
An Algorithm for Minimal Insertion in a TypeLatticePetko ValtchevINRIA Rhône-AlpesZIRST, 655 av. de l'Europe, 38330 Montbonnot Saint-Martin, Francetel. + 33 4 76 61 53 75, fax + 33 4 76 61 52 07Petko.Valtchev@inrialpes.frAbstract. We consider the insertion of a new element x in a latticeof types L. As the poset L + x obtained by the direct insertion of xin L, is not necessarily a lattice, a set of auxiliary elements should beadded in order to restore the lattice properties. We describe an approachtowards the lattice insertion based on a global de�nition of the set ofnecessary auxiliary elements and their location in L. For that reason, theset of GLB (LUB) of elements in L superior (inferior) to x is considered.Each GLB and LUB which is incomparable with x gives rise to exactlyone auxiliary element. The obtained lattice, L+, is isomorphic to theDedekind-McNeille completion of L + x and thus it is minimal in size.In addition, the insertion strategy is more general than the existing ones,since it deals with general kind lattices and makes no hypothesis on thelocation of x in L. An algorithm computing L+ from L and x of timecomplexity O(jLj!(L)(jLj + !2(L))) is provided.Keywords: type lattices, lattice insertion, Dedekind-McNeille completion1 IntroductionGiven a lattice L = hX;�i, the insertion of a new element x in it amountsto building a new lattice L+ containing both x and L. In general, the set ofimmediate predecessors and immediate successors of x in L are either known orcomputable. However, the poset L + x obtained by directly inserting x into Lwith respect to these elements need not to be a lattice. In fact, some sub-setsof L + x may have no GLB or LUB. Thus, L+ x is only a sub-order of L+ or,what is equivalent, L+ is a lattice completion of L+x. Consequently, in order toobtain L+, some extra elements, called auxiliary, have to be inserted into L+x.In the present paper we focus on the insertion in type lattices. A type latticeis a lattice where ground set elements are labeled by type expression, or simplytypes. Types are members of a type domain, partially ordered by a sub-typingrelation, and no hypothesis on the nature of types is made. The lattice orderfollows the sub-typing, that is labeling represents an order-embedding of theground set into the type domain. Type lattices are used within a wide rangeof object-oriented and functional languages (see [1], [2], [3]). In fact, variousordered structures like abstract type lattices in [4], M-lattices in [1], multiple



inheritance hierarchies in [2] and even concept lattices [5] may be seen as typelattices. In most cases, these are dynamically evolving structures whence thepractical interest of the insertion operation.The completion of the poset of types L + x into a type lattice L+ may bedecomposed into two disjoint tasks: �rst, building of the ground lattice L+which is an ordinary lattice completion operation, and second, the computationof auxiliary element labels (called hidden types in [1]).A possible approach towards the insertion into a type lattice is described in [1].The scope of the strategy is however limited to type lattices closed under thejoin operator, called M-lattices. A more general problem, namely the latticecompletion of any poset of types is addressed in [2]. Both papers describe algo-rithmic procedures which can insert only terminal x, i.e. whose only immediatepredecessor in L is the bottom element. Moreover, the tasks mentioned aboveare carried out simultaneously by both procedures. Thus, when the algorithmin [2] is used for lattice insertion, the number of auxiliary elements is larger thanthe minimum required for restoring the lattice structure. The reason for thisunnecessary increase is that auxiliary types may violate lattice structure andthus involve further insertions.In our own approach, the lattice completion and auxiliary type calculation aredealt with separately. This allows the �rst task to be seen as the computationof DM(L+ x), the Dedekind-McNeille completion of L+ x. DM(L+ x) is theunique, up to isomorphism, smallest lattice to contain L + x as a sub-order.A possible way of computing DM(L + x) from L + x, namely as the latticeof the maximal anti-chains of the bipartite order (L [ fxg; L [ fxg; 6�L+x) isdescribed in [6]. The operation is computationally expensive (O(jLj4)) due tostructure of the bipartite order (the size of maximal antichains is in O(jLj)).Sub-structures of L+ of lesser size may be used by the algorithm as reportedin [7] but their detection within L + x requires extra computations. Finally,for terminal x, algorithms computing DM(L + x) as the concept lattice of thecontext K = (L [ fxg; L [ fxg;�L+x) [5] may be found in [8].In our completion strategy the lattice L+ is still isomorphic to DM(L + x).However, we design a new procedure for building DM(L+x) from L and x whichtakes the greatest advantage of the existing lattice structure. Thus, subsets ofX which have no GLB (LUB) in L + x are detected together with their initialGLB (LUB) in L, called odds. L+ is obtained by inserting an auxiliary elementfor each odd in L+ x. The localization of an odd in L is taken into account tocompute the type of the respective auxiliary.The paper starts with de�nitions of some lattice substructures necessary todetermine the set of auxiliary elements and their places within L+x (Section 2).Then, the exact way auxiliaries are inserted into L+ x to transform it into L+is described (Section 3). In Section 4 we provide the proof that L+ has a latticestructure and is isomorphic to DM(L + x). Finally, an e�ective algorithm forlattice insertion is presented which uses the previous theoretical results (Sec-tion 5).



2 De�nitions and PreliminariesIn the following, we assume the reader is familiar with basic concepts of theordered structure theory like partial order, lattice, covering graph, precedencerelation, anti-chain (see [9] for an introduction). Let L = h X;�Li be a latticewhere the ground set X is a sub-set of a bigger set X assumed potentiallyin�nite. Let also L be given through its covering graph Cov(L) = (X;�L), i.e.for each a in X the set of its immediate predecessors, Pred(a), and its immediatesuccessors, Succ(a), are associated to a.We shall note #La ("La) the set of all predecessors (successors) of a in L andcall it the order ideal (order �lter) associated with a. In the following, we shallomit the index on # (") when no confusion is possible. Ideals and �lters may begeneralized to sets as well.Types may be considered as labels on elements of L. Thus, we consider amapping lab : X ! T where T is a domain of type expressions. T is providedwith a sub-typing relation �T and lattice operators ^T and _T . The followingcondition, called labeling condition, holds in L:8a; b 2 X; a �L b, lab(a) �T lab(b):
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Fig. 1: Sample of direct insertion into a lattice with a possible completion.A new element x 2 X which is to be inserted into L, is given with its la-bel, lab(x). Thus, by testing �T between lab(x) and the types in L, onemay automatically determine the following sub-sets of X : (i) the set of el-ements superior (inferior) to x, Sup(x) (Inf(x)), (ii) the minima (maxima)of Sup(x) (Inf(x)), noted Supim(x) (Inf im(x)). On Fig.1.A, an example ofL and x is drawn (types are omitted) where the elements of Sup(x) are col-ored in dark gray, those of Inf(x) in light gray. When x is inserted in L withrespect to Supim(x) and Inf im(x), as shown on Fig.1.B., the obtained struc-ture, L + x, need no more to be a lattice. In fact, there may be sub-sets ofSup(x) (Inf(x)) with no GLB (LUB) in L + x. This is the case of fa; dg (seeFig.1.C) whose GLB in L, g, is incomparable with x . Intuitively, restoringthe lattice structure amounts to introducing some auxiliary elements to becomethe new GLB (LUB) of those sets in L+. On Fig.1.D, the auxiliary y is the



new GLB of a and d. Elements like g, will be referred to as odds and theirset will be denoted by ODD(x). Actually, ODD(x) is the union of two dis-joint sets of odds. Thus, ODDU (x) = fajakx; 9b; c 2 Sup(x) with a = b^Lcgwill denote the set of GLB of elements in Sup(x), called upper odds, whereasODDL(x) = fajakx; 9b; c 2 Inf(x) with a = b_L cg will denote the set of LUBof elements in Inf(x), called lower odds. The duality principle, allows us toconsider only ODDU (x).Odds give rise to auxiliary elements so they may be compared to generatorsin [8] and to canonical representatives in [1]. The existing strategies for latticeinsertion di�er as to the way odds are detected and the number of auxiliariesper odd. Thus, the algorithm in [2] checks the GLB of all couples of elementsin Sup(x) and inserts an auxiliary each time this GLB is incomparable to x.In this way, the same odd may provoke the generation of a set of auxiliaries.For example, the element g on Fig.1 is an odd since g = VLfa; b; dg and gkx.With the algorithm in [2], g will give rise to at least three auxiliary elements,one for each of the couples fa; bg, fa; dg and fb; dg. Unlike this, the algorithmsdescribed in [8] and in [1] generate a single auxiliary per odd.Our own completion strategy follows the same principle. For this purpose,given a 2 ODDU (x), the set of all superiors to a in Sup(x), A = "a \ Sup(x)should be known so that the auxiliary element become the new GLB of A inL+. For all such a, A is an up-set in L, so for computational purposes, thewhole set may be replaced by the set of its minima. Thus, we de�ne a mappingR : X ! 2Sup(x) such that R(a) = Min("a \ Sup(x)). Please, notice that forall a 2 Sup(x), R(a) = fag and for all a 2 ODDU (x), a = VLR(a). Fromthe latter fact follows that for a given a 2 ODDU (x) with R(a) = A0, a is themaximum of the set fbjR(b) = A0g. In other words, odds are elements of Lincomparable with x and maximal for the respective value of R. Consequently,elements in ODDU (x) may be characterized locally, i.e. only with respect totheir immediate successors.Proposition 1 8c 2 Xc 2 ODDU (x) , (c 6 kx and 8e 2 X(c �L e) R(e) 6= R(c)))Proof: ()) Follows from the de�nition of ODDU (x) and R(c).(() By absurd. Suppose there exists d = VLR(c). Clearly c �L d, so thereis e 2 X such that c �L e �L d. On the one hand, ("d \ Sup(x)) � ("e \Sup(x)) � ("c\Sup(x)). On the other hand, by de�nition of d, ("e\Sup(x)) =("d \ Sup(x)). Consequently, ("c \ Sup(x)) = ("e \ Sup(x)). ant R(e) = R(c)which is a contradiction. 2Computationally, the checking the above condition for any a in X would be arather expensive task. Therefore, we limit our consideration to a smaller sub-setof X , OZU (x) (stands for odd zone). OZU (x) is composed of all potential oddsand lays between Sup(x) and its GLB, p(x) = VL Sup(x). Formally,OZU (x) = "p(x) \ ( [a2Sup(x) #a� Sup(x)):



OZU (x) is a convex subset of L, i.e. 8a; b 2 OZU (x);8c 2 X a � c � b )c 2 OZU (x). The element p(x) may but need not to belong to ODDU (x) sinceit may happen that p(x) � x. In this particular case, ODDL(x) = ;. In the restof the paper, we shall consider p(x) 62 Inf(x), and indicate how our strategychanges to �t the case p(x) 2 Inf(x).Let OPU = hODDU (x);�ODDU (x)i where �ODDU (x) is the restriction of �Lon ODDU (x). The following proposition states that if p(x)kx then OPU is alower semi-lattice with minimal element p(x).Proposition 2 8a; b 2 ODDU (x), with c = a ^L b, c 2 ODDU (x) , c 6 kx.
Sup    (x)im = {a,b,d}

={e,f,g}

= gp(x)

UOZ  (x)

UODD  (x)

Sup(x) = {a,b,c,d}

={e,f,g}p(x)A. B.

Sup(x)

OZ   (x)
U

Sup    (x)im

T

other elements

c

d

ba

e

g

fFig. 2: Detailed structure of "p(x) with an example.The mutual position of "p(x), Sup(x), Supim(x) andOZU (x) in L is illustratedon Fig. 2.A. We shall also denote by Supbd(x) (bd stands for border), the set ofall superiors of x which have an immediate predecessor in OZU (x). Formally,Supbd(x) = faja 2 Sup(x); 9b 2 OZU (x); b � ag. It is easy to see that R(a) �Supbd(x).When constituting the precedence relation in L+, for each odd a only a sub-set of R(a) will be considered. Thus we de�ne the set Rsing(a) as the membersof R(a) which are not superior to odds greater than a. Formally, the mappingRsing : "p(x) ! 2Sup(x) is such that 8a; c 2 X; b 2 R(a): b 2 Rsing(a) )((a �L c and b 2 R(c)) ) R(c) = fbg). In other words, for all predecessors ofa which are inferior to such a b, the respective value of R is limited to fbg. Onthe example drawn on Fig. 2.B, R(g) = fa; b; dg and Rsing(g) = fdg, whereasR(f) = Rsing(f) = fb; cg. The elements s(x), OZL(x), S and Ssing are dual top(x), OZU (x), R and Rsing respectively. Please, notice that s(x) �L p(x).3 Completion PrinciplesIn the previous section, the set of odds in L+x has been de�ned. A completionstrategy which preserves the initial structure of L+x is proposed in the following.More precisely, we describe a poset L+ = hX+;�+i where X [ fxg � X+ and�L��+. First, the set of auxiliary elements to be inserted into L+x is de�ned.Then, we describe the way �+ is obtained from �L.



3.1 Auxiliary ElementsLet AUX(x) � X be the set of auxiliary elements to insert into L + x inorder to obtain L+, i.e. X+ = AUX(x) [ X [ fxg. Our insertion strategyrelies on a set of auxiliary which satis�es jAUX(x)j = jODD(x)j. Let also' : ODD(x) �! X be a bijective mapping. In other words, to each odd a anauxiliary '(a) is assigned. Furthermore, let AUXU (x) = Image'(ODDU (x))and AUXL(x) = Image'(ODDL(x)). The set AUXU (x) is provided with anorder relation �AU which satis�es 8a; b 2 ODDU (x) '(a) �AU '(b) , a �L b.Thus, ' de�nes an order isomorphism between OPU and hAUXU (x);�AU i. Inparticular, if p(x) 2 ODDU (x) then hAUXU (x);�AU i is a lower semi-lattice witha minimal element '(p(x)). Fig. 3.A illustrates the way in which the structureof hAUXU (x);�AU i is obtained from OPU . Dually, hAUXL(x);�ALi is an uppersemi-lattice withMax(AUXL(x)) = f'(s(x))g. In sum, the completion of L+xamounts to integrating a couple of semi-lattices (a single one if p(x) 2 Inf(x)).
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Fig. 3: Computation of AUXU (x) and an example of lab for the lattice onFig. 1.Finally, lab is de�ned on AUX(x) in the following way:� for a 2 AUXU (x), lab(a) = VT flab(b)jb 2 R('�1(a))g� for a 2 AUXL(x), lab(a) = WT flab(b)jb 2 R('�1(a))gThe type computation on auxiliary elements is exempli�ed on Fig. 3.B. Thus, wesuppose T to be a domain of integer sets, where �T is the set inclusion. As wenoticed previously, R(g) = fa; b; dg, so lab('(g)) = lab(a) ^T lab(b) ^T lab(d) =f2; 3; 5; 6g.3.2 Linking AuxiliariesWe suppose that L is given through its covering graph Cov(L) = (X;�L).The way �+ is obtained from �L. is exempli�ed by Fig. 4.First, the precedence relations �AU and �AL are preserved in L+. In otherwords, for a; b 2 ODDU (x), if a �ODDU (x) b then '(a) �+ '(b). Next, eachauxiliary element is linked to its original, that is for all a 2 AUXU (x), we set'�1(a) �+ a. Dually, for all b 2 AUXL(x), b �+ '�1(b). For example, on�gure Fig. 4.A, '(f) is linked to f . In addition, an auxiliary e = '(a) precedes
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Fig. 4: Lattice completion: integration of AUXU (x).all the elements in Rsing(a) (see de�nition of Rsing). So, 8a 2 ODDU (x);8b 2Rsing(a); '(a) �+ b. On the same example of Fig. 4.A, '(g) precedes d since dis in R(g). With the last completion, a link between an odd element a and anelement of Rsing(a) becomes redundant so it should be dropped out. In otherwords, 8a 2 ODDU (x);8b 2 R(a); a �L b ) a 6�+ b. On the �gure above, c isno more preceded by f since '(f) is inserted between them. Finally, minimalelements in AUXU (x) are preceded by x. In case p(x) 2 ODDU (x) this meansthat x �+ '�1(p(x)) as shown on Fig. 4.A. In case p(x) 2 Inf(x), the placeof '(p(x)) is simply taken by x which should be inserted between p(x) andMin(AUXU (x)) [ Rsing(p(x)) (with redundant links dropped out). Therefore,we shall further simplify our notation by the assumption, somehow abusive, thatin case p(x) 2 Inf(x), '(p(x)) = x. This situation is illustrated on Fig. 4.B,where the same structure of "p(x) is supposed with p(x) = g �+ x.4 Lattice OperatorsIn the present section we shall prove that L+ = hX+;�+i where X+ =X [AUX(x)[ fxg and �+ be the transitive closure of �+ is a lattice. For thispurpose, we shall prove that each couple of elements in X+ has a GLB and aLUB in L+. Actually, only those couples will be considered which contain atleast one new element, i.e. either auxiliary or x, or their GLB (LUB) in L+are new. The rest of the elements preserve their bounds due to the way L+ isde�ned.4.1 PreliminariesFirst, one needs a mapping which associates to a give a in OZU (x) the greatestelement in X which shares the same R value with a. Thus, we de�ne � :OZU (x) ! OZU (x) [ Sup(x) with �(a) = VLR(a). The dual map � is de�nedfor all b in OZL(x) as �(a) = WL S(a). Next, it is easy to see that �L is asub-set of �+, i.e. 8a; b 2 X; a �L b , a �+ b. Moreover, by de�nition of �+,8a; b 2 AUXU (x); a �+ b , '�1(a) �L '�1(b).In addition, both AUXU (x) and AUXL(x) are convex sets in L+, that is



8a; b 2 AUXU (x); c 2 X+; a �+ c �+ b , c 2 AUXU (x). Finally, for all ain AUXU (x): (i) x �+ a and p(x) �+ a, (ii) "L+ a � Sup(x) [ AUXU (x) and(iii) 8b 2 AUXL(x); b �+ a.The following proposition asserts that the completion procedure described inthe previous section is correct with respect to �L.Proposition 3 8a 2 X;8b 2 AUXU (x)� a �+ b , a �L '�1(b),� b �+ a ) '�1(b) �L a and if a 2 Sup(x) then '�1(b) �L a ) b �+ a.Proof In the �rst case, the ( part is trivial. The ) part can be proved byinduction on the length of the shortest path between a and b in the covering graphCov(L+). The same kind of induction is used in the proof of both necessary andsu�cient conditions in the second case. 24.2 Lower Bounds in L+A constructive proof of the fact that for arbitrary a; b in X+, a ^+ b exists isgiven below. First, when both a and b lay in Sup(x) their GLB in L is eitheritself in Sup(x) and in this case it remains the same in L+ or it is an odd andthe new GLB is the respective auxiliary.Lemma 1 For a couple of elements a; b 2 Sup(x),� a ^L b 2 Sup(x) ) a ^+ b = a ^L b� a ^L b =2 Sup(x) ) a ^+ b = '(a ^L b)Proof In the �rst case, we only examine lower bounds e of a; b with e 2AUXU (x). Thus, e�+a ^L b follows trivially from Proposition 3. In the secondcase, d = a ^L b is clearly in ODDU (x) and thus '(d) = c is a lower boundfor a; b in L+ with d <+ c. Again, only e 2 AUXU (x) with e�+a; e�+b areconsidered. We derive from Proposition 3, '�1(e)�Ld so e�+c. 2The GLB of couples where one element is in Sup(x) and the other is a newelement are also new elements.Lemma 2 For all a 2 Sup(x):� if b 2 X � Sup(x) then a ^+ b = a ^L b,� if b 2 AUXU (x) then a ^+ b = '(a ^L '�1(b)),� if b 2 AUXL(x) [ fxg then a ^+ b = b.Proof In the �rst case, the only auxiliary lower bounds c of a; b may lay inAUXL(x). By Proposition 3, '�1(c) ^L a ^L b and thus c ^+ a ^L b. In thesecond case, observe that a^L'�1(b) is in ODDU (x). Thus, the proof is similar



to the second case of Lemma 1. The proof of the third case is trivial. 2The GLB of auxiliary elements are either itself in AUXU (x) or coincide withthe GLB of the respective odds.Lemma 3 For all a 2 AUXU (x),� if b 2 AUXU (x) then a ^+ b = '('�1(a) ^L '�1(b)),� if b 2 X � Sup(x) then a ^+ b = '�1(a) ^L b.Proof In the �rst case, the proof follows immediately from the de�nition of�+ and Proposition 3. In the second case, c = '�1(a) ^L b is a lower bound.Observe that any other lower bound c of a; b is in X [ AUXL(x). In casec 2 X , the proof follows trivially from Proposition 3. Let c 2 AUXL(x), then'�1(c) �L p(x) �L '�1(a) and, by Proposition 3, '�1(c) �L b. Consequently,c �+ '�1(c) �+ '�1(a) ^L b. 2Finally, let us examine the GLB of x.Lemma 4 For a given element a 2 Xn(Sup(x) [ Inf(x)) with e = a ^ s(x):� if e 2 OZL(x) and �(e) 2 OZL(x) then x ^+ a = '(�(e))� if e 2 OZL(x) and �(e) 2 Inf(x) then x ^+ a = �(e),� if e 2 Inf(x) then x ^+ a = e,� if e 2 #s(x)nfOZL(x) [ Inf(x)g then x ^+ a = ?Proof Observe that the concerned lower bounds are in AUXL(x) [ Inf(x).In the �rst case, '(�(e)) (see Section 4.1) is an obvious lower bound of a; x('(�(e)) �+ �(e) �L e �L a). For another lower bound c 2 Inf(x), c is alower bound of a; s(x) as well, so c �L e. Consequently c �+ '(�(e)). Fora c 2 AUXL(x), '�1(c) is, by Proposition 3, a lower bound of a; s(x), so'�1(c) �L e. Thus, by de�nition of �, '�1(c) �L �(e), so c �+ '(�(e)).In the second case, a simpli�ed version of the above reasoning schema may beapplied. The proofs of the third and the fourth case are immediate. 2In case p(x) is in Inf(x), the above lemmas remain valid when s(x) is replacedwith p(x) and '(p(x)) { with x. Finally, they may be summarized, together withthe respective dual assertions, in the following theorem.Theorem 1 8a; b 2 X+, a ^+ b exists.4.3 Upper Bounds in L+As in the previous section, only upper bounds relevant to AUXU (x) will beexamined. Thus, the LUB of elements in X � Inf(x) do not need being consid-ered since they remain the same as in L (due to Proposition 3). Furthermore, the



results on GLB involving elements in AUXU (x) [ fxg presented in the previoussection are dually valid for LUB and AUXL(x)[fxg. For a couple of auxiliaries,their LUB is the maximal element of L+ which shares the same value for R withthe LUB of the respective odds.Lemma 5 For all a; b 2 AUXU (x), with '�1(a) _L '�1(b) = f :� f 2 OZU (x) and �(f) 2 OZU (x) ) a_+b = '(�(f)),� f 2 OZU (x) and �(f) 2 Sup(x) ) a_+b = �(f),� f 2 Sup(x) ) a_+b = f .Proof First, for any a 2 AUXU (x), a �+ b implies b 2 Sup(x)[AUXU (x). Inthe �rst case, clearly, '(�(f)) is an upper bound of a and b since �(f) is an upperbound of '�1(a) and '�1(b). We shall prove that for an upper bound d of a andb '(�(f)) �+ d. Let �rst d 2 AUXU (x). By de�nition of AUXU (x), '�1(d)is an upper bound of '�1(a) and '�1(b), f �L '�1(d). Considering R(f) andR('�1(d)) leads to �(f) �L '�1(d). Again, by the de�nition of AUXU (x),'(�(f)) �+ d. Let now d 2 Sup(x). By Proposition 3, d is an upper boundfor '�1(a) and '�1(b), so f �L d. The fact '(�(f)) �+ d follows by the sameProposition 3. In the second case, �(f) is again an upper bound of a; b (seeabove) and no upper bounds of a; b can be in AUXU (x). In a way similar tothe above, one proves for any upper bound d of a; b, �(f) �L d. In the thirdcase, f is an obvious upper bound of a; b. It is the least one since all other upperbounds d lay in Sup(x) and satisfy d is an upper bound for '�1(a) and '�1(b). 2LUB of auxiliary and initial elements are computed in a similar way.Lemma 6 For a couple of elements a 2 X, b 2 AUXU (x) with a_L'�1(b) = f :� f 2 OZU (x) and �(f) 2 OZU (x) ) a_+b = '(�(f)),� f 2 OZU (x) and �(f) 2 Sup(x) ) a_+b = �(f),� f 2 Sup(x) ) a_+b = f ,� f 2 Xn(Sup(x) [ OZU (x) ) a_+b = >.The next theorem follows directly from the above lemmas and their dualassertions concerning AUXL(x) within OZL(x).Theorem 2 8a; b 2 X+, a _+ b exists.4.4 MinimalnessThe Dedekind-McNeille completion of L+x, DM(L+x), is de�ned as the setof all subsets of L+ x closed under the lu operator (see [9]). DM(L+ x) is thesmallest lattice which contains a sub-order isomorphic to L+ x and each otherlattice completion of L+ x contains a sub-lattice isomorphic to DM(L+ x). A



possible way to prove L+ �= DM(L+x) may be to show a concrete isomorphism,say �, between L+ and DM(L+ x). This isomorphism will be an extension onL+ of the standard order embedding � : L + x ! DM(L+ x) with �(e) = "e.Thus, it will be enough to prove that each auxiliary element a is mapped by �into a set A which is closed under lu, i.e. A = Alu, and has at least two minimalelements, that is 6 9e 2 L+x with A = "e. However, for the sake of compactness,we give a more direct proof of the isomorphism using the fact that any latticecompletion of L+ x contains at least as much elements as L+.Lemma 7 L+ is the smallest lattice with (X [ fxg) � X+ and ���+Proof Suppose 9L0 = hX 0;�0 i with (X [ fxg) � X 0 and ���0, such thatjX+j � jX 0j. Let us note AUX 0U (x) = (X 0 � (X [ fxg))\ "L0 x. With noloss of generality we may assume jAUX 0U (x)j < jAUXU (x)j. It is easy tosee that in this case there exists a 2 ODDU (x) such that 8b 2 AUX 0U (x),Min("L0 b\Sup(x)) 6= R(a). Consider c = VL0 R(a). Since x is a lower bound ofR(a), necessarily c 2 AUX 0U (x). On the one hand, Min("L0 c\Sup(x)) 6= R(a)so 9d 2 Min("L0 c \ Sup(x)) �R(a). Clearly, a 6�L d and thus a 6�0 c. On theother hand, a is still a lower bound of R(a) in L0 since � is a subset of �0. Thelatter contradicts a 6�0 c = VL0 R(a). Consequently, jAUXU (x)j � jAUX 0U (x)j.2 As a lattice completion of L + x, L+ contains a sub-lattice isomorphic toDM(L + x). The latter lattice, in turn, is at least as large as the former one.Combining both facts yields an isomorphism between DM(L+ x) and L+.4.5 Labeling ConditionIt may easily be proved that 8a 2 AUXU (x); lab('�1(a)) �T lab(b). Duallylab(a) �T '�1(a) for all a 2 AUXL(x). Furthermore, for all a in AUXU (x)(AUXL(x)), lab(x) �T lab(a) (lab(a) �T lab(x)). Next, the labeling conditionis preserved on AUXU (x).Proposition 4 For all a; b in AUXU (x), a �+ b, lab(a) �T lab(b)Proof ()) Follows from the de�nition of lab on AUXU (x). (() Consider'�1(a) and '�1(b). lab('�1(a)) �T lab(a) (see above) so lab('�1(a)) �T lab(b).Consequently, as the labeling condition holds for L for all d in R('�1(b)),'�1(a) �L d. Thus, '�1(a) �L '�1(b). Finally, a �+ b. 2Finally, the new labels respect the order between auxiliary and initial elements.Proposition 5 For all a in AUXU (x), b in X:� a �+ b, lab(a) �T lab(b),� b �+ a, lab(b) �T lab(a).



Proof First case. ()) Clearly, b 2 Sup(x) and according to Proposition 3'�1(a) �L b. (() lab('�1(a)) �T lab(b) and since labeling condition holds onL, '�1(a) �L b. By Proposition 3, a �+ b.Second case. ()) Follows from Proposition 3. (() For all d in R('�1(a)),lab(b) �T lab(a) �T lab(d) so b �L d. Consequently, b �L '�1(a). 2The above couple of lemmas remain valid in case p(x) is in Inf(x). Whentaken with their dual assertions, they state the correction of our label computingprocedure.Theorem 3 8a; b 2 X+, a �+ b , lab(a) �T lab(b).5 AlgorithmIn the following we describe the steps of a global lattice completion algorithmwhich implements the completion procedure described in Section 3. The sound-ness of the algorithm, i.e. the proof that the produced structure is really a typelattice is guaranteed by theorems 1, 2, and 35.1 Data Structures and PrimitivesThe lattice L is represented by its covering graph Cov(L) = (X;�L) Eachelement e in X is represented by an object o, whereby informations related toe are stored in object �elds. Thus, o:pred and o:succ represent respectively thelist of the immediate predecessors and the list of immediate successors of e inL. Moreover, the type expression is stored in o:lab. The o:index �eld carries areal number, the index of the element in a linear extension of �L. In addition, ife 2 OZU (x) then the o:R and o:Rsing �elds contain the values of the respectivemappings, whereas o:ODDmax contains the set of the maximal odds, inferiorto e. The �elds o:R, o:Rsing and o:ODDmax are initially set to ;. Finally,if e 2 ODDU (x) then the o:artificial �eld refers the object representing theauxiliary element '(e).In the following, we suppose that Sup(x), SupI(x), Supbd(x), p(x), and OZU (x)are given since their computation is trivial. In addition, the relation �L, on Xis supposed to be directly available. Thus, the fact a �L b may be checked inconstant time. The complexity of the incremental maintenance of � may beroughly estimated at O(jLj2!(L)) in time and O(jLj2) in space.The primitives ord-union-min, ord-union-max and ord-di�erence, when ap-plied on a couple (A;B) of antichains in L+, computeMin(A[B), Max(A[B)and A� "B respectively. The complexity of each primitive is O(!2(L)).The primitives create-link and drop-link maintain the precedence relation �+and take constant time.5.2 Detecting ODDU (x)The algorithm carries out a priority-guided search through OZU (x). In a pre-liminary step, the members of Supbd(x) propagate their references downwards



to their successors in OZU (x) thus initializing the Rsing �eld of each successor.Next, the elements in OZU (x) are processed in a global loop. At each o, the�elds o:R and o:Rsing are �rst updated, then the odd condition is checked. Fi-nally, the value of o:R is propagated downwards.Algorithm 1 Detection of ODDU (x)for o in Supbd(x) dofor o' in o.pred \OZU (x) doo'.Rsing  o'.Rsing [ fogfor o in OZU (x) in decreasing index order doo.Rsing  ord-di�erence(o.Rsing ,o.R)o.R  o.R [ o.Rsing ; card  ko.Rkif card > 1 thenis-bound  truefor o' in o.succ \OZU (x) dois-bound  is-bound and not o.R = o'.Rif is-bound thenODDU (x)  ODDU (x) [ fogfor o' in o.pred \OZU (x) doif card = 1 theno'.Rsing  ord-union-min(o.R,o'.Rsing)else o'.R  ord-union-min(o.R,o'.R)The above procedure is of O(jLj!3(L)) time complexity since antichain com-parisons (in O(!2(L))) are carried out O(!(L)) times for each member ofOZU (x)(of O(jLj) size). At the end of the procedure, ODDU (x) contains all odd ele-ments, possibly p(x). Furthermore, the Rsing �elds of the objects in ODDU (x)indicate the the direct successors of the respective auxiliary elements. Whatremains is to compute the �AUXU (x) relation. This is done directly on odd el-ements, that is �ODDU (x) is computed instead, in a way quite similarly to thecomputation of R. The essential di�erence is that the search starts by p(x) andgoes upwards. The procedure is of O(jLj!3(L)) time complexity.Algorithm 2 Construction of �ODDU(x)p.ODDmax  fpgfor o in OZU (x) in increasing index order dofor o' in o.succ \OZU (x) doif o in ODDU (x) theno'.ODDmax  ord-union-max(o'.ODDmax,fog)else o'.ODDmax  ord-union-max(o'.ODDmax,o.ODDmax)



5.3 Integration of AUXU (x) [ fxg into LOnce all the necessary information about �+ has been gathered, the e�ectivecreation of auxiliary elements and their integration may be carried out. This isdone by strictly following the rules described in Section 3.2. Thus, after beingcreated and linked to the respective odds auxiliaries are further linked to eachelement in Rsing and in ODDmax. The redundant links are dropped and x isconnected to its auxiliary successors. Finally, the corrections necessary in caseof p(x) 2 Inf(x) are carried out. The overall complexity of the algorithm isO(jLj!2(L)).Algorithm 3 Creating and Linking the Arti�cial Elementsfor o in ODDU (x) in increasing index order donew(o.arti�cial)AUXU (x)  AUXU(x) [ fo.arti�cialg; link-create(o,o.arti�cial)if o 6= p thenfor o' in o.ODDmax dolink-create(o'.arti�cial,o.arti�cial)for o' in o.Rsing dolink-create(o.arti�cial,o')if o in o'.pred thenlink-drop(o, o')if p(x) 2 Inf(x) thenlink-create(p(x), x)for o in p(x).arti�cial.succlink-create(x, o); link-drop(p(x).arti�cial,o)link-drop(p(x),p(x).arti�cial)else link-create(x,p(x).arti�cial)5.4 Computing IndicesThe last step of the completion is the index computation for auxiliary elements.Indexes, necessary for the topological search through L+, may be seen as amapping � : X+ �! IR. The restriction of � on X , already available, de�nes alinear extension of �L. The computation of � on AUX(x) [ fxg) is a two-stepprocess. On the �rst step, the index of x is computed as:�(x) = mina2SupI(x)(�(a)) + maxb2InfI (x)(�(b))2Then, the members of AUXU (x) are treated in a topological top-down orderwhereby the index of each e 2 AUXU (x) is�(e) = mina2successors(e)(�(a)) + max(f�(x); �( �1(e))g)2The index of a e 2 AUXL(x) is obtained in a dual manner. The next lemmafollows trivially from the above de�nitions.Lemma 8 � de�nes a linear extension of �+.
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