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Abstract. We consider the insertion of a new element z in a lattice
of types L. As the poset L + x obtained by the direct insertion of x
in L, is not necessarily a lattice, a set of auxiliary elements should be
added in order to restore the lattice properties. We describe an approach
towards the lattice insertion based on a global definition of the set of
necessary auxiliary elements and their location in L. For that reason, the
set of GLB (LUB) of elements in L superior (inferior) to x is considered.
Each GLB and LUB which is incomparable with = gives rise to exactly
one auxiliary element. The obtained lattice, L*, is isomorphic to the
Dedekind-McNeille completion of L + x and thus it is minimal in size.
In addition, the insertion strategy is more general than the existing ones,
since it deals with general kind lattices and makes no hypothesis on the
location of z in L. An algorithm computing Lt from L and z of time
complexity O(|L|w(L)(|L| + w?(L))) is provided.
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1 Introduction

Given a lattice L = (X, <), the insertion of a new element z in it amounts
to building a new lattice L™ containing both z and L. In general, the set of
immediate predecessors and immediate successors of x in L are either known or
computable. However, the poset L + x obtained by directly inserting = into L
with respect to these elements need not to be a lattice. In fact, some sub-sets
of L + x may have no GLB or LUB. Thus, L + z is only a sub-order of L™ or,
what is equivalent, L™ is a lattice completion of L +z. Consequently, in order to
obtain LT, some extra elements, called auziliary, have to be inserted into L + .

In the present paper we focus on the insertion in type lattices. A type lattice
is a lattice where ground set elements are labeled by type expression, or simply
types. Types are members of a type domain, partially ordered by a sub-typing
relation, and no hypothesis on the nature of types is made. The lattice order
follows the sub-typing, that is labeling represents an order-embedding of the
ground set into the type domain. Type lattices are used within a wide range
of object-oriented and functional languages (see [1], [2], [3]). In fact, various

ordered structures like abstract type lattices in [4], M-lattices in [1], multiple
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inheritance hierarchies in [2] and even concept lattices [5] may be seen as type
lattices. In most cases, these are dynamically evolving structures whence the
practical interest of the insertion operation.

The completion of the poset of types L + z into a type lattice LT may be
decomposed into two disjoint tasks: first, building of the ground lattice LT
which is an ordinary lattice completion operation, and second, the computation
of auxiliary element labels (called hidden types in [1]).

A possible approach towards the insertion into a type lattice is described in [1].
The scope of the strategy is however limited to type lattices closed under the
join operator, called M-lattices. A more general problem, namely the lattice
completion of any poset of types is addressed in [2]. Both papers describe algo-
rithmic procedures which can insert only terminal z, i.e. whose only immediate
predecessor in L is the bottom element. Moreover, the tasks mentioned above
are carried out simultaneously by both procedures. Thus, when the algorithm
in [2] is used for lattice insertion, the number of auxiliary elements is larger than
the minimum required for restoring the lattice structure. The reason for this
unnecessary increase is that auxiliary types may violate lattice structure and
thus involve further insertions.

In our own approach, the lattice completion and auxiliary type calculation are
dealt with separately. This allows the first task to be seen as the computation
of DM (L + z), the Dedekind-McNeille completion of L + z. DM (L + z) is the
unique, up to isomorphism, smallest lattice to contain L + x as a sub-order.
A possible way of computing DM (L + z) from L + x, namely as the lattice
of the maximal anti-chains of the bipartite order (L U {z},L U {2}, £r4s) is
described in [6]. The operation is computationally expensive (O(|L|*)) due to
structure of the bipartite order (the size of maximal antichains is in O(|L|)).
Sub-structures of LT of lesser size may be used by the algorithm as reported
in [7] but their detection within L + x requires extra computations. Finally,

context K = (LU {z}, LU {z}, <[4.) [5] may be found in [§].

In our completion strategy the lattice L™ is still isomorphic to DM (L + z).
However, we design a new procedure for building DM (L+z) from L and  which
takes the greatest advantage of the existing lattice structure. Thus, subsets of
X which have no GLB (LUB) in L + x are detected together with their initial
GLB (LUB) in L, called odds. L% is obtained by inserting an auxiliary element
for each odd in L + x. The localization of an odd in L is taken into account to
compute the type of the respective auxiliary.

The paper starts with definitions of some lattice substructures necessary to
determine the set of auxiliary elements and their places within L +z (Section 2).
Then, the exact way auxiliaries are inserted into L + z to transform it into LT
is described (Section 3). In Section 4 we provide the proof that L* has a lattice
structure and is isomorphic to DM (L + z). Finally, an effective algorithm for
lattice insertion is presented which uses the previous theoretical results (Sec-
tion 5).



2 Definitions and Preliminaries

In the following, we assume the reader is familiar with basic concepts of the
ordered structure theory like partial order, lattice, covering graph, precedence
relation, anti-chain (see [9] for an introduction). Let L = ( X, <;) be a lattice
where the ground set X is a sub-set of a bigger set X assumed potentially
infinite. Let also L be given through its covering graph Cov(L) = (X, <), i.e.
for each a in X the set of its immediate predecessors, Pred(a), and its immediate
successors, Succ(a), are associated to a.

We shall note | ra (Tra) the set of all predecessors (successors) of a in L and
call it the order ideal (order filter) associated with a. In the following, we shall
omit the index on | (1) when no confusion is possible. Ideals and filters may be
generalized to sets as well.

Types may be considered as labels on elements of L. Thus, we consider a
mapping lab : X — 7 where 7 is a domain of type expressions. 7 is provided
with a sub-typing relation <7 and lattice operators A7 and V7. The following
condition, called labeling condition, holds in L:

Va,b € X,a <p b< lab(a) <7 lab(b).
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Fig. 1: Sample of direct insertion into a lattice with a possible completion.

A new element z € X which is to be inserted into L, is given with its la-
bel, lab(xz). Thus, by testing <7 between lab(z) and the types in L, one
may automatically determine the following sub-sets of X: (i) the set of el-
ements superior (inferior) to =z, Sup(z) (Inf(z)), (i7) the minima (maxima)
of Sup(z) (Inf(z)), noted Sup™(z) (Inf™(z)). On Fig.1.A, an example of
L and z is drawn (types are omitted) where the elements of Sup(z) are col-
ored in dark gray, those of Inf(z) in light gray. When z is inserted in L with
respect to Sup’™(x) and Inf"™(zx), as shown on Fig.1.B., the obtained struc-
ture, L + x, need no more to be a lattice. In fact, there may be sub-sets of
Sup(z) (Inf(z)) with no GLB (LUB) in L + z. This is the case of {a,d} (see
Fig.1.C) whose GLB in L, g, is incomparable with z . Intuitively, restoring
the lattice structure amounts to introducing some auziliary elements to become
the new GLB (LUB) of those sets in L*. On Fig.1.D, the auxiliary y is the



new GLB of a and d. Elements like g, will be referred to as odds and their
set will be denoted by ODD(x). Actually, ODD(z) is the union of two dis-
joint sets of odds. Thus, ODDy(z) = {a|a||z,3b,c € Sup(z) with a = bAc}
will denote the set of GLB of elements in Sup(z), called upper odds, whereas
ODD(z) = {ala||z,3b,c € Inf(x) with a = bV, ¢} will denote the set of LUB
of elements in Inf(z), called lower odds. The duality principle, allows us to
consider only OD Dy ().

Odds give rise to auxiliary elements so they may be compared to generators
in [8] and to canonical representatives in [1]. The existing strategies for lattice
insertion differ as to the way odds are detected and the number of auxiliaries
per odd. Thus, the algorithm in [2] checks the GLB of all couples of elements
in Sup(z) and inserts an auxiliary each time this GLB is incomparable to z.
In this way, the same odd may provoke the generation of a set of auxiliaries.
For example, the element g on Fig.1 is an odd since g = A;{a,b,d} and g|z.
With the algorithm in [2], g will give rise to at least three auxiliary elements,
one for each of the couples {a, b}, {a,d} and {b,d}. Unlike this, the algorithms
described in [8] and in [1] generate a single auxiliary per odd.

Our own completion strategy follows the same principle. For this purpose,
given a € ODDy(z), the set of all superiors to a in Sup(z), A = Ta N Sup(x)
should be known so that the auxiliary element become the new GLB of A in
L*. For all such a, A is an up-set in L, so for computational purposes, the
whole set may be replaced by the set of its minima. Thus, we define a mapping
R : X — 2%up(®) guch that R(a) = Min(a N Sup(x)). Please, notice that for
all a € Sup(z), R(a) = {a} and for all @ € ODDy(z), a = A\; R(a). From
the latter fact follows that for a given a € OD Dy (z) with R(a) = A’, a is the
maximum of the set {b|R(b) = A'}. In other words, odds are elements of L
incomparable with z and maximal for the respective value of R. Consequently,
elements in ODDy(xz) may be characterized locally, i.e. only with respect to
their immediate successors.

Proposition 1 Ve € X
c € ODDy(z) & (¢ flz and Ve € X(c <1 e = R(e) # R(c)))

Proof: (=) Follows from the definition of ODDy (z) and R(c).
(<) By absurd. Suppose there exists d = A; R(c). Clearly ¢ <g, d, so there
is e € X such that ¢ <z e <g d. On the one hand, (1d N Sup(z)) C (Te N
Sup(x)) C (TeNSup(zx)). On the other hand, by definition of d, (TeN Sup(x)) =
(1d N Sup(z)). Consequently, (Te N Sup(x)) = (Te N Sup(z)). ant R(e) = R(c)
which is a contradiction. O

Computationally, the checking the above condition for any a in X would be a
rather expensive task. Therefore, we limit our consideration to a smaller sub-set
of X, OZy(x) (stands for odd zone). OZy(x) is composed of all potential odds
and lays between Sup(x) and its GLB, p(z) = A, Sup(z). Formally,

0Zy(z)=1p(x)n( |J la— Sup()).

a€Sup(x)



OZy(z) is a convex subset of L, i.e. VYa,b € OZy(z),Ve € X a < ¢ < b=
¢ € OZy(z). The element p(x) may but need not to belong to OD Dy (z) since
it may happen that p(z) < 2. In this particular case, ODDy(z) = (). In the rest
of the paper, we shall consider p(z) ¢ Inf(z), and indicate how our strategy
changes to fit the case p(z) € Inf(x).

Let OPy = (ODDy(x), <oppy (2)) Where <opp, () is the restriction of <f,
on ODDy(z). The following proposition states that if p(z)||z then OPy is a
lower semi-lattice with minimal element p(z).

Proposition 2 Va,b € ODDy(x), withc=aApb, c € ODDy(z) & ¢ fz.

Sup(x) ={ab,c,d}
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Fig. 2: Detailed structure of {p(z) with an example.

The mutual position of 1p(z), Sup(x), Sup™™(x) and OZy(x) in L is illustrated
on Fig. 2.A. We shall also denote by Sup’®(x) (°? stands for border), the set of
all superiors of  which have an immediate predecessor in OZy(z). Formally,
Sup*®(z) = {ala € Sup(x),3b € OZy(x), b < a}. It is easy to see that R(a) C
Sup’(z).

When constituting the precedence relation in LT, for each odd a only a sub-
set of R(a) will be considered. Thus we define the set R*™"9(a) as the members
of R(a) which are not superior to odds greater than a. Formally, the mapping
R p(z) — 25*P(*) ig such that Va,c € X,b € R(a): b € R*™(a) =
((a <p cand b € R(c)) = R(c) = {b}). In other words, for all predecessors of
a which are inferior to such a b, the respective value of R is limited to {b}. On
the example drawn on Fig. 2.B, R(g) = {a,b,d} and R*"(g) = {d}, whereas
R(f) = R*™9(f) = {b,c}. The elements s(z), OZ(x), S and S*"9 are dual to
p(z), OZy(x), R and R*™ respectively. Please, notice that s(z) <y, p(z).

3 Completion Principles

In the previous section, the set of odds in L+x has been defined. A completion
strategy which preserves the initial structure of L+x is proposed in the following.
More precisely, we describe a poset L1t = (X+, <T) where X U {z} C Xt and
<1 C<*. First, the set of auxiliary elements to be inserted into L + z is defined.
Then, we describe the way <7 is obtained from <.



3.1 Auxiliary Elements

Let AUX(z) C X be the set of auxiliary elements to insert into L + z in
order to obtain LT, i.e. Xt = AUX(z) U X U {z}. Our insertion strategy
relies on a set of auxiliary which satisfies |AUX (z)| = |ODD(z)|. Let also
¢ : ODD(z) — X be a bijective mapping. In other words, to each odd a an
auxiliary ¢(a) is assigned. Furthermore, let AUXp(z) = Image,(ODDy(z))
and AUX(z) = Image,(ODDp(z)). The set AUXy(z) is provided with an
order relation <7} which satisfies Va,b € ODDy(z) p(a) <t ¢(b) & a <p, b.
Thus, ¢ defines an order isomorphism between OPy and (AU Xy (x),<#t). In
particular, if p(z) € ODDy(z) then (AU Xy (z), <) is a lower semi-lattice with
a minimal element ¢(p(z)). Fig. 3.A illustrates the way in which the structure
of (AU Xy (), <{1) is obtained from OPy. Dually, (AU X (z),<%) is an upper
semi-lattice with Maz(AU X, (z)) = {¢(s(z))}. In sum, the completion of L+ x
amounts to integrating a couple of semi-lattices (a single one if p(z) € Inf(z)).

AUXU(X) lab(a)={1,2,3,5,6,8}

lab(b)={2,3,4,5,6,7,8}
V o lab(9(9)) ={2.3,5.6}
O lab(d)={2,3,5,6,7,9}
e f /
ODN ¢
A 9 g, lab(x)={236} lab(9)={2,5,6}

Fig. 3: Computation of AUXy(z) and an example of lab for the lattice on
Fig. 1.

Finally, lab is defined on AU X (z) in the following way:
e for a € AUXy(z), lab(a) = \r{lab(b)|b € R(¢"(a))}
e for a € AUX [ (z), lab(a) = \/ £{lab(b)|b € R(p"(a))}

The type computation on auxiliary elements is exemplified on Fig. 3.B. Thus, we
suppose 7 to be a domain of integer sets, where <7 is the set inclusion. As we
noticed previously, R(g) = {a,b,d}, so lab(p(g)) = lab(a) A1 lab(b) A7 lab(d) =
{2,3,5,6}.

3.2 Linking Auxiliaries

We suppose that L is given through its covering graph Cov(L) = (X, <y).
The way <% is obtained from <,. is exemplified by Fig. 4.

First, the precedence relations —<‘3 and —<’£ are preserved in LT. In other
words, for a,b € ODDy(x), if a <opp,(2) b then @(a) <* (b). Next, each
auxiliary element is linked to its original, that is for all a € AU Xy (z), we set
¢ (a) <t a. Dually, for all b € AUX(z), b <t ¢~ 1(b). For example, on
figure Fig. 4.A, ¢(f) is linked to f. In addition, an auxiliary e = ¢(a) precedes



Fig. 4: Lattice completion: integration of AU Xy (z).

all the elements in R*"9(a) (see definition of R*™"9). So, Va € ODDy(x),Vb €
R*M9(a),p(a) <t b. On the same example of Fig. 4.A, ¢(g) precedes d since d
is in R(g). With the last completion, a link between an odd element a and an
element of R*"9(a) becomes redundant so it should be dropped out. In other
words, Va € ODDy(x),Vb € R(a),a < b= a AT b. On the figure above, ¢ is
no more preceded by f since ¢(f) is inserted between them. Finally, minimal
elements in AU Xy (z) are preceded by x. In case p(z) € ODDy(z) this means
that z <* ¢ !(p(z)) as shown on Fig. 4.A. In case p(z) € Inf(zx), the place
of p(p(x)) is simply taken by z which should be inserted between p(x) and
Min(AU Xy (z)) UR* ™ (p(x)) (with redundant links dropped out). Therefore,
we shall further simplify our notation by the assumption, somehow abusive, that
in case p(z) € Inf(z), ¢(p(x)) = z. This situation is illustrated on Fig. 4.B,
where the same structure of {p(x) is supposed with p(z) = g <% .

4 Lattice Operators

In the present section we shall prove that LT = (X*+ <T) where X =
X UAUX (z) U{z} and <T be the transitive closure of < is a lattice. For this
purpose, we shall prove that each couple of elements in Xt has a GLB and a
LUB in L*. Actually, only those couples will be considered which contain at
least one new element, i.e. either auxiliary or z, or their GLB (LUB) in L*
are new. The rest of the elements preserve their bounds due to the way L7 is
defined.

4.1 Preliminaries

First, one needs a mapping which associates to a give a in OZy (z) the greatest
element in X which shares the same R value with a. Thus, we define v :
OZy(z) — OZy(z) U Sup(x) with v(a) = A; R(a). The dual map p is defined
for all b in OZ;(z) as p(a) = \/; S(a). Next, it is easy to see that <; is a
sub-set of <t ie. Va,b€ X,a <1 b & a < b. Moreover, by definition of <,
Va,b € AUXy(z),a <Tb & ¢ (a) <; ¢ 1(b).

In addition, both AUXy(z) and AUX[(z) are conver sets in L*, that is



Va,b € AUXy(z),c € Xt,a <t ¢ <t b & ¢ € AUXy(x). Finally, for all a
in AUXp(z): (i) # <t a and p(z) <t a, (ii) 17+ a C Sup(z) U AU Xy (z) and
(791) Vb € AUX [ (z),b <" a.

The following proposition asserts that the completion procedure described in
the previous section is correct with respect to <j,.

Proposition 3 Va € X,Vb € AUXy(x)
e a<tb & a<yp ' (b),
e b<ta = ¢ '(b) <i aandifa € Sup(x) then o' (b) <, a = b<t a.

Proof In the first case, the < part is trivial. The = part can be proved by
induction on the length of the shortest path between a and b in the covering graph
Cov(L™). The same kind of induction is used in the proof of both necessary and
sufficient conditions in the second case. O

4.2 Lower Bounds in Lt

A constructive proof of the fact that for arbitrary a,bin X, a AT b exists is
given below. First, when both a and b lay in Sup(z) their GLB in L is either
itself in Sup(z) and in this case it remains the same in L or it is an odd and
the new GLB is the respective auxiliary.

Lemma 1 For a couple of elements a,b € Sup(x),
e aApbe Sup(z) = aATb=aAb
e aApb¢ Sup(z) = a At b=p(aApb)

Proof In the first case, we only examine lower bounds e of a,b with e €
AU Xy (z). Thus, e<ta Ay b follows trivially from Proposition 3. In the second
case, d = a Ar, b is clearly in ODDy(z) and thus ¢(d) = ¢ is a lower bound
for a,b in Lt with d <% ¢. Again, only e € AU Xy(z) with e<Ta,e<™b are
considered. We derive from Proposition 3, ¢~ (e)<;d so e<te. O

The GLB of couples where one element is in Sup(z) and the other is a new
element are also new elements.

Lemma 2 For all a € Sup(z):
o ifbe X — Sup(x) then a AT b=aApb,
e ifbe AUXy(z) then a AT b= p(a A p~1(b)),
o ifbc AUX(z)U{z} then a AT b=hb.

Proof In the first case, the only auxiliary lower bounds ¢ of a,b may lay in
AUX(z). By Proposition 3, ¢~ !(¢) A, a Ar, b and thus ¢ AY a Az b. In the
second case, observe that a Ar o~ 1(b) is in OD Dy (x). Thus, the proof is similar



to the second case of Lemma 1. The proof of the third case is trivial. O

The GLB of auxiliary elements are either itself in AU Xy (z) or coincide with
the GLB of the respective odds.

Lemma 3 For all a € AUXy(x),
e if b€ AUXy () then a AT b= p(p (a) AL ¢ 1(b)),
o ifbe X — Sup(z) then a AT b= '(a) A b.

Proof In the first case, the proof follows immediately from the definition of
<* and Proposition 3. In the second case, ¢ = ¢ '(a) AL b is a lower bound.
Observe that any other lower bound ¢ of a,b is in X U AUX(z). In case
¢ € X, the proof follows trivially from Proposition 3. Let ¢ € AU X (z), then
o 1(e) <1 p(x) <1, ¢ (a) and, by Proposition 3, ¢o~!(c) <1, b. Consequently,
¢ <t pi(e) < g M(a) Apb. O

Finally, let us examine the GLB of z.
Lemma 4 For a given element a € X\(Sup(xz) U Inf(z)) with e = a A s(z):
o ifeec OZ,(z) and p(e) € OZ () then x AT a = p(u(e))
e ifec OZy(x) and p(e) € Inf(x) then x AT a = p(e),
o ifec Inf(x) thenz AT a=ce,
o ifec |s(x)\{0Zr(z)UInf(x)} then z At a = —

Proof Observe that the concerned lower bounds are in AUX(z) U Inf(x).
In the first case, p(u(e)) (see Section 4.1) is an obvious lower bound of a,x
(p(u(e)) <t u(e) <g e <g a). For another lower bound ¢ € Inf(z), ¢ is a
lower bound of a, s(z) as well, so ¢ <; e. Consequently ¢ <* (u(e)). For
ac € AUXy(z), ¢ '(c) is, by Proposition 3, a lower bound of a,s(z), so
¢ ) <r e. Thus, by definition of p, ¢ t(c) < p(e), so ¢ <t o(u(e)).
In the second case, a simplified version of the above reasoning schema may be
applied. The proofs of the third and the fourth case are immediate. O

In case p(z) is in Inf(z), the above lemmas remain valid when s(z) is replaced
with p(z) and ¢(p(z)) — with z. Finally, they may be summarized, together with
the respective dual assertions, in the following theorem.

Theorem 1 Va,b€ X, a A" b exists.

4.3 Upper Bounds in LT

As in the previous section, only upper bounds relevant to AU Xy (x) will be
examined. Thus, the LUB of elements in X — Inf(x) do not need being consid-
ered since they remain the same as in L (due to Proposition 3). Furthermore, the



results on GLB involving elements in AU Xy (z) U {z} presented in the previous
section are dually valid for LUB and AUX(z)U{z}. For a couple of auxiliaries,
their LUB is the maximal element of L™ which shares the same value for R with
the LUB of the respective odds.

Lemma 5 For all a,b € AUXy (), with ¢~ '(a) V,, ¢ ' (b) = f:
o f€0Zy(z) and v(f) € OZy(z) = aV*tb = o(u(f)),
o f€0Zy(z) and v(f) € Sup(z) = aV*+b = v(f),
o f€ Sup(z) = avtb=f.

Proof First, for any a € AUXy(z), a <* bimplies b € Sup(z)UAU Xy (). In
the first case, clearly, p(v(f)) is an upper bound of a and b since v(f) is an upper
bound of ¢~ '(a) and ¢ ~'(b). We shall prove that for an upper bound d of a and
b o(v(f)) <t d. Let first d € AUXy(z). By definition of AUXy (), ¢ 1(d)
is an upper bound of ¢ ~1(a) and ¢~ 1(b), f <r ¢ '(d). Considering R(f) and
R(¢~1(d)) leads to v(f) < ¢ '(d). Again, by the definition of AUXy(z),
o(v(f)) <t d. Let now d € Sup(z). By Proposition 3, d is an upper bound
for ¢~ '(a) and @1 (b), so f <1, d. The fact p(v(f)) <t d follows by the same
Proposition 3. In the second case, v(f) is again an upper bound of a,b (see
above) and no upper bounds of a,b can be in AUXy(z). In a way similar to
the above, one proves for any upper bound d of a,b, v(f) <p d. In the third
case, f is an obvious upper bound of a, b. It is the least one since all other upper
bounds d lay in Sup(zx) and satisfy d is an upper bound for ¢~ !(a) and ¢~ 1(b). O

LUB of auxiliary and initial elements are computed in a similar way.
Lemma 6 For a couple of elementsa € X, b € AUXy(x) with aVye (b)) = f:
o f€0Zy(x) and v(f) € OZy(z) = aVvth = p(v(f)),
o f€0Zy(x) and v(f) € Sup(x) = aVth =v(f),
o fe Sup(z) = avth=f,
o fe X\(Sup(z)UOZy(xz) = avtb=T.

The next theorem follows directly from the above lemmas and their dual
assertions concerning AU X (z) within OZ ().

Theorem 2 Va,b€ X, a V' b exists.

4.4 Minimalness

The Dedekind-McNeille completion of L +z, DM (L + z), is defined as the set
of all subsets of L + z closed under the " operator (see [9]). DM (L + z) is the
smallest lattice which contains a sub-order isomorphic to L. + x and each other
lattice completion of L + x contains a sub-lattice isomorphic to DM (L + z). A



possible way to prove L™ = DM (L + ) may be to show a concrete isomorphism,
say X, between L+t and DM (L + ). This isomorphism will be an extension on
L7 of the standard order embedding A : L + x — DM (L + z) with A(e) = Te.
Thus, it will be enough to prove that each auxiliary element a is mapped by
into a set A which is closed under **, i.e. A = A", and has at least two minimal
elements, that is Ae € L+x with A = Te. However, for the sake of compactness,
we give a more direct proof of the isomorphism using the fact that any lattice
completion of L + x contains at least as much elements as L.

Lemma 7 L7 is the smallest lattice with (X U {z}) C Xt and <C<*

Proof Suppose L' = (X', <" ) with (X U {z}) C X' and <C<’, such that
| X*| < |X'|. Let us note AUXy(z) = (X' — (X U {z}))N T z. With no
loss of generality we may assume |[AUX[ (z)| < [AUXy(z)|. It is easy to
see that in this case there exists a € ODDy(z) such that Vb € AUX| (z),
Min(Tr bNSup(x)) # R(a). Consider ¢ = A;, R(a). Since z is a lower bound of
R(a), necessarily ¢ € AUX/;(z). On the one hand, Min(1z ¢NSup(z)) # R(a)
so 3d € Min(Tr ¢ N Sup(z)) — R(a). Clearly, a £, d and thus a £’ ¢. On the
other hand, a is still a lower bound of R(a) in L' since < is a subset of <'. The
latter contradicts a £ ¢ = A, R(a). Consequently, |AUXy (z)| < |[AU Xy (z)].
O

As a lattice completion of L 4+ z, LT contains a sub-lattice isomorphic to
DM (L + z). The latter lattice, in turn, is at least as large as the former one.
Combining both facts yields an isomorphism between DM (L + x) and L*.

4.5 Labeling Condition

It may easily be proved that Va € AU Xy (z),lab(p(a)) <7 lab(b). Dually
lab(a) <7 ¢ '(a) for all @ € AUX(x). Furthermore, for all a in AU Xy (z)
(AUX [ (x)), lab(z) <7 lab(a) (lab(a) <7 lab(z)). Next, the labeling condition
is preserved on AU Xy (z).

Proposition 4 For all a,b in AUXy(z), a <T b & lab(a) <71 lab(b)

Proof (=) Follows from the definition of lab on AUXy(z). (<) Consider
@ (a) and o 1(b). lab(p~(a)) <7 lab(a) (see above) so lab(yp~1(a)) <7 lab(b).
Consequently, as the labeling condition holds for L for all d in R(o1(b)),
@ 1(a) <y d. Thus, ¢ 1(a) <p ¢ (b). Finally, a <* b. O

Finally, the new labels respect the order between auxiliary and initial elements.
Proposition 5 For all a in AUXy(z), b in X:
e a <t b lab(a) <7 lab(b),

o b <t a < lab(b) <7 lab(a).



Proof First case. (=) Clearly, b € Sup(x) and according to Proposition 3
o Ha) <p b. (<) lab(¢~(a)) <7 lab(b) and since labeling condition holds on
L, ¢='(a) <1, b. By Proposition 3, a <% b.

Second case. (=) Follows from Proposition 3. (<) For all d in R(¢ '(a)),
lab(b) <7 lab(a) <7 lab(d) so b <y, d. Consequently, b <j, ¢~ '(a). O

The above couple of lemmas remain valid in case p(z) is in Inf(z). When
taken with their dual assertions, they state the correction of our label computing
procedure.

Theorem 3 Va,be X, a <7 b < lab(a) <7 lab(b).

5 Algorithm

In the following we describe the steps of a global lattice completion algorithm
which implements the completion procedure described in Section 3. The sound-
ness of the algorithm, i.e. the proof that the produced structure is really a type
lattice is guaranteed by theorems 1, 2, and 3

5.1 Data Structures and Primitives

The lattice L is represented by its covering graph Cov(L) = (X, <) Each
element e in X is represented by an object o, whereby informations related to
e are stored in object fields. Thus, o.pred and o.succ represent respectively the
list of the immediate predecessors and the list of immediate successors of e in
L. Moreover, the type expression is stored in o.lab. The o.index field carries a
real number, the index of the element in a linear extension of <. In addition, if
e € OZy(z) then the 0.R and 0.R*"™9 fields contain the values of the respective
mappings, whereas 0.0ODD™%* contains the set of the maximal odds, inferior
to e. The fields 0.R, 0.R**™ and 0.ODD™*® are initially set to (). Finally,
if e € ODDy(x) then the o.artificial field refers the object representing the
auxiliary element ¢(e).

In the following, we suppose that Sup(z), Sup’(x), Sup®¥(z), p(x), and O Zy ()
are given since their computation is trivial. In addition, the relation <, on X
is supposed to be directly available. Thus, the fact a <; b may be checked in
constant time. The complexity of the incremental maintenance of < may be
roughly estimated at O(|L|?w(L)) in time and O(|L|?) in space.

The primitives ord-union-min, ord-union-maz and ord-difference, when ap-
plied on a couple (A, B) of antichains in L™, compute Min(AUB), Maz(AUB)
and A — 1B respectively. The complexity of each primitive is O(w?(L)).

The primitives create-link and drop-link maintain the precedence relation <+
and take constant time.

5.2 Detecting ODDy(z)

The algorithm carries out a priority-guided search through OZy (z). In a pre-
liminary step, the members of Sup’®(x) propagate their references downwards



to their successors in OZy (z) thus initializing the R*"9 field of each successor.
Next, the elements in OZy(z) are processed in a global loop. At each o, the
fields 0.R and 0.R*"9 are first updated, then the odd condition is checked. Fi-
nally, the value of 0.R is propagated downwards.

Algorithm 1 Detection of ODDy (x)

for o in Sup®(z) do
for o’ in o.pred NOZy(z) do
Oﬂ.RSan — Oﬂ.RSan U {O}

for o in OZy (z) in decreasing index order do
0.R*"™ « ord-difference(0.R**"9,0.R)
0.R «— 0.R U o.R*"™; card «— ||o.R||

if card > 1 then
is-bound «— true
for o’ in o.succ NOZy(z) do
is-bound «— is-bound and not 0. R = o’ R
if is-bound then
ODDy(z) «— ODDy(z) U {o}

for o’ in o.pred NOZy (z) do
if card = 1 then
0" R*"9 « ord-union-min(0.R,0’.R*")
else
0’.R « ord-union-min(0.R,0’.R)

The above procedure is of O(|L|w?(L)) time complexity since antichain com-
parisons (in O(w?(L))) are carried out O(w(L)) times for each member of O Zy ()
(of O(]L|) size). At the end of the procedure, ODDy(z) contains all odd ele-
ments, possibly p(z). Furthermore, the R*"9 fields of the objects in ODDy ()
indicate the the direct successors of the respective auxiliary elements. What
remains is to compute the <4y x, (,) relation. This is done directly on odd el-
ements, that is <opp, (») is computed instead, in a way quite similarly to the
computation of R. The essential difference is that the search starts by p(z) and
goes upwards. The procedure is of O(|L|w?(L)) time complexity.

Algorithm 2 Construction of <oppy ()

p.ODD™  {p}
for o in OZy (z) in increasing index order do
for o’ in o.succ NOZy(z) do
if 0 in ODDy (z) then
0’.0DD™*" — ord-union-max(0’.ODD™*" {o})
else
0’.0DD™** — ord-union-max(0’.ODD™** 0.0DD™*")



5.3 Integration of AUXy(z)U {z} into L

Once all the necessary information about <™ has been gathered, the effective
creation of auxiliary elements and their integration may be carried out. This is
done by strictly following the rules described in Section 3.2. Thus, after being
created and linked to the respective odds auxiliaries are further linked to each
element in R*"9 and in ODD™". The redundant links are dropped and z is
connected to its auxiliary successors. Finally, the corrections necessary in case
of p(x) € Inf(x) are carried out. The overall complexity of the algorithm is
O(|L1w?(L).

Algorithm 3 Creating and Linking the Artificial Elements

for o in ODDy (z) in increasing index order do
new(o.artificial)
AUXy(z) «— AUXp(z) U {o.artificial}; link-create(o,0.artificial)
if 0 # p then
for o’ in 0.0ODD™** do
link-create(o’. artificial,o.artificial)
for o’ in 0.R*"9 do
link-create(o. artificial,0’)
if 0 in o’.pred then
link-drop(o, 0)
if p(x) € Inf(z) then
link-create(p(x), x)
for o in p(x).artificial. succ
link-create(x, 0); link-drop(p(x).artificial,0)
link-drop(p(x),p(x).artificial)
else
link-create(x,p(x).artificial)

5.4 Computing Indices

The last step of the completion is the index computation for auxiliary elements.
Indexes, necessary for the topological search through L*, may be seen as a
mapping ¢ : X+ — IR. The restriction of : on X, already available, defines a
linear extension of <. The computation of + on AUX (z) U {z}) is a two-step
process. On the first step, the index of = is computed as:

minaESupI(m)(l’(O‘)) + ma‘xbelnff(m)(”(b))
2
Then, the members of AU Xy (z) are treated in a topological top-down order
whereby the index of each e € AU Xy (z) is
mianEsuccessors(e) (L(a)) + HlaX({L(;U), L(¢7] (6))})
2

The index of a e € AUX(z) is obtained in a dual manner. The next lemma
follows trivially from the above definitions.

z) =

u(e) =

Lemma 8 . defines a linear extension of <.



6 Conclusion

We presented a strategy for insertion of a new element z in a lattice of types
L. First, the set of auxiliary elements necessary to preserve the lattice struc-
ture is characterized. Then, an appropriate way to insert these elements into
L + x is described. Next, the proof of the lattice structure of the obtained order
is given. In addition, the obtained lattice is shown to be minimal in size and
thus isomorphic to the Dedekind-McNeille completion of L + x. We also pre-
sented a lattice completion algorithm of time complexity O(|L|w(L)(|L|+w?(L)))
and space complexity O(|L|?). Our approach is more general than the existing
strategies, in particular those presented in [2], [1] and [6] since it considers non-
extremal elements in a general type lattice. Thus, even for terminal elements z,
the generated lattice L™ remains smaller in size than the output in [2].
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