. A. IST. 1993. Constructing mental models of machines from text and diagrams. Journal
of Memory and Languag@2:717-742.

JoHNSONLAIRD, P. N. 1983. Mental Models. Toward a Cognitive Science of Language, Inference, and Con-
sciousness. Harvard University Press, Cambridge, MA.

Joskowicz L., and E. P. 8cks. 1991. Computational kinematics. Artificial Intelligen&d;381-416.

KAUFMAN, S. G. 1991. A formal theory of spatial reasonimg.Proceedings of the Second Conference on
Knowledge Representation, pp. 347-356.

KOEDINGER K. R., and J. R. ADERSON 1990. Abstract planning and perceptual chunks: Elements of expertise
in geometry. Cognitive Scienc&4:511-550.

KossLyN, S. M. 1976. Can imagery be distinguished from other forms of internal representation? Evidence from
studies of information retrieval times. Memory & Cognitie#3):291-297.

KossLYN, S. M. 1993. Images in the computer and images in the brain. Computational Intelli§éh)cg40-342.

KOossLYN, S. M., and G. HTFIELD. 1984. Representation without symbol systems. Social Reséx(dh;1019—

1044.

KossLYN, S. M., and J. R. BMERANTZ. 1977. Imagery, propositions, and the form of internal representations.

Cognitive Psychology9(1):52—-76.

270 GOMPUTATIONAL INTELLIGENCE

KRAMER, G. A. 1992. A geometric constraint engine. Artificial Intelligens8327—360.

LARKIN, J. H. 1983. The role of problem representation in physicbental Models Edited byD. Gentner and
A. L. Stevens. Lawrence Erlbaum, Hillsdale, NJ, pp. 75-98.

LARKIN, J. H., and H. A. 810N. 1987. Why a diagram is (sometimes) worth ten thousand words. Cognitive
Science11:65-100.

LINDSAY, R. K. 1961. Toward the Development of a Machine Which Comprehends. Doctoral dissertation,
Carnegie-Mellon University, Pittsburgh, PA.

LINDSAY, R. K. 1963. Inferential memory as the basis of machines which understand natural laniguage.
Computers and ThoughEdited byE. A. Feigenbaum and J. Feldman. McGraw-Hill, New York, NY,
pp. 217-233.

LINDSAY, R. K. 1973. In defense of ad hoc systeimsComputer Models of Thought and Languagelited by
R. Schank and K. Colby. W. H. Freeman, San Francisco, pp. 372—-395.

LINDSAY, R. K. 1988. Images and inference. Cogniti&229—-250. Reprinted inl. I. Glasgow, N. H. Narayanan,
and B. Chandrasekaran, eds. 1995. Diagrammatic Reasoning: Computational and Cognitive Perspectives.
MIT Press, Cambridge, MA, pp. 111-135.

Loowmis, E. S. 1940. Pythagorean Proposition: Its Proofs Analyzed and Classified and Bibliography of Sources
for Data of the Four Kinds of “Proofs,” 2nd ed. Edwards Brothers, Ann Arbor, MI.

LOVELAND, D. W. 1968. Mechanical theorem proving by model elimination. Journal of the Association for
Computing Machinery]l5(2):236-251.

MARR, D. 1982. Vision: A Computational Investigation into the Human Representation and Processing of Visual
Information. Freeman, San Francisco.

MATSUYAMA, T., and T. NTTA. 1995. Geometric theorem proving by integrated logical and algebraic reasoning.
Artificial Intelligence,75(1).

McCLOSKEY, M., A. CARAMAZZA, and B. GREEN. 1980. Curvilinear motion in the absence of external forces:
Naive beliefs about the motion of objects. Scier@H)4474):1139-1141.

McCLOSKEY, M., and D. KoHL. 1983. Naive physics: The curvilinear impetus principle and its role in interactions
with moving objects. Journal of Experimental Psychology: Learning, Memory, & Cogn@itji,146—156.

McCLOSKEY, M., A. WASHBURN, and L. FELCcH. 1983. Intuitive physics: The straight-down belief and its origin.
Journal of Experimental Psychology: Learning, Memory and Cognifi¢});636—649.

McDouGAL, T. F. 1993. Using case-based reasoning and situated activity to write geometry pro@rfisiual
Meeting of the Cognitive Science Society. Lawrence Erlbaum, Hillsdale, NJ, pp. 711-716.

MILLER, A. |. 1984. Imagery in Scientific Thought. Birkhauser, Boston.

NARAYANAN, N. H. 1992. Imagery, Diagrams and Reasoning. Ph.D. dissertation, Department of Computer and
Information Science, Ohio State University, Columbus.

NELSON, R. B. 1993. Proofs without Words. Exercises in Visual Thinking. The Mathematical Association of
America, Washington, DC.

NEWELL, A., J. C. $iaw, and H. A. SMoN. 1957. Empirical explorations with the Logic Theory Machiire.
Proceedings of the Western Joint Computer Confereligep. 218—-239.Reprinted irE. Feigenbaum and
J. Feldman. 1963. Computers and Thought. McGraw-Hill, New York.)

NOVAK, G. 1977. Representations of knowledge in a program for solving physics prolePreceedings of the
Fifth International Joint Conference on Artificial Intelligence, Cambridge, MA. Carnegie-Mellon University,
Pittsburgh, PA, pp. 286-291.

Novak, G. S., Jr. 1993. Computational and brain representations of imagery. Computational Intelligence,
9(4):398-401.

PALMER, S. 1978. Fundamental aspects of cognitive represent&ti@omputing and CategorizatioBdited by
E. Rosch and B. B. Lloyd. Erlbaum, Hillsdale, NJ, pp. 259-303.

PINKER, S. 1985. Visual cognition: An introduction Visual Cognition.Edited byS. Pinker. MIT Press,
Cambridge, MA, pp. 1-63Reprinted fronCognition: International Journal of Cognitive Psycholobg.)

USING DIAGRAMS TO UNDERSTAND GEOMETRY 271

PYLYSHYN, Z. W. 1973. What the mind’s eye tells the mind’s brain: A critique of mental imagery. Psychological
Bulletin, 80(1):1-24.

PYLYSHYN, Z. W. 1980. Computation and cognition: Issues in the foundations of cognitive science. Behavioral
and Brain Science$;111-133.

PYLYSHYN, Z. W. 1981. The imagery debate: Analogue media versus tacit knowledge. Psychological Review,
88(1):16-45.

PYLYSHYN, Z. W. 1984. Computation and Cognition: Toward a Foundation for Cognitive Science. MIT Press,
Cambridge, Massachusetts.

RiTT, R. F. 1938. Differential equations from an algebraic standpli®®MS Colloquim Publications. American
Mathematical Society, New York.

RoBINSON, J. A. 1965. A machine-oriented logic based on the resolution principle. Journal of the JRCINt 23—
41.

SHEPARD, R. N. 1994. Perceptual-cognitive universals as reflections of the world. Psychonomic Bulletin and
Review,1(1):2—-28.

SHEPARD, R. N., and L. A. ®OPER 1982. Mental Images and their Transformations. MIT Press, Cambridge,
MA.

SHEPARD, R. N., and S. L. ZrRe. 1983. Path-guided apparent motion. Scie2286 May):632-634.

SHIN, S.-J. 1991. A situation-theoretic account of valid reasoning with venn diagtar8guation Theory and
Its Applications, pp. 581-605.

SHIN, S.-J. 1992. A semantic analysis of reasoning involving Venn diagrani&easoning with Diagrammatic
Representations. Technical Report SS-92-02. American Association for Artificial Intelligence, Menlo Park,
CA, pp. 85-90.

SHIN, S.-J. 1995. The Logical Status of Diagrams. Cambridge University Press, Cambridge.

SHRAGER, J. 1990. Common sense perception and the psychology of theory formatidomputational Models
of Scientific Discovery and Theory Formatidedited byJ. Shrager and P. Langley. Morgan Kaufmann, San
Mateo, CA, pp. 437-470.

SLOMAN, A. 1971. Interactions between philosophy and artificial intelligence: The role of intuition and non-
logical reasoning in intelligence. Artificial Intelligenc&209-225.

SLOMAN, A. 1993. Varieties of formalisms for knowledge representation. Computational Intelligg{Ag=13—
423.

StAHOVICH, T. F., R. Dwis, and H. $IROBE. 1996. Generating multiple new designs from sketcheBhirteenth
National Conference on Atrtificial Intelligence, Montreal, pp. 1022—-1029.

STENNING, K. 1993. Depictive versus descriptive representations: A distinction, but what is the difference.
Computational Intelligencé)(4):353-355.

STENNING, K., and J. BERLANDER. 1991. Reasoning with words, pictures and calculi: Computation versus
justification.In Situation Theory and its ApplicationEdited byJ. Barwise, J. M. Gawron, G. Plotkin, and
S. Tutiya. University of Chicago Press, Chicago.

STENNING, K., and J. @ERLANDER. 1992. Implementing logics in diagranis. Reasoning with Diagrammatic
Representations. Technical Report SS-92-02. American Association for Artificial Intelligence, Menlo Park,
CA, pp. 91-95.

STENNING, K., and J. BERLANDER. 1995. A cognitive theory of graphical and linguistic reasoning: Logic and
implementation. Cognitive SciencE9:97-140.

TABACHNECK, H. J. M., A. M. LEONARDO, and H. A. SMON. 1994. How does an expert use a graph? A model
of visual and verbal inferencing in economits.Sixteenth Annual Conference of the Cognitive Science
Society, Atlanta, GAEdited byA. Ram and K. Eiselt. Lawrence Erlbaum, Hillsdale, NJ, pp. 842—-847.

THAGARD, P., and S. HRDY. 1992. Visual thinking in the development of Dalton’s atomic thebrroceedings
of the Ninth Canadian Conference on Atrtificial Intelligence, Vancouver, BC.

ULLMAN, S. 1985. Visual routinesn Visual Cognition Edited byS. Pinker. MIT Press, Cambridge, MA, pp. 97—
159. Reprinted fronCognition: International Journal of Cognitive Psycholat®,1-63, ISSN 0010-0277.)

272 GOMPUTATIONAL INTELLIGENCE

WANG, D. 1995. Studies on the formal semantics of pictures. Ph.D. dissertation, Institute for Logic, Language,
and Computation, University of Amsterdam.

Wu, W.-T. 1978. On the decision problem and the mechanization of theorem proving in elementary geometry.
Scientia Sinica21:157-179.

YATES, J., M. BESSMAN, M. DUNNE, D. ERTSON K. SLY, and B. WENDELBOE. 1988. Are conceptions of motion
based on a native theory or on prototypes? Cogni6r251-275.

