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Abstract 

This paper is about reducing influence dia
gram (ID) evaluation into Bayesian network 
(BN) inference problems. Such reduction is 
interesting because it enables one to read
ily use one's favorite BN inference algorithm 
to efficiently evaluate IDs. Two such reduc
tion methods have been proposed previously 
(Cooper 1988, Shachter and Peot 1992). This 
paper proposes a new method. The BN in
ference problems induced by the mew method 
are much easier to solve than those induced 
by the two previous methods. 
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1 Introduction 

Influence diagrams (IDs) (Howard and Matheson 
1984) are a popular framework for decision analysis. 
An ID is an acyclic graph with three types of nodes: 
random nodes, decision nodes, and a single value node. 
Each random node is associated with a conditional 
probability table ( CPT) and the value node is associ
ated with a utility function. Evaluating an ID means 
finding an optimal decision rule for each of its decision 
nodes. 

IDs without decision and value nodes are called 
Bayesian networks1 (BNs) (Pearl 1988). They are 
widely used by AI researchers as a knowledge repre
sentation framework for reasoning under uncertainty. 
There is a rich collection of exact and approximate al
gorithms for inference in BNs. This paper is about 
how to reduce ID evaluation into BN inference prob
lems that are as easy to solve as possible. Such re
duction is interesting because it enables one to readily 

1 Also known as belief networks and probabilistic influ
ence diagrams. 

use one's favorite BN inference algorithm to efficiently 
evaluate IDs. 

Cooper (1988) initiated research in this direction. 
He proposed a transformation of an ID into a BN 
and showed that optimal decision rules can be found 
by posing an appropriate sequence of queries to the 
BN. Several improvements were later introduced by 
Shachter and Peot (1992). This paper proposes a new 
method. The BN inference problems induced by the 
new method are much easier to solve than those in
duced by the two previous methods. 

There are several algorithms that evaluate IDs di
rectly without the reduction into BN inference prob
lems (Shachter 1986, Shenoy 1992, Ndilikilikesha 1994, 
and Jensen et al 1994). We call them direct evalua
tion algorithms. An method that reduces ID evalua
tion into BN inference problems would be unattractive 
if, no matter what BN inference algorithms are used, 
it is less efficient than the best direct evaluation al
gorithm. We show that the performance of our new 
method, when coupled with a BN inference algorithm 
called VE (Zhang and Poole 1996), is always within a 
constant factor of the performance of the best direct 
evaluation method and argue that it is usually more 
efficient. 

The fact that arbitrary BN inference algorithms can 
used for probabilistic calculations makes our method 
very attractive as compared to direct evaluation algo
rithms. From a system development point of view, the 
method enables one to easily add ID evaluation capa
bilities to any BN inference packages. From the effi
ciency point of view, speeding up inference in BNs has 
been and still is an active research area. There are al
gorithms that exploit independence of causal influence 
(e.g. Zhang and Poole 1996) and that exploit special 
structures in the conditional probability tables. The 
new method facilitates ready incorporation of those al
gorithms, as well as future advances in BN inference, 
in ID evaluation. We are not aware of any approximate 
algorithms for IDs, while there is a rich collection of 



approximate and simulation algorithms for BNs. The 
new method also opens up the possibility of approxi
mate algorithms for ID, which might be necessary in 
order to solve large decision problems. 

We will begin with definitions related to influence 
diagrams and a brief review of Shachter and Peot's 
method (Section 2). Foundations for our new method 
will be laid in Section 3 and details will be worked 
out in Section 4. The new method will be illustrated 
through an example in Section 5 and compared with 
Shachter and Peot's method and direct evaluation al
gorithms in Section 6. Conclusions will be drawn in 
Section 7. 

2 Influence diagrams 

In the original definition of IDs (Howard and Math
eson 1984), there is only one value node. We allow 
multiple value nodes here so that separability in the 
utility function can be represented. See Tatman and 
Shachter (1990) for discussions on separability of util
ity functions. 

IDs are required to satisfy several constraints. First, 
value nodes cannot have children. Second, IDs must be 
regular in the sense that there must be a directed path 
that contains all the decision nodes. The last decision 
node on the path will be referred to as the tail decision 
node. Third, they must be no-forgetting in the sense 
that a decision node and its parents be parents to all 
subsequent decision nodes. The rationale behind the 
no-forgetting constraint is that information available 
now should also be available later if the decision-maker 
does not forget. 

Value networks refer to IDs that do not contain de
cision nodes. Bayesian networks (BNs) (Pearl 1988) 
are IDs that consists of only random nodes. In the 
following, the terms "nodes" and "variables" will be 
used interchangeably. 

We shall use Ox to denote the frame of variable x, i.e. 
the set of possible values of x. For a set X of variables, 
Ox stands for the Cartesian product I1xEX n,. 
Let d1, .. . , dk be all the decision nodes in an ID N. 
A decision rule for a decision node di is a mapping 
8i : Dnd· --+ ndi . A policy is a list of decision rules 
� = ( 81: . . .  , 8k) consisting of one rule for each decision 
node. To evaluate an ID is to find an optimal policy 
that maximizes the expected utility and to compute 
the optimal expected utility. 

ID evaluation requires a lot of probabilistic calcula
tions. This paper is concerned with identifying a set 
of probabilistic inference problems such that optimal 
decision rules can be readily obtained from their so-
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lutions. The problems should be as easy to solve as 
possible. 

Cooper (1988) initiated research in this direction. Sev
eral improvements to Cooper's method were proposed 
by Shachter and Peot (1992). This section briefly re
views the method by Shachter and Peot. 

The method applies only in the case when there is one 
value node. Let N be an ID with one value node. 
Denote the value node by v. For simplicity, assume 
that the utility function fv(7rv) of v is non-negative2• 
The node is converted into a binary random node with 
the following conditional probability: 

P(v=117rv) = 

P(v=OI7rv) = 

(1) 

where Mv = maxnvfv(7rv). This transformation will 
be referred to as Cooper's transformation. 

Each decision node d is also converted into a random 
node with the following conditional probability: 

for each possible value a of d, where IDdl is the number 
of possible values of d. After the transformations, N 
becomes a BN. Denote the BN by N'. 

According to the regularity constraint, there exists a 
directed path that contains all decision nodes. Let d1, 
.. . , dk an enumeration of the decision nodes in the 
order they appear in the path. It is shown that an 
optimal decision rule t5k, for dk can be obtained by 

After the rule has been computed, the conditional 
probability of dk is changed to Po;. ( dk j1r dk). An op
timal decision rule for dk-l is then computed using 
the same formula except with k replaced by k-1. Op
timal decision rules for dk-2, . .. , d1 are computed 
recursively in the same fashion. 

Shachter and Peot's method reduces the evaluation of 
N into the following BN inference problems: 

PN' (dk, 7rdk jv=1), PN' (dk-l, 7rdk_1jv=1), . . .  , PN' (dl, 7rd1iv= 

We will show that an ID can be evaluated by solving 
BN inference problems that are much easier than those 
listed above. 

2If the utility function takes negative values, a constant 
can be added to it so that it takes only non-negative val
ues. Addition of a constant to the utility function does 
not change the optimal policies. Moreover, the optimal ex
pected value of an ID equals to its optimal expected value 
after the addition of the constant minus the constant. 
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Figure I: An ID. Random nodes are drawn as ellipses, 
decision nodes as rectangles, and value nodes as dia
monds. 

3 Decomposition theorem 

Suppose N is an ID and d is the tail decision node. 
This section shows that N can be decomposed into two 
components, called tail and body respectively, such 
that an optimal decision rule for d can be found in the 
tail and optimal decision rules for all other decision 
nodes can be found in the body. The body is again 
an ID and hence the decomposition can be repeated 
in the body. 

3.1 Downstream and upstream sets 

We begin by partitioning the set of nodes in N into 
several subsets w.r.t to the tail decision node d. The 
moral graph of an ID is obtained by first adding undi
rected edges between pairs of parents of each node so 
that they are pairwise connected and then dropping 
directions of all the directed edges. Let x and y be 
two nodes and S be a set of nodes that does not con
tain x or y. We say that S m-separates x and y if, in 
the moral graph, every path connecting them contains 
at least one node in S. 

Let X be the set of all nodes in an ID N. The up
stream set of N w.r.t to d, denoted by X1, is the set of 
nodes in X\7rd that are m-separated from d by 1l"d· The 
downstream set of N w.r.t d, denoted by Xz, is the set 
of nodes in X\7rd that are not m-separated from d by 
1rd· Note that dEXz and that the three sets X1, 7rd 
and X2 constitute a partition of the set X. 

Define 1r d 2 be the set of nodes in 1r d that have at least 
one pare�t in X2 and set 7rd,l=7rd\7rd,2· The four sets 
X1, X2, 1l"d,b and 7rd,z constitute another partition of 
X. 

Consider the ID in Figure 1. The set of parents of dz 
is 7rd2 ={dbc3,c4} and the downstream set Xz w.r.t 
d2 is X2={d2,c6,vz}. Since c4 the only parent of d2 
that has a parent in the downstream set, 7rd2,z={c4}· 
Hence 7rd2,1 = {d1,c3}. 

A node x is an ancestor to another node y if there is a 
directed path from x to y. A ancestral set an(A) of a 

(1) Body (2) Tail 

Figure 2: Tail and body: The BN in (2) is the tail of 
the influence diagram in Figure 2 w .r. t d2; probabilities 
of the dashed nodes are uniform distributions. The ID 
in (1), with the value node u ignored, is the body of 
the ID in Figure 2 with w.r.t d2. With u, it is the 
augmented body (Subsection 3.2). 

set of nodes A consists of nodes in A and their ances
tors. The following proposition summarizes properties 
of the aforementioned sets. 

Proposition 1 Suppose d is the tail decision node in 
an ID. Then {1) the node d is the only decision node in 
the downstream set Xz;{2) all nodes in 7rd,2 are random 
nodes; {3) all nodes in an(7rd,z)nXz are random nodes; 
and (4) all other decision nodes are in 7rd,l· 

3.2 Bodies and tails 

The body of N w. r. t d is an ID given by: 

Procedure body(N, d): 

1. Prune from N all the nodes in 
Xz \an(7rd,2)· 

2. Return the resulting ID. 

We use B to denote the body. According to Proposi
tion 1 (4), for any decision node d1-:j:.d, d1 is in B and 
it has the same parents in B as in N. 

Define the tail of N w.r.t d by the following procedure: 

Procedure tail(N, d): 

1. Prune from N all nodes in X 1· 

2. Prune arcs into d and nodes in 1r d,l· 

3. Prune conditional probabilities of ran
dom nodes in 1r d,l· 

4. For each node xE{d}U7rd,l, set 
P.r(x)=l/lf!xl, where lf!xl is the num
ber of possible values of x. 

5. Convert all the value nodes in Xz into 
random nodes by Cooper's transforma
tion. 

6. Return the resulting BN. 



We use T to denote the tail. It is a BN for the fol
lowing reasons. It consists the decision node d, nodes 
in 7rd,1, nodes in 1rd,2UX2\{d}. The node d and nodes 
in 1r d 1 are associated with uniform distributions. Ac
cordi�g to Proposition 1, nodes in 1rd,2UX2\{d} are 
either random nodes or value nodes. Random nodes 
in the set inherit their conditional probabilities from 

N, while conditional probabilities for value nodes in 
the set are obtained from their utility functions via 
Cooper's transformation. So all nodes in T are asso
ciated with probabilities and hence T is a BN. 

Let V2 be the set of all value nodes in the tail. Define 
the evaluation functional er(7rd, d) of the tail T by 

er(7rd, d) = L Pr(v=111rd, d)Mv. (2) 
vEV2 

3.3 Decomposition theorem 

Define the augmented body of N w. r. t d by the follow
ing procedure: 

Procedure augBody(N, d, er(7rd, d)): 

1. B=body(N, d). 
2. Introduce a new value node u to B. 

Make it a child of each node in 1r d and 
set its utility function as follows: 

3. Return the resulting ID. 

We use B to denote the augmented body from now on. 

Theorem 1 (Decomposition Theorem) 

1. An optimal decision rule c)* for the tail decision 
node d is given by 

2.  A policy 6.1 for the augmented body B of N w.r.t 
d is optimal if and only if the policy (6.1, c5*) is 
optimal for N. 

3. The optimal expected value of B is the same as 
that of N. 

4 Evaluating IDs 

The decomposition theorem gives us the following pro
cedure for evaluating an ID: (1) decompose it to two 
components- tail and body- w.r.t the tail decision 
node, (2) find an optimal decision rule for the tail de
cision node in the tail, and (3) repeat the process in 
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the body. This section looks at the necessary com
putations in more detail and identifies the BN infer
ence problems that one needs to solve. We also intro
duce several optimizations that make the BN inference 
problems easier to solve. 

4.1 Simplifying computations in the tail 

To obtain the evaluation functional er(7rd, d) of the 
tail T, we need to compute the marginal probability 
Pr(7rd, d) and the marginal probability Pr(v=1, 7rd, d) 
for each value node vEV2. This subsection shows that 
some of the nodes that appear in the marginal proba
bilities can be deleted and that some of the nodes in T 
can be pruned when computing each of the marginal 
probabilities. 

4.1.1 Irrelevant parents of decision nodes 

Let 7rd,i be the set of nodes in 7rd,l that, inN, are not 
parents to nodes in 1rd,2UX2 \ { d}. Each xE7rd,i is an 
isolated node in T for the following reasons. First, x 
has no parents in T since arcs into nodes in 7rd,l have 
been removed by tail. Second, x has no children in T. 
This is because T consists of the node d, nodes in 1r d,l, 
and nodes in 7rd,2UX1 \{d}. The node d and nodes in 
7rd,l cannot be children of x since all arcs into them 
have been removed by tail and nodes 1rd,2UX1 \{d} 
are not children of x by the definition of 1rd,i· Define 
the reduced tail of N w .r. t d by the following procedure: 

Procedure redTail(N, d): 

1. T =tail(N,d). 
2. Prune from T nodes in 7rd,i· 
3. Return the resulting BN. 

We use Tr to denote the reduced tail. It consists of 
nodes in 1rd,rUX2, where 1rd,r = 7rd\7rd,i· Because each 
member of 1r d,i is an isolated node in T and its prob
ability is the uniform distribution, the joint probabili
ties of T and Tr are related by 

Pr(7rd,X2) = Pr,.(1rd,r,X2) IT 1/IOxl, 
xEn d.i 

where lOx I is the number of possible values of x. 
Therefore 

( d) -"'\;"' P7;.(v=l,1rd,r,d)
M er 1rd, - � p (1r d) v· 

vEV2 Tr d,r, (4) 

Hence the evaluation functional can be computed from 
the marginal probability P7;. ( 1r d,r, d) and the marginal 
probability P7r (v=l, 1rd,r, d) for each value node vEV2. 
Those marginal probabilities involve less nodes than 
Pr(7rd,d) and Pr(v=1,1rd,d). 
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Equation ( 4) also implies that the evaluation func
tional does not depend on nodes in 7ri and can be 
rewritten as eT(7rd,nd). This fact in turn has two im
plications. First, the optimal decision rule for d given 
by equation (3) does not depend on nodes in 7rd,i· For 
this reason, nodes in 1r d, i will be called irrelevant par
ents of d (Tatman and Shachter 1990) and the nodes 
in 7rd,r will be called relevant parents of d. 

Second, the utility function of the new value node u 

in the augmented body B does not depend on the ir
relevant parents of d. Consequently there is no need 
to make u a child to those nodes. From now on we 
assume that, in B, u is a child of only relevant parents 
of d and its utility function of u is given by 

(5) 

We will use T to denote the reduced body from now 
on. 

4.1.2 Pruning irrelevant nodes 

For any vEV2, consider PT(v=l, 7rd,r, d). It is well 
known that nodes outside an(7rd,rU{d, v}) are irrele
vant to the marginal probability (e.g. Shachter 1988). 
Let Tv be the BN obtained from T by pruning nodes 
outside an(7rd,rU{d, v}). Then PT(v=l, 7rd,r, d) = 
PT, ( v=l, 7r d,r, d). 

Similarly, let T' be the BN obtained from T by prun
ing nodes outside an(7rd,rU{d} ). Then PT(7rd,n d) = 
PT' ( 1r d,r, d). Consider the node d. It has no parents 
in T and hence has no parents in T'. Children of d 
in T cannot be in the ancestral set an(7rd,rU{d}, for 
otherwise there would directed loops in the original ID. 
Hence children of d are not in T'. Therefore d is an iso
lated node in T'. Let Tc be obtained from T' by prun
ing the isolated node d. Since the probability of d is the 
uniform distribution, PT' (7rd,r. d) = Prc (7rd,r )/lf!dl· 

For any BN M and any subset A of nodes in M, 
let BNinf(A, M) be a procedure that computes the 
marginal probability PM (A). Arbitrary BN inference 
algorithms can be used in the procedure. According 
to the foregoing discussions, the evaluation functional 
eT(7rd,r, d) can be obtained by using the following pro
cedure: 

Procedure evalFun(T, d) 

1. Obtain Tc from T by pruning nodes out
side an(7rd,r)· Compute Prc(7rd,r) by 
calling BN inf ( 1r d, r, Tc). 

2. For each vEV2, obtain Tv by pruning 
nodes outside an( 1r d,rU{ d, v}). Compute 
PT,(v=l, 7rd,nd) by calling 
BNinf((v=l, 7rd,r), Tv) 

3. Set 

4. Return eT( 1r d,r, d) and Prc ( 1r d,r). 

Note that the following BN inference problems are 
solved: 

Also note that in addition to the evaluation functional, 
evalFun also returns the marginal potential P7;, ( 1r d,r). 
It will be used in the next subsection. 

4.2 Simplifying computations in the body 

The augmented body B contains nodes in the set 
an(1rd,2)nX2. The set is empty when no nodes in 7rd 
have parents in X2, i.e. when 7rd,2=0. This subsection 
is concerned with the case when the set is not empty 
and shows that nodes in the set can be pruned from 
B. Pruning nodes from B simplifies computations in 
the body. 

Pruning nodes in an(1rd,2)nX2 from B requires con
ditional probabilities of some of the remaining nodes 
be changed. The changes can be made with little nu
merical computation by using the marginal probabil
ity P7;, ( 1r d,r). Since the marginal probability must be 
computed in order to obtain the evaluation functional 
of the reduced tail, the cost of node pruning is small. 

The resulting ID after pruning an(1rd,2)nX2 from B 
will be called the reduced body of N w.r.t d. Formally, 
it is obtained from the augmented body B, the reduced 
tail T, and the marginal probability P7;, ( 1r d,r) via the 
following procedure: 

Procedure redBody(B, Prc ( 1r d,r), T): 

1. Prune from B all nodes in an(1rd,2)nX2. 
2. Prune arcs into and conditional proba

bilities of nodes in 1r d,2. 
3. (Enumerate all nodes in 1r d,2 as c1, ... , 

ck such that, in N, ci is not an ances
tor of Cj if i > j. Let zi be the set 
of nodes in Z=7rd,rn7rd,l that, in T, are 
ancestors to c1, or c2, . . .  , or Ci.) For 
each i, make Ci a child of each node in 
{c1, . .. , ci_l}UZi and define 

4. Return the resulting ID. 



It is proved in the longer version of the paper that the 
reduced body is indeed an ID and it has the same op
timal policies and optimal expected value as the body. 

4.3 Expected values of value networks 

The expected value of a value network is the sum of 
the expectations of all its utility functions. If one eval
uates an ID using the scheme outlined at the beginning 
of this section, one will be left with a value network 
after finding optimal decision rules for all the decision 
nodes. The expected value of this network is the opti
mal expected value of the original ID. 

Let N be a value network. If all value nodes are 
converted into random nodes via Cooper's transfor
mation, then N becomes a BN. Denote the BN also 
by N. The expected value of the value network 
is Z:::vEV PN(v=l)Mv, where V is the set of value 
nodes. For any value node v, let Nv be obtained from 
the BN N by pruning nodes outside an( { v}). Then 
PN(v=l)=PNv(v=l). Thus, the expected value can 
be obtained using the following procedure. 

Procedure expVal(N) 

1. For each vEV, obtain Nv from N 
by pruning nodes outside an( { v}). 
Compute PNvCv = 1) by calling 
BNinf(v, Nv)· 

2. Return Z::vEV PNv (v=l)Mv. 

Note that the following BN inference problems are 
solved: 

PNvCv=l) for each vEV. 

4.4 An algorithm 

The foregoing discussions lead to the following algo
rithm for evaluating IDs. 

Procedure evaliD(N): 

1. While there are decision nodes in N 
(a) Find the tail decision node d. 
(b) l=redTail(N, d). 
(c) Call evalFun(l, d) to compute 

er(1fd,r, d) and Pr.,(1fd,r)· 
(d) Find an optimal decision rule for d 

via 

o* ( 7f d,r) = arg maxdeT( 7f d,r, d). 

(e) B = augBody(N, d, er(1fd,r, d)). 
(f ) If some nodes in 7f d have parents in 

the downstream set X2 of N w.r.t d, 

B = redBody(B, Pr;, (7rd,r), T). 
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Figure 3: An ID. 

(g ) N=B. 
(After the while-loop, N becomes a 
value network.) 

2. Return the optimal decision rules and 
expVal(N). 

The procedure evaliD identifies a list BN inference 
problems and specifies how optimal decision rules can 
be obtained from the solutions of those problems. It 
leaves it to the user to choose an algorithm for solving 
the BN inference problems. As such, it is really an 
algorithm for reducing ID evaluation into BN inference 
problems. 

5 An example 

This section illustrates evaliD by using the ID in Fig
ure 3, which is borrowed from Jensen et al (1994). Arcs 
into decision nodes are dashed for readability. 

Denote the ID by N. Since it contains decision node, 
evaliD enters the while-loop. In the while-loop, Step 
l(a) finds that d4 is the tail decision node and Step 
l (b) constructs that reduced tail l=redTail(N, d4). 
To get a clear picture of I, note that the down
stream set X 2 is { d4, cu, c12, v4}. Since no parents 
of d2 have parents in X2, 7fd4,2=0. Among the par
ents of d4, only c10 and d4 are parents to nodes 
in 1fd4,2UX2\{d4}=X2\{d4}, hence c10 and d2 are 
the all the relevant parents of d4• In other words, 
1fd4,r={cw, d2}. Consequently, I consists of nodes c10, 
d2, d4, cu, c12, and V4 and is as shown in Figure 4 (2), 
where v4 have been converted into a random node by 
Cooper's transformation. 

Step l (c) calculates the evaluation 
functional e,-(1fd4,r, d4)· ·In the process, the BNs lc 
and /v4 are obtained from I by pruning nodes outside 
an(1fd4,r) and an(1fd4,rU{d4, v4}) respectively. Since 
an(1fd4,r )=1fd4,r={ c1o, d2}, lc consists of two nodes c1o 
and d2. They are isolated from each other and both 
have uniform distributions. Since an(7rd4,rU{v4}) con
tains all nodes in the tail, fv4 is the same as T The 
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(1) 

Figure 4: Reduced tail and augmented body w.r.t d4. 

subroutine BNinf is called to compute the following 
probabilities: 

Pr;, (cw, d2), P7,4 ( v4=1, cw, d2, d4). 

Thereafter, the evaluation functional is obtained by 

P7,4 (v4=1,cro,d2,d4)Mv4 
eT(cw, d2, d4) 

P r;,(cw, d2) /IS1d41 

Step 1(d) finds an optimal decision rule for d4 via 
84(cw,d2) = arg maxd4eT(cw,d2,d4). 

Step 1 (e) calls augBody to construct the augmented 
body of N w.r.t d4, which is shown in Figure 4 (1). 
The utility function of the new value node U4 is given 
by fu4 (cw, d2) = maxd4eT(cw, d2, d4). Since no nodes 
in 1fd4,r have parents in X2, Step 1(f) is skipped. 

We stop here due to space limit. Interested readers 
are referred to a longer version of the paper for the 
remaining steps. 

6 Comparisons with previous methods 

Both evaliD and the Shachter-Peot algorithm reduce 
ID evaluation into BN inference problems, which can 
be solved using arbitrary BN inference algorithms. 
This section shows that the probabilistic inference 
problems induced by evaliD are easier to solve than 
those induced by the Shachter-Peot algorithm. 

Among all previous algorithms, Shenoy's fusion algo
rithm (Shenoy 1992) and the algorithms by Ndiliki
likesha (1994) and Jensen et al (1994) are the most 
efficient. Those three algorithms are basically equiva
lent in the sense that they all carry out essentially the 
same numerical computations. They are direct eval
uation algorithms in the sense that they evaluate IDs 
directly without the reduction to BN inference prob
lems. An method that reduces ID evaluation into BN 
inference problems would be unattractive if it is less ef
ficient than those direct evaluation algorithms no mat
ter what BN inference algorithm is used. We will show 

that this is not the case for evaliD by comparing it 
with Shenoy's fusion algorithm. 

Non-numerical computations in evaliD include the 
identification of tail decision nodes, the construction 
of reduced tails and bodies, and pruning of nodes in 
a reduced tail that are irrelevant to particular BN in
ference problems . They are negligible compared to 
numerical computations. We will hence focus the com
parisons on numerical computations. 

6.1 Comparisons with Shachter and Peot's 
algorithm 

The Shachter-Peot algorithm applies only when there 
is one value node. Let N be an ID with one value 
node. Assume that there are no barren random nodes, 
i.e. random nodes that have no children3. 

Let N' be the BN defined in Section 2. In the 
Shachter-Peot algorithm, the BN inference problem 
pN,(1fd,dlv=1) needs to be solved in order to obtain 
an optimal decision rule for the tail decision node d. 
Let T be the reduced tail of N w.r.t d. In evaliD, 
we need to solve two BN inference problems, namely 
PT(1fd,r) and PT(1fd,r,d,v=1). 

The inference problem PN' (1fd, dlv=1) is more difficult 
to solve than PT(1fd,r) and PT(1fd,n d, v=1) than for 
two reasons. First, it involves more variables. Due to 
the no-forgetting constraint, all other decision nodes 
and their parents must be parents of d, i.e. in 1fd· 
However, as we have seen in the example of the pre
vious section, many of the parents of d are irrelevant 
to d. The set 1r d,r usually contains much less variables 
than 1fd· Second, N' usually consists of many more 
nodes than the reduced tail T. Moreover, since N 
has no barren random nodes, no nodes in N' can be 
pruned when computing PN' (1fd, dlv=1), while T can 
be further reduced to Tc when computing PT(1fd,r) and 
Tv when computing PT(1fd,r, d, v=1). 

In evaliD, nodes in the downstream set X2 are pruned 
after an optimal decision rule for d has been ob
tained. In other words, those nodes do no participate 
in the computations for other decision nodes. How
ever, no nodes are pruned in the Shachter-Peot algo
rithm. Computations for each decision node involve 
all nodes inN. 

6.2 Comparisons with Shenoy's fusion 
algorithm 

This subsection first introduces a variation of evaliD, 
called evaliD1, that performs essentially the same 

3Barren random nodes, if exist, can be pruned at a pre
processing step (Shachter 1986). 



numerical computations as Shenoy's fusion algorithm 
and then compares evaliD with eval!D1. 

6.2.1 A variation of evaliD 

We will refer to non-negative functions of a set of vari
ables simply as factors. Conditional probabilities and 
utility functions are all factors. Let p be an order
ing of the nodes in X2\V2U{d}. In stead of evalFun, 
evaliD1 uses the following procedure to compute the 
evaluation functional of the reduced tail T and the 
marginal probability Pr( 1r d,r). 

Procedure evalFun1(T, d) 

1. Let F be the list of utility functions of 
value nodes in V2 and let P be the list 
of conditional probabilities of nodes in 
Xz\VzU{d}. 

2. While p=/:-0, remove the first node x 
from p and call fuse(P, F,x). 

3. Multiply all factor in P (the product is 
Pr(7rd,n d).) 

4. Sum all factors in F (the result is 
er(7rd,n d)). 

5. Return er(7rd,r,d) and 'L.d Pr(7rd,r,d). 

The subroutine fuse is given as follows: 

Procedure fuse(P,F,x) 

1. Remove from P all the factors P1, ... , 
Pk that involve x. If such factors exist, 
add the new factor p = 'L-x TI�=l Pi to 
P. 

2. Remove from F all the factors h, . . . , ft 
that involve x. If such factors exist, add 
the new factor 'L.x['L.�=l fi](IJ�=l Pi]/p 
to F. 

Let N be a value network and p be an ordering of the 
random nodes. Instead of expVal, eval!D1 uses the 
following procedure to compute the expected value of 

N. 

Procedure expVal1(N): 

1. Let F be the list of utility functions of 
value nodes in N and let P be the list 
of conditional probabilities of random 
nodes inN. 

2. While p=/:-0, remove the first node x 

from p and call fuse(P,F,x). 

3. Return the sum all factors in F (which 
is the expected value of N). 
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Shenoy's fusion algorithm requires an ordering, say 
p8, of all the random and decision nodes. If the or
derings in evalFun1 and expVal1 conforms to Ps in 
the sense that relative orders of nodes are the same, 
than evaliD1 carries out essentially the same numer
ical computations as Shenoy's fusion algorithm (see 
Shenoy 1992). 

6.2.2 Comparisons 

We now set out to compare evaliD1 and eval!D. Sup
pose evaliD employs the VE (variable elimination) al
gorithm 4 for probabilistic inference. Let A be a sub
set of nodes in a BN M and let p be an ordering of 
nodes outside A. VE computes the marginal probabil
ity PM(A) as follows: 

Procedure BNinf-VE(M, A): 

1. Let P be the list of conditional probabil
ities in M . 

2. While p=/:-0, remove the first node x 
from p and remove from P all the factors 
h, ... , fk that involve x. If such factors 
exist, add the new factor 'L-x TI�=l fi to 
the list P. 

3. Multiply all factors in P and return the 
result (which is PM(A)). 

Consider computing P�c (7rd,r) and P7, (1rd,r, d, v=1) 
using BNinf-VE. If the ordering in BNinf-VE conforms 
to the ordering in evalFun1, BNinf performs no more 
numerical computations than evalFun1(T, d). There
fore, the amount of numerical computations carried 
out by evalFun(T, d) is at most 1 +m times that car
ried by evalFun1(T, d), where m is the number of 
value nodes in T. Similarly, for any value network 

N, the amount of numerical computations carried out 
by expVal(N) is at most m times that carried by 
expVal1(N), where m is the number of value nodes 
inN. 

We argue that evalFun(T, d) is usually more efficient 
that evalFun1(T, d), especially when T is large. De
fine the size of a factor to be the number of vari
ables involved in the factor. It is well understood 
in the BN literature that the complexities of BNinf 
and evalFun1 is largely determined by the sizes of the 
largest factors encountered; they are exponential in 
the largest factors sizes. The BNs Tc and each Tv are 
subnetworks ofT. When T is large, the differences 
between T and Tc or Tv are usually also large. In 

4The idea behind VE is implicit in many papers (e.g. 
Shenoy 1992). It was first made explicit in Zhang and Poole 
(1994) and extended to exploit independence of causal in
fluence by Zhang and Poole (1996). 
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such a case, the maximum factor sizes encountered by 
BNinf are smaller than those encountered by evalFun1 
and hence the amount of time BNinf-VE spends 
in computing Pr;, (1T'd,r) or Pr;,(7rd,nd,v=1) is much 
less than that evalFun1(T, d) takes. Consequently, 
evalFun(T, d) takes less time than evalFun1(T, d). 

A second reason for evalFun(T, d) being more efficient 
than evalFun1(T, d) is the fact that the former does 
not perform numerical divisions until the last step, 
while the latter might divide factors when fusing each 
node. 

Similarly, expVal is usually more efficient than 
expVal. Hence evaliD is usually more efficient than 
evaliD1 and therefore more efficient than Shenoy's fu
sion algorithm. 

We would like to emphasize that arbitrary BN infer
ence algorithms can be used in evaliD, while this is 
not the case in Shenoy's fusion algorithm and all the 
direct evaluation algorithms for that matter. This is a 
big advantage (see discussions in the next section). 

7 Conclusions 

This paper is about reducing ID evaluation into BN 
inference problems. Such an exercise is interesting be
cause it allows the use of arbitrary BN inference algo
rithms in evaluating IDs. Two reduction methods have 
been proposed previously (Cooper 1988 and Shachter 
and Peot 1994). A new method is presented in this 
paper. The BN inference problems induced by the 
new method are easier to solve than those induced by 
earlier methods. 

W hen coupled with the VE algorithm, the perfor
mance of the new method is, in the worst case, within 
a small constant factor of that of the most efficient pre
vious algorithms, which evaluate ID directly without 
the reduction into BN inference problems. We have 
argued that the combination of the new method and 
VE is usually more efficient in large IDs. 

The fact that it allows arbitrary BN inference algo
rithms is big advantage of the new method. From a 
system development point of view, the method enables 
one to easily add ID evaluation capabilities to any BN 
inference packages. From the efficiency point of view, 
speeding up inference in BNs has been and still is an 
active research area. There are algorithms that ex
ploit independence of causal influence (e.g. Zhang and 
Poole 1996) and that exploit special structures in the 
conditional probability tables. The new method facil
itates ready incorporation of those algorithms, as well 
as future advances in BN inference, in ID evaluation. 
We are not aware of any approximate algorithms for 
IDs, while there is a rich collection of approximate and 

simulation algorithms for BNs. The new method also 
opens up the possibility of approximate algorithms for 
ID, which might be necessary in order to solve large 
decision problems. 
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