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Abstract

We present here a theory of motion from a topological point of view, in a sym-
bolic perspective. Taking space-time histories of objects as primitive entities, we
introduce temporal and topological relations on the thus defined space-time to
characterize classes of spatial changes. The theory thus accounts for qualitative
spatial information, dealing with underspecified, symbolic information when ac-
curate data is not available or unnecessary. We show that these structures give a
basis for commonsense spatio-temporal reasoning by presenting a number of sig-
nificant deductions in the theory. This can serve as a formal basis for languages
describing motion events in a qualitative way.
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1 Introduction

1.1 Space, Motion and Common Sense

The work we present in this paper is a study of motion from the point of view
of qualitative reasoning and the representation of human spatial knowledge, in a
computational perspective. Spatial and temporal knowledge are central in several
domains of Artificial Intelligence, whether in natural language processing, man-
machine interaction, automated reasoning, geographical systems or high-level vi-
sion. A significant effort has been done in the past few years to develop formal
models for the handling of spatial data in contexts where exact information is
not available, or is not easily processed. The amount of quantitative data is in-
deed often a problem in some contexts, and being numerical in essence, they
are sometimes an obstacle to human-computer communication, as they are some-
what remote to human cognition and experience. Qualitative Spatial Reasoning
(henceforth QSR) (Cohn, 1996; Vieu, 1997) is a rather recent field in knowledge
representation, which has focused on such problems for automated reasoning, and
within which we place our study.

Little work has been devoted to the problem of representing motion in the
more cognitive kind of approaches that characterizes the processing of spatial in-
formation in QSR, besides the work of (Galton, 1993; Galton, 1997), followed by
(Muller, 1998b) and more recently (Davis, 2001; Cohn and Hazarika, 2001). The
purpose of this paper is to address the representation of motion in that perspective
and overcome some of the formal limitations of the previously mentioned stud-
ies. Dealing with motion is essential to spatial information systems as most of
them handle changing data. Taking time into account is thus a central issue in ge-
ographical information systems (Claramunt et al., 1997; Frank and Kuhn, 1995;
Hirtle and Frank, 1997), and a lot of effort in this area is devoted to providing
useful, well-grounded qualitative models to be used as high level description of
spatial and spatio-temporal information®. The cultural gap between the artificial
intelligence community and people working specifically on spatial databases is
thus being reduced, as papers start to investigate the use of formal models for
the description of objects in databases (Erwig et al., 1999; Erwig and Schneider,
to appear), taking over ideas that have been around in the qualitative spatial rea-
soning community. The issue of representing motion qualitatively also arises in

1The 7th international symposium on Advances in spatial and temporal databases presents no
less than six papers devoted to the question of moving objects, see for instance (Tassebro and
Giting, 2001).



vision, where the interfacing with human operators depends on cognitively ade-
quate representations (Pinhanez and Bobick, 1996). In a somewhat related prob-
lem, (Kalita and Lee, 1997) have proposed a semantics for the representation of
motion verbs that was used for help in image synthesis, pointing out to the need
for symbolic representations for motion events. Lastly, a need has also emerged
for symbolic, models in video databases, e.g. for indexing sequences, as reflected
in (Lietal., 1997), who propose a set of qualitative relations for motion in a video.

We thus aim at modeling some properties of space and time in a formalism
which allows for the representation of relations between moving entities and we
want to be able to reason symbolically about these situations in underspecified
contexts. The model should be powerful enough to express categories of motion
that can be useful in a qualitative context, and be kept as simple as possible so that
characterising its properties is still possible in a precise way. Only then can we
have a principled representation for motion that could unifiy the various needs for
the aforementioned situations.

From a methodological point of view, we have tried to take into account cogni-
tive aspects related to the concepts we model; we want thus to ensure the relevance
of the symbolic representation for commonsense reasoning. To do this, we have
considered the expression and representation of motion in natural language.

1.2 Classical Representations of Motion

We are going to examine in this section the various approaches towards the repre-
sentation of motion in past Al work and in related domains.

The Newtonian conception of space and time has exerted a strong influence on
views about motion even outside physics. However a lot of the approaches close
to our concerns depart somewhat from the conception of motion as a continuous
function from time (seen as the real line) to space, isomorphic to R?. 2
The different approaches can be distinguished with respect to a few key choices
about the ontology of space, time, and thus motion:

1. The choice of an absolute space (persisting through time and existing in-
dependently of the objects in it) vs. a relative space, where only physical
objects have an existence and are located with respect to one another.

2By focusing on representation problems, we leave out a lot work in philosophy or psychology,
e.g., on the perception of motion.



2. The choice of extended regions as primitive objects vs. the choice of di-
mensionless points, either for time, space or both (hybrid solutions are not
uncommon in the literature).

3. The choice of expressing motion as relative to other entities or as absolute
in a coordinate system.

4. The choice of a discrete or dense or continuous time and/or space; a fully,
explicit, discrete model of motion is rare, but see a proposal in (Forrest,
1995).

5. The choice of a primitive space-time vs. two separate domains for space
and time.

Most of those choices can be done independently, as is demonstrated by the
various attempts found in qualitative physics, linguistics or philosophy. Obvi-
ously, absolute, Euclidean space and a separate continuous time form the ba-
sis of pre-relativistic physics (the primitive objects being points in space and
instants in time). This conception is also at work in robotics and in studies
grouped under the “qualitative physics” label (Forbus et al., 1987; Forbus, 1995;
Faltings, 1990).

The relative nature of space is on the contrary advocated for in most cognitively
oriented approaches, in linguistics for instance (Talmy, 1975; Herskovits, 1982;
Asher and Sablayrolles, 1995), although it does not necessarily entail that motion
in such spaces should be regarded purely in terms of relations (cf. (Asher and
Sablayrolles, 1995)).

Among the proponents of extended objects as primitives (either regions for space
or intervals for time) can be found supporters of an absolute pre-existing space
(Galton, 1997; Borgo et al., 1996) or of a relative space (Asher and Vieu, 1995;
Clarke, 1981). Some of these are in fact hybrid as they admit also points as
objects (Galton, 1997; Eschenbach and Heydrich, 1993; Claramunt et al., 1997;
Clarke, 1981).

As for the last point, most approaches prefer to consider space and time as inde-
pendent and express motion as a relation between the two, the exception being
(Hayes, 1985a) which deals with spatio-temporal histories of objects; such enti-
ties are also regarded by (Clarke, 1981; Vieu, 1991) as possible models for their
theory although they are not fully characterized as such, and are proposed as a
philosophically grounded ontological basis by (Heller, 1990).



2 Representation of motion on a qualitative basis

In the perspective of the representation of motion, we should therefore ask our-
selves what structures we think relevant in the previous list. Reflecting a quite
common methodology in QSR, we have made the following choices:

e we represent knowledge in an axiomatic approach; concepts under study are
modeled in a first-order theory; we then examine its expressive power and
inferential properties.

o for the sake of ontological economy, we wish to avoid the proliferation of
different entity types. Furthermore, we want to limit the number of entities
as much as possible, assuming the least possible a priori (reflecting contexts
in which knowledge of the world is partial or imperfect). A region-based
ontology for space, for instance, assumes the existence of a few given en-
tities and allows for the construction of other ones (with operators, such
as complementation, or the sum of two entities), and doesn’t assume the
implicit existence of arbitrary entities.

e there is a kind of hierarchy on the complexity of spatial relations that places
more elementary concepts at the base of most models. For space, it seems
that the notion of inclusion is considered the most basic, then comes topol-
ogy, and above are considered distance, orientation, shape, ... (Cohn, 1996).

According to these general principles, it seems rather natural to consider space-
time as an homogeneous domain, peopled by “histories” in the sense of (Hayes,
1985b), i.e, regions of space-time, rather than try to combine separate theories of
space and time, as in (Galton, 1993; Li et al., 1997). This is the same path fol-
lowed by Allen (Allen, 1984; Allen and Hayes, 1985) for his theory of time, and
Randell et al. (Randell et al., 1992) for their theory of space (RCC). We then need
to model the structural properties at the most basic levels, which we think is the
mereological and the topological, following what was proposed first in (Clarke,
1985). We do so in a more formal way than what Hayes did, who admitted to be
more interested in the breadth of coverage of concepts than in the precision of the
axiomatizing itself. We, on the contrary, think that breadth of coverage is only
possible when the foundations are sound enough to build upon.

The main interest of taking space-time as primitive is to allow for a certain level
of underspecification, which in turn allows for an easier expression of global con-
straints. Some problems related to the identity of objects are indeed intrinsically



settled by such an ontology, as is discussed in (Heller, 1990; Muller, 1998c).
Moreover it has allowed us to formally characterize properties linked to the con-
tinuity of motion in space-time on a qualitative basis, something only hinted at by
previous work (Galton, 1993; Galton, 1997; Cui et al., 1992). The first step in that
direction in (Muller, 1998b) was somewhat over-interpreted and was completed in
(Muller, 1998a) (written in french however, explaining why the flaws of the first
proposal were later indicated in (Davis, 2001) and (Cohn and Hazarika, 2001));
we sum up those results section (8)3.

We can then sum up our representation choices:
e Primitives objects of our theory are extended in both space and time.
e Knowledge about these entities is only expressed in terms of relations.

We will now present the theory that accounts for the properties of spatio-temporal
objects in a commonsense manner. We build upon the mereo-topology of extended
objects in the tradition of Clarke (Clarke, 1981), add temporal relations in the
spirit of event logics (Kamp, 1979) and formally characterize the links between
those primitives.

3 Thetopology of space-time

We will now sum up the topological theory we use as a basis for our theory of
spatio-temporal entities. It is taken from Asher and Vieu’s (Asher and Vieu, 1995).
Objects of this theory are regarded as spatio-temporal referents of physical objects
or events. We have only kept the part dealing with the notions of mereology and
classical topology, leaving aside the definition given by the authors for a notion
of natural contact between two objects. The good side of this theory is that it
has been shown to be consistent and the class of models it axiomatizes has been
characterized in (Asher and Vieu, 1995). We will see how the way we enrich it
bears on the models. Its relations are generally interpreted as bearing on regions
of the plane or volumes of three dimensional space (see figure 1), although the
domain can be of arbitrary dimension. Clarke (Clarke, 1981) and Vieu (Vieu,

31t is interesting to note that people from the database community proposed to follow the same
kind of path for representing motion events in databases in what seemed an independent manner
in (Erwig et al., 1999) and by making explicit references to earlier work in QSR, in (Erwig and
Schneider, to appear).
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Figure 1: The eight mereo-topological relations RCC.

1991) proposed to consider the entities of their theories as regions of space-time,
by adding temporal relations, albeit in an incomplete manner. It is this spatio-
temporal interpretation that is intended here and we will see how to go beyond
the limitations of these studies. Figure 2 shows for instance the intuitive spatio-
temporal interpretation of a relation of topological overlap. The horizontal axis
corresponds to the spatial dimension and the temporal evolution is shown along
the vertical axis. Space here is unidimensional for convenience, but could be of
dimension 2, 3, ... n.

The mereo-topological theory of (Asher and Vieu, 1995) is built on a unique
primitive: a relation of connection, noted C, interpreted here as connection be-
tween spatio-temporal regions (that we will sometimes call “histories”). In the
following, we adopt a few conventions for readability sake: any universal quan-
tifier whose scope is the whole formula will be omitted; predication parentheses
will be omitted when it is unambiguous; variables are denoted by lower case let-
ters; the only constant is noted a. Symbols -, A , VvV ,— classically denotes
logical negation, “and”, “or”, and material implication, while = introduces a def-
inition.

The following definitions and axioms, from (A-1) to (A-9) are taken from
(Asher and Vieu, 1995). The C relation is reflexive, symmetric and extensional:

7
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Figure 2: A spatio-temporal interpretation of O(verlap)

Al Czxx
A2 Czxy —Cyx
A3 (Vz (Czz +Czy) -z =vy)

The following relations have standard definition:

D1 Pzy=Vz (Czz —Czy) (part of)
D2 DCzy = —Czy (disconnection)
D3 PPzy = Pzy A —Pxy (proper part of)
D4 Ozy =3z (Pzz A Pzy) (overlap)
D5 POzy 20zy A —Pzy A —Pyz (partial overlap)
D6 ECzy = Czy A —Ozxy (contact)
D7 TPzy = Pxy A 3z (ECzz A ECzy) (tangential part)



D8 NTPzy = Pzy A —3z (ECzz A ECzy) (non tangential part)

(N)TPP then is (non) tangential proper part. Some existence axioms allow for the
existence of classical operators®:

A4 VYaVy3z Vu (Cuz <> (CuzVCuy))
(z is the sum, noted z+y)

A5 Vz(3y -Cyz) — 3z Yu(Cuz + Jv (-Cvzx A Cou))
(z: complement, noted -x)

A6 dzVu Cux
(existence of a universe, noted a)

A7 Ozy — 3z Vu(Cuz <> Jv (Pzy A Puy A Cou))
(z: intersection, noted z-y)

A8 Vzdy Vu (Cuy <> Jv (NTPuz A Cou))
(y: interior, noted i(x))

Topological closure is then defined by:

D9 cx= -i(-z)
A9 ca=a

To which must be added the classical property of opens (the intersection of opens
is open):

D10 OPz = (iz = z)
A 10 (OPz A OPy A Ozy) —OP(z-y)

And “separateness” and “self-connectedness” are straightforwardly defined as:

D11 SPzy = —Cczey
D12 CONz é _|(E|$1§|332($ =21+ X2 N\ SP.Tl.TQ))

4These operators are partial.



4 Temporal order

The previously introduced mereo-topology is general and does not force the di-
mension of the topological space considered. It needs further structural specifica-
tion to be regarded as a proper spatio-temporal theory. As our primitive objects
are extended both in space and time, the appropriate logics for temporal relations
will be close to the “event logics” of Kamp (Kamp, 1979), where contempora-
neous entities need not be equal. Besides a classical precedence relation we will
need to express the notions of temporal inclusion and overlap; the first proposal
in that direction of research was made in (Vieu, 1991) but was not pursued fur-
ther. Inclusion and overlap are not sufficient to express spatial transitions in time,
however, as shown by Galton (Galton, 1993). It is indeed necessary to be able
to distinguish an overlap from a simple temporal “contact” (which can be seen as
an instantaneous transition, such as the coming in contact of two bodies). Allen’s
relation “meets” can make the distinction, but is restricted to temporally convex
time intervals, a restriction too strong when dealing with spatio-temporal entities.
To overcome those problems, we introduce a primitive of temporal connection,
noted <, which has more or less the same behaviour as C, only on a temporal
level. We thus avoid the solution of having a non-homogenous domain including
instants, as in (Galton, 1993).

We propose the following axiomatization of xand <:

All zxy > yxx (symmetry)
Al2 zxz (reflexivity)
Al3 zxy— x<y (non compatibility of xand <)
Ald z<y— wy<z (antisymetry of <)
Al5 (z<y A yxz A z<t) > x<t (transfer between<and <)

By axiom 12 and axiom 15, < is transitive. We can then define classical relations
(see figure 3 for an illustration):

D13 2C,y = Vz(zxz — 23xy) (temporal inclusion)
D14 zoy = 32(2C,y A 2C,x) (temporal overlap)
D15 (z=;v) SrCGyAy Sz ( temporal equivalence)

10



And add :

Al z<y—> Vz(zCiz = 2<y) AN (2Cy > 2 <2))
(monotony of C;w.r.t. <)

Those properties subsumes axioms of other event logics (van Benthem, 1995),
except for the linearity of time, to which we come back in section 5.3°:

Thl zCx (def. of C))
Th2 zoy — yox (def. of o)
Th3 z<y — —zoy (Ax. 13)
Thd (z<y A yoz N z<t) > z<t (Ax. 15)
ThS (z<y AN yCiz A z2<t) 5 x<t (Ax. 15)
Thé (zCy N yCiz) > 2Cs2 (def. of &)
Th7 2Cy = Vz (zo0x — zoy) (Th.6)
Th8 zCy = Vz ((r<y—2<z) A (y<z = 2<2)) (Ax. 16)

To be able to recover a notion of temporal linearity, we will introduce the fol-
lowing entities:

A 17 Vz((Jy(z < y)) = (FzVu(z < u <> Puz))) (existence of a future of )
A 18 Vz((Fy(y < z)) — (F2Vu(u < = +» Puz))) (existence of a past of z)

We will note the future z of z (f(x)) and its past (p(x)); their uniqueness can be
shown straightforwardly:

e.g. for the future, let’s assume 3z;Vu(z < u — Puz))) and IzVu(z < u —
Puzy))). With Pz;2; we get x < z; and therefore Pz z5 and symetrically we get
P29z SO 21 = 29.

The following properties are easily derived:

Th9 z < f(x)

Th10 p(x) <z

SWe indicate for each theorem which axioms or theorems are involved in its proof; full proofs
for the theorems are to be found in the appendix.

11
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Figure 3: Temporal relations

5 Constraintson space-time

5.1 Links between time and space-time

In this section, we describe the links between the temporal and the spatio-temporal
predicates.
First, spatio-temporal connection must imply temporal connection:

A19 Cry —»axxy

The following axiom accounts for mereological correspondance between time and
space-time (inclusion implies temporal inclusion):
A20 Pzy - zC,y

In order to achieve a truly multi-dimensional structure, the connection relations
must be distinct, hence the following axioms:

A2l dxdyaxzxy N —Caxy
A22 dzdyz<y

The temporal non-convexity of entities impose the following constraints on the
sum operator and the temporal relations:

A23 (z<yNhz<y) e (z+2)<y

12



A24 (z+4y)xXze X2z V yxz

Last, we characterise the link between temporal connection and the interior func-
tion as follows: a temporal contact with an open region must imply an overlap,
S0:

A25 ixxy— xoy

Then, we have the following properties:

Th1l Oxzy — zoy (Ax. 20)
Th12 (x <y APzx APty) = z<t (Th. 8, Ax. 20)
Th 13 (zoy A Pzz A Pyt) — zot (Th. 7, Ax. 20)
Th14 (z+y)oz <> zoz V yoz (Ax. 24)

We can also introduce a notion of “strong connection” between two entities (illus-
trated figure 4). It intuitively corresponds to a connection by more than a * point”
in a classical interpretation; we give the following definition:

D16 SCzy =Cxy A 3z (NTPcz(x +y) A Ozz A Ozy A CONz)

Time

A

Space

Figure 4: Example of strong connection.

This says that two regions are strongly connected when they are connected
and there is a simply-connected region that overlap them both, and whose clo-
sure is a non-tangential part of their sum. We can then define a notion of “strong
connectedness” from SC, in the same way connectedness is defined from C (cor-
responding to the notion of simple region in (S. Borgo and Masolo, 1996), where
it is taken as a primitive for a mereo-topology):

D 17 SRz £ Vz,Vz, (x = 21 + o —SCcxics)

We will use these notions in section 8.

13
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Space

Figure 5: Temporal slice : z is a slice of w.

5.2 Temporal Parts

In order to define relations changing through time and to recover some concepts
of spatial (relative) localisation, we are going to define a concept of temporal part,
called a temporal slice. A temporal slice of a spatio-temporal entity is the maxi-
mum part of a spatio-temporal region corresponding to the lifespan of another one
(an episode of a larger history). We thus assume any entity can have a temporal
slice. Temporal parts sometimes appear in mereological theories, and are always
associated with durations; a slice would be then a zero-duration temporal part (Si-
mons, 1987; Carnap, 1958). In order to stay completely in a mereo-topological
framework our definition will dispense with such a notion. We will adopt the fol-
lowing definition: a temporal slice z is a part of an entity y such that any part of y
that is temporally included in z is a part of z°.

D18 TSzy = Pxy AVz ((Pzy A 2C,z) —P2z)

This definition implies the following properties:

Th15 TSzzx (reflexivity)
Th16 (TSzy A TSyz) >z =1y (antisymetry)
Th17 (TSzy A TSyz) —TSzz (transitivity)

TS denote a Temporal Slice.

14



Moreover, a slice = of an object y temporally included in another slice z of y
is also a slice of z:

Th18 (TSzy A TSzy A = C; z) »TSzz

We come now to the question of what temporal parts of objects should be
allowed in our theory. In order to avoid an unnecessary proliferation of arbitrary
entities, we want to introduce a minimal number of parts. It seems that temporal
parts should be at least determined with respect to entities one wants to compare
with one another on the temporal level. Thus any object should have a temporal
part corresponding to the temporal extent of a contemporaneous entity. Hence the
following axiom:

A26 yCiz— Ju (TSuz A u=y)
(every entity x has a temporal slice u temporally equivalent to any entity y tem-
porally included in x)

Consequently:

Th19 Vz,y(zoy — Ju(TSux A uC,y)) (if two histories temporally overlap
then there is a slice of one included in the other).

Th20 Pzxy — 32(TSzy A z = x)
(for any entity v, there is a slice of y temporally equivalent to any part of y).

Th2l (TSay ATSzy AN x=2) >z =2
(this slice is unique).

We will note x4, this corresponding slice whenever it exists: x, is the part of
x corresponding to the lifespan of y when y C; z. For instance, if z stands for
America’s history, and y for Clinton’s presidency, z, is the history of America
during Clinton’s presidency.

5.3 Temporal slices and the temporal structure

The temporal properties of the spatio-temporal theory can now be characterised
more precisely. First we can show that:

Th22 TS(f(x),a) A TS(p(x),a)
(the past and future of any entity are slices of the universe a).

15



A slice of the universe can be regarded as an episode of the world we consider.
This theorem has for immediate consequence the equality of the past and future
of two temporally equivalent entity:

Th23 (2= y A Jz (2 <2) = flx) = f(y)
Th24 (z=y AN 3z (2<2)) = plz) =p(y)

Some useful temporal notions can be defined, such as:
D19 CON,z = —(3x1 Tz (x = 21 + 22 A —(CcT1 X CT2)))

(temporal self- connectedness)
A 27 (TSua A cu3xcv) —-Cecucv

This property (which we call “normality of the universe” ) ensures that there is
no spatio-temporal leaps in the universe (no entity can be temporally connected to
a slice of the universe without being connected spatio-temporally). This property
has to do with the continuity of space-time’. We will come back to it section (8).

In order to further constraint our model, we want to consider a world with a
linear underlying temporal order. This means for instance that there should be an
ordering between temporally self-connected entities resembling that of Kamp’s
logics where overlap is replaced with our temporal connection:

(CONiz ACONwy) = (z <y V zxy V y<uzx)
However it is not enough to characterize relations between arbitrary entities, as
they can be non self-connected. What we need is a stronger notion. We will use
the following definitions:
D20 ORD(z,y)=z<y V >y

This relation (let’s call it general ordering) is obviously symetric.

D21 PMCT(z,y) =Pzy A =3z (Pzy A CON,(z + z))

This relation expresses that x is a part of y maximally connected temporally (a
temporally connected component). To impose linearity, we will state that such
components of any two given entities must be ordered, using a relation of “be-
tweenness”:

"The expression cu 3 cv is necessary to exclude the case of an open region jumping away from
another one and for which we could not have u x v.

16



D 22 BETW(y,z) = -ORD(z,y) A
Vy' (PMCTy'y — Jz13z9 (z = x1 + 22 A ORDz1y’ A ORDzoy')

An example of the configuration covered by that definition is given figure 6. This
relation expresses that we can always find parts of x and y that are ordered if z and
y are not connected temporally. Note that we can have at the same time BETWzy
and BETWyz. Our linearity then corresponds to :

X2

Time
BETWyx

X=x1+x2

Figure 6: Betweenness of two entities

A 28 Vz,y(BETW(z,y) V BETW(y,z) V ORD(z,y) V zxy)

And we will add that any entity has at least a PMCT:
A 29 Vzdz' PMCTz'zx

Giving the following consequences:
Th25 BETWyz — 3y (PMCTy'y — Jz13xs (z =21 + 22 A 21 <Y < o)

This means that connected components of an entity can be ordered with respect to
the parts of another one which stands in the between relation with the first. This
gives us the linearity condition we were looking for:

Th26 (CON;z ACONwy) = (z <y V zxy V y<uzx)
Th 27 Vz[(Fy(y < z)) = (p(z) < —p(x))]

17



(the past of an entity is before its complement.)

Th28 Vz[(Fy(z < y)) — (—f(x) < f(z))] (the future of an entity is after its
complement.)

The proof of these last two theorems uses the linearity axiom 28 and the regularity
axiom 27.

These theorems have the following corollaries:

Th29 (Jy(z <y)) = —f(x) =p(f(x)) (the complement of a future is its own
past)

Th30 (y(y <z)) = —p(zx) = f(p(x)) (the complement of a past is its own
future)

Put another way :

Th3l a=p(z)+ f(p(z))
Th32 a=f(z)+p(f(z))

6 Modelsof thetheory

We are going to present here what define the class of models of our theory ST,
corresponding to axioms 1-29.

6.1 Definition of the class of intended models

We consider a classical tpological space (£,T'), where £ is a set of points and T
is a set of open sets of £.

Now we consider a structure (£,7, G, <,[-]) such that G C P(E). Topological
operators will be noted “int” and “closed”. Classical union and intersection are
noted N and U. The set G must verify the following conditions:

(@) £€g.

(b) Regularity: the interior of an element of G is not empty, is “full” (int(cl(X)) =
int(X)) and is in G; its closure is regular (cl(int(X)) = ¢l(X)) and belongs
to G.
The operator U* and N* then denotes union and intersection operators pre-
serving the “regularity” of interiors and closures:
z Uy =xUyUint(cl(zUy))
My =xNyNciint(zNy))

18



(c) if XeG and X # £ then (C(X)/¢)€g (if the complement of X is not empty,
itisin G).

(d) if XeGand Yeg and int(X NY) # @, then X N* Ye€G. (The intersection
N* of two elements of G is in G if it has a non empty interior).

(e) iIf XeGand Yeg, X U* YeG. (The union of two elements of G is in G).

These properties characterize models of the axiomatization of C that is taken from
(Asher and Vieu, 1995), leaving aside weak contact.

The structure we consider is more constrained as a partial order on points is added
(noted <) to reflect temporal order. The relation ~; will denote the following
equivalence relation on points of £8 :

foralla e Eand g € £, a ~; Bifandonly if: forally (y < a & v < B)
and (a <y & B <7)

This structure must have the additional properties listed below, where greek letters
always denote elements of £ :

() forallae & a4 a

() forallae&,peé,ye&,a<pand < yimply a < v

(h) forallae &, el a~ BV B<aV a<f

To ease notation, we now define the following functions from G on G:
TPS(X)={ o |Fpe X fra}

[f(X) ={a|VBeXpf=<a}
p(X) ={a|V8eXa=<p}

And the following relation:
X <YifandonlyifVvae X Vg €Y, itistruethata < 8

And we also have the following constraints:

81t is straightforward to check it is indeed an equivalence relation.
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(i) forall X € G and Y € G such that TPS(X) CTPS(Y) it is also true that
YNTPS(X)€eG
This is compatible with the other constraints since YNTPS(X') has a non-
empty interior and since Y and X (and therefore TPS(X)) have non-empty
interiors.

() forall X € G and Y € G such that X < Y we also have f*(X) € G and
p*(Y) € G. Again, objects thus introduced necessarily have a non-empty
interior and a regular closure. This condition corresponds to existence axioms
for past and future of spatio-temporal entities.

(K) thereisan X eGandY €G,suchthat X <Y

() thereisan X eGand Y € G such that TPS(X)NTPS(Y) #@ and XNY =@
(this corresponds to axiom 21).

(m) “normality” of the universe : for all X € G, such that there is Y with
X =TPS(Y) and for all Z € G such that c/(TPS(X)) N cl(TPS(Z)) #@,
we have X N Z # @.

This corresponds to the axiom of regularity 27.

6.2 Semantics

Let [-] be an interpretation function over the domain G. It assigns a denotation
to the terms of the language of ST in G, and a truth value to its propositions.
If we note g a function assigning values G to variables, we give the following
interpretation to ST primitives:

[z < y], =true ifand only if [z] , < [y],
[zxy], =trueifand only if TPS([z] )NTPS([y],) #@
[Czy], =trueifandonly if [z] N [y], #2

Let’s call S the class of structures with constraints (a)-(m) and with the semantics
defined above.
It can be shown that we have then the intended interpretations:

[z +y],= [=], V" [v],
[z -yl, = [=], " [v],
[—=], =Ce([],)
[iz], =1int([=],)
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[cx], =cl([=],)

[p(z )]] =p*([=],)

[f(z )]] = f*([=],)

[z/y], =[=],""TPS([y],)

[x Cty]] = true iff TPS([z],) CTPS([y],)

The proof of consistency and completeness of the theory with respect to these
structures has been made in (Muller, 1998a).

7 Spatial Relations

In order to compare a spatio-temporal approach to approaches where time and
space are separated, we need to express “spatial relations” in our framework in a
way that captures what is usually intended in spatial representations. Even though
we make use of relations similar to the RCC8 relations of (Randell et al., 1992),
their interpretation is not purely spatial. Indeed there is no “space” per se in a
spatio-temporal theory as was presented, since histories are only defined relatively
to one another.

In a qualitative setting that distinguishes only a specific set of relations be-
tween objects, the intended interpretation of a spatial relation (when time enters
the picture) must be that the relation holds for a certain time and doesn’t change
to some other (disjoint) relation during that time. In our framework that can be
translated as:

(P) a spatial relation is a relation holding between all temporal slices of two
entities during the relevant period.

In the perspective of a comparison with an approach where RCC8 are the basic
spatial relations, we only need to express equivalent for those relations and show
that they have the same kind of properties. We will only go as far as showing
they are disjoint, but of course they cannot be exhaustive in a spatio-temporal
framework. These definitions will then be used in section 8 to define several
notions of qualitative continuity.

Property (P) is already true in the case of DC when it holds between contem-
poraneous entities (since it is a theorem that any two parts of disconnected entities
are also disconnected).

Th33 (DCxy A z = y) — Vu(TSuz —DCxpypu)

So we can define a "spatial disconnection™ as:
D 23 DC;,xy EDCaxy A z =y
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We will adopt the following definitions for the other classical RCC8 relations
(Rsp denotes the purely spatial equivalent of R):

D24 EC,,xy Srx=y A Vu(TSuz —ECxxyun)

For overlap it is enough to state:
D25 Oyzy=z=yAOzy A 2= (2z-y)

As we now have:
Th34 (Ogay — Vu(TSuz —Ozuyu)

Thus, in the same way, partial overlap is defined as (we add a condition on
the difference of x and y to force its existence during the whole of x and y, thus
ensuring the partiality of the overlap):

D26 PO,ay=x=,y APOzy A 2= (zy) A 2= (z—y)

As:
Th 35 POy,zy — Yu(TSuz —POzs,1ys)

We can also state
D27 Pyry =Pxy A 2=y

since we have:
Th36 (Pzy A z = y) — Yu(TSuz —Puyu)

The definition of TPP,,xy is of a different style, since taking temporally closed
slices of an entity z is going to give us tangential parts of x every time, no matter
what the configurations are between the "spatial" borders®. To define it in a non-
trivial manner, we will thus define TPP,,zy as TPP holding on every "temporally"
interior definable slices on z and y:

D 28 TPPSP.Ty 2z =y A Vu(TSux %Tppx/(iu)y/(iu))

The definition of NTPP,xy is also slightly different, because it should be possible
to hold on a closed time period. However, with TSzz —NTPPz,y,,, and with
z = x we have NTPPzy, and this means it is not possible for both z =; y and
cy = y to hold. We have thus chosen the following definition, stating that NTPP
holds between every pair of contemporaneous slices of the interior of = and y:
D29 NTPP,zy =z =,y A Yz(TSz(iz) =NTPP(z)(y)

The spatial counterparts of TPP~! and NTPP~! can be defined in a straight-
forward way.

9We wish to thank one of the reviewer for pointing this out to us.
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8 Qualitative continuity of motion

We have already mentioned the importance of continuity in our intuitive under-
standing of motion (motion is a perceptually continuous spatial change), and how
this notion pervades a lot of work on spatial relations, the most obvious being
the transition graphs of RCC8 (Randell et al., 1992); indeed, changes of state in
RCC has been analyzed through transition graphs in which the relations form so-
called “conceptual neighborhoods”, via potential motion. Only certain changes
are allowed, assuming continuous change between relations (this means that spa-
tial changes for closed regions are restricted to the edges of such graphs, see figure
8). For instance two regions cannot be disconnected at a time and overlap at some
later time without being in between in external connection. Or, a region cannot be
part of another and then be externally connected. Continuity is the central notion
here, but remains implicitly assumed without a formal definition; only the work of
Galton (Galton, 1993; Galton, 1997) has begun to address what continuity implies
for a common-sense theory of motion. Still, this kind of work characterizes conti-
nuity as a set of logical constraints on the transitions in a temporal framework and
does not add much insight to the already existing transition graph (it is more de-
scriptive than explanatory), and falls short of an explicit, generic characterization
of spatio-temporal continuity. It led the author to propose a definition of quali-
tative continuity in (Muller, 1998b) that would be a characterisation of a similar
notion from within the mereo-topological theory itself. The continuity we have
in mind is different from the mathematical sense where arbitrarily fine distinc-
tions can be made about space and time. We want something closer to intuition
and at the same time covering the properties shown to be necessary for a theory
of motion. The continuity we propose can be defined within the theory without
stating separately the possible transitions, contrarily to what Galton does in (Gal-
ton, 1993)°, and this provides a more general account of qualitative continuous
change; it is thus moreover much easier to check the consistency of such a theory.

We will see that the definition of (Muller, 1998b) was not constrained enough
to characterise all the properties that would have made it a definition characteris-
ing the conceptual neighborhood of RCC8. This was already corrected in (Muller,
1998a), only available in french, and the problems of that definition were also
stated in (Davis, 2001), who proposed to characterise the same kind of notion in
a geometrical framework, something we want to avoid in a qualitative context for

OMoreover we express the continuity of transition for any entity whereas Galton focused on
rigid objects, a concept which cannot be expressed in a topological theory, and which eliminates
some transitions such as NTPP to =.
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the reasons presented in the introduction. Two papers (Cohn and Hazarika, 2001;
Hazarika and Cohn, 2001) took over a simplified version of our space-time theory
to propose another definition of continuity. Their stengthened version of con-
tinuity follows the same kind of intuition that was in (Muller, 1998a) (see the
definition of T-continuity below), but it is difficult to assess what they achieved
since they add a spatial connection to express spatial relations within the spatio-
temporal theory and their interpretation of spatial connection between two objects
is that their spatial projections are connected. Since this means two objects can
never have been connected during a given interval and still be considered spatially
connected, it is hard to compare their results with ours.

(=) '
< —> — —><— >
OO .
\
DC EC PO o

Figure 7: RCC8 Conceptual Neighborhoods

We can specify a first kind of constraint on spatial change by imposing that it
is temporally convex and that there is no succesive slices which are disconnected.
Let’s call it A-continuity and define it as follows:

D30 A_CONTw =CON;w A VaVu((TSzw A cz3xcu A TSuw) —Cexcu)

This definition says that a region is A-continuous when it is temporally con-
vex and when every two temporally connected closed slices are spatio-temporally
connected. Among the cases which are temporally convex but not A-continuous
are the change of location of an institution, such as the moving of the capital of
Germany from Bonn to Berlin. The previous definition is obviously very coarse
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and allows for spatio-temporal evolutions that are not seen as continuous in many
contexts. For instance, the loss of a province by a country (as the loss of Alsace
by France in 1871) is A-continuous, while it corresponds to the loss of a part. We
are going to define a continuity with respect to that kind of mereological change
by changing slightly the definition of A-continuity to the following P-continuity
(for Part-continuity):

D31 P_CONTw =CON;w A VaVu((TSzw A cx 3 cu A Puw) —Ccreu)

This says that a ST-region is P-continuous when every closed part temporally
connected to a slice is also connected. A counterexample, which might illustrate
the return of Alsace within France in 1918, is shown figure 8. The definition of
P-continuity rules out the case where there is a sudden loss or gain of an entity
and the cases where there is a gain or loss, even gradual, of a self-connected
component, such as the apparition of an island in an archipelago.

Time

A

W=U+V+X

Space

Figure 8: Example of a non P-continuous change

Finally, the last kind of continuity we want to introduce is close to the no-
tion of continuous motion as usually understood, but in a topological context.
P-continuity already provides an approximation of the conceptual neighborhood
graph: if one considers relations between contemporaneous slices of two histories
as spatial relations whenever they are the same for each sub-slices (cf section 7),
it can be easily be shown that the definition excludes cases involving disconnected
parts appearing, as in a change from —C to PP.

It is not enough to recover all constraints of the topological neighborhood
graph, however. Indeed the definition accepts the history of = shown figure 9
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which can be seen as the gradual shrinking of an entity to a spatial “point” and
back to an extended region again (like a puddle drying up and reforming right
afterwards), allowing for leaps in the topological configuration. In this case a
slice of z is a part of y for a time, then the next slice of x is in external connection
with y, and no intermediary slice of x is ever in relation of overlap with a slice of
y in the process. In order to rule out those cases of “born-again” regions, we could
impose the strong connectedness on regions; it does seem a little heavy handed
however, as we only want to rule out the kind of “temporal” points that cause
the trouble, and it is perfectly acceptable to have spatio-temporally disconnected
entities (like an archipelago). We only want to exclude jumps of non strongly
connected parts, and thus we need a notion of temporal strong connectedness. We

Time

A

Space

Figure 9: From “part-of” to external connection without overlap

first define a relation of strong temporal connection between two entities as the
strong connection between corresponding slices of the universe a:

D 32 STCxy =SC(a/.)y A SCax(ay,)
The notion of temporal strong connectedness follows:
D 33 STCRz = Va1Vay(z = 21 + xo —STCexycy)
And the last kind of strengthened continuity can be defined:

D34 T_CONTw =STCRw A VaVu((TSzw A cx3xcu A Puw) —Caxu)
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We can easily see that T-continuity implies P-continuity. Thus we have a hi-
erarchy of spatial changes, as P-continuity implies A-continuity, which implies
temporal connectedness.

P-continuity rules out transition from DC to any Part-relation (TPP, NTPP and
their converses), and T-continuity rules out transition from EC to TPP or NTPP.
We have thus recovered most of the transition graph of RCC8. The transition from
DC to PO is not ruled out by such a definition as it depends on the kind of atoms
that the mereotopological theory allows?!*.

9 Categoriesof common sense motion

Many linguistic studies have tried to classify motion into classes, stemming from
the study of some motion verbs (cf. e.g. (Talmy, 1983) for geometric charac-
teristics of motion descriptions through verbs). For instance (Sablayrolles, 1995)
considers motion as essentially a complete characterisation of the position of an
object with respect to another one during three successive phases (at the begin-
ning, during, or at the end of the event). We will on the contrary take over the
study of motion verbs presented in (Muller and Sarda, 1997) in order to isolate
the essential aspects of motion as expressed in natural language. We will try to
use this as a guide to what can be expressed in the formal theory stated above in
order to represent the most “basic” common sense motion events. Indeed, on the
basis of the spatio-temporal mereo-topology ST, one can define very different tra-
jectories in space-time, and this expressivity should be somewhat tamed in order
to reason efficiently. A reasonable objective in the perspective of qualitative rea-
soning would then be to define a set of spatio-temporal relations that would be rich
enough to represent various situations, and constrained enough to be of practical
use. From this point of view, transitive motion verbs describe relations between
two entities (the subject and object of the verb) in motion w.r.t one another and
provide a natural set of relations which can be used to represent motion events,
even though on a non-exhautive basis.

It seems that the relevant information contained in motion described by such verbs
is focused on one of the phases of the motion described rather than completely de-
scribing the successive locations of the object(s) involved. In (Muller and Sarda,
1999) it is shown that three main features can be isolated to characterize motion

L Counter-examples are exhibited in (Muller, 1998a), and could only be ruled out by dealing
with the shape of atoms. This goes beyond the scope of our study here, which is merely mereo-
logical and topological.
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described by the verbs considered:

e a polarity, that is, the phase of the motion on which the verb semantics
focuses. It can be initial (as in to leave), final (to reach) or median (to
Cross).

o the topological relation involved between the two entites related by the mo-
tion event during the phase defined by the polarity of motion. It can be
inclusion (to leave the city), contact (to hit the wall), or a type of non con-
nexion that can be further refined.

e the change of this topological relation during the motion (compare leave the
city with wander in the city).

It appears that six non-empty classes of verbs can be isolated when these fea-
tures are combined: internal/initial, internal/final, contact/final, internal/median,
medians with change, and non-topological medians.

We are now going to define the classes of topological change that correspond
to these verbs, taking into account topological aspects only. Our lexical study
must thus be seen as only a guide in the definition of cognitively significant motion
classes, as we leave out a lot of the semantics of motion verbs. Nonetheless this
could easily be taken as a basis for motion verbs semantics in the manner of (Kalita
and Lee, 1997), but in a more principled manner at the topological level (although
there would still be a need for ways of translating between region-based and point-
based representations).

10 Representing natural motions

10.1 Some spatio-temporal concepts

We need first to introduce a few useful definitions.
We will make use of a specific partial overlap corresponding to a spatio-temporal
overlap (a slice of x has to be completely disconnected with 3 for a moment):

D35 STPOxy =POzy A Ju(TSuz A uC;y A —Cuy)

This definition indeed implies the following property:
Th 37 STPOzy — Fu(TSuz A —Cuy)
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We now introduce a relation of inclusion of slices:

D36 LOCzy = 32(TSzz A Pzy) (a slice of z is part of y)

And a relation of “temporary inclusion”:

D 37 TEMP_INzy =LOCzy A STPOzy (z is temporarily included in y)

We can also define counterparts of Allen’s temporal relations, bearing on spatio-
temporal individuals®?:

D38 MEETSzy =iz < iy Az xy

D39 STARTzy =2 C,yAVz(z <z — 2 <y) Ay

D40 FINISHzy = 2Cy A Vz(z <z —y<2) A yCa

To avoid confusion, Allen’s concept of overlap will be noted O;; it is different
from o as it is not a symetrical relation.
D41 O,y = zoy A Ju(STARTuy A FINISHuz)

D 42 DURINGzy = 2C,y A —FINISHzy A —STARTzy

Inverse relations can be defined in an obvious way and will be noted MEETS;,
START;, FINISH;, O;, DURING,;.

These relations are slightly different from Allen’s, as they bear on entities which
are not necessarily convex temporally. Moreover, temporal equivalence is differ-
ent from logical equality.

10.2 Natural classes

At this stage, we can define the classes of topological change taking into account
considerations seen in 10.1. The following classes relate three spatio-temoral en-
tities: the first one (z) correspond to the entity that establish the time of the motion
event: the relation holds during the lifespan of z. The other two entities = and y are
entities in relative motion. Thus, such relations actually bear on z,, and y,,. We de-
fine six classes of motion according to the lexical study, noted LEAVE, REACH,
HIT, CROSS, INTERNAL and EXTERNAL,; they intuitively correspond to the
simplified topological behaviours of the eponymous verbs, internal and external
corresponding to verbs such as wander around in and go around something re-
spectively.

2Note that temporal = and “before” already correspond to =, and <.
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Figure 10: The six common sense motion relations.
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D 43 REACHzzy =TEMP_INz,y, A FINISH(z,-y,)2
D 44 LEAVEzzy =TEMP_INz,y, A START (2, -y,)2
D 45 INTERNALzzy =PPzy,

D 46 HITzzy =ECz,y, A
vz, y1[(Pz12,APY1y, AEC2131) — (FINISHz1 2AFINISHY, 2)]

D 47 EXTERNALzzy = ~Czy,

D 48 CROSSzzy =1 21, 29(2 = 21422 A MEETSz125 A REACHz12y A
LEAVEz,zy)

If we want to have some kind of temporal symetry we can also define the
initial analogous of HIT, which we call SPLIT:

D49 SPLITzzy ZECzsy, A
Va1, y1 [(Pe12, APy, AECz1y1) — (STARTz12ASTARTY; 2)]

Obviously these classes are not exhaustive, but give a reasonable set for qual-
itatively describing motion events, and (Muller, 1998b) has shown some simple
examples of reasoning that can be made with constraints using this set.

11 Conclusion

We have presented here a commonsense theory of motion from a topological per-
spective. The use of first-order logic allows for a explicit characterisation of the
properties that seem desirable for a model of space and time in that context: the
object domain comprises only regions of space-time, denoting the histories of
physical objects and spatio-temporal events. A set of relations can be expressed
between such regions, that correspond to relative motions of spatial entities, and
we have shown how reasoning can be done on these relations, along with tem-
poral and purely spatial information. We thus believe we have provided a sound
basis for the representation of intuitive concepts related to space and time in a
symbolic perspective where exact geometric information is not available or not
necessary. In so doing, we have restricted our model to topological information,
leaving out what could be a future enrichment, i.e. more detailed spatial infor-
mation such as orientation relations or relative distances. Besides, the inferential
properties of our theory have still to be completely characterised to be able to
deal with all types of deduction on spatio-temporal information. Our definition

31



of spatio-temporal continuity has corrected the problems of (Muller, 1998b), re-
maining a lot simpler to define that the proposed change in (Cohn and Hazarika,
2001) and avoiding the use of a point-based system as in (Davis, 2001). The lan-
guage we have presented and formally investigated can be seen as a validation of
the proposals of the kind of (Erwig et al., 1999) for spatio-temporal databases, as
it makes explicit the properties one can expect of databases representations; they
nonetheless keep an intrinsically point-based semantics in (Erwig and Schneider,
to appear) by extending Egenhofer’s work for spatial relations (Egenhofer and
Franzosa, 1991), thus limiting their formal models to very specific kinds of histo-
ries, namely convex histories without holes. Our proposal’s domain is thus more
general. Moreover the work of (Tassebro and Giiting, 2001) has shown how such
a language could be used from temporally discrete point-based data for spatial
regions by proposing interpolation methods that would give wholesome spatio-
temporal objects in a higher dimension, thus bypassing the claim made by other
authors that region-based representations are not practically usable. There is still
clearly a lot to investigate at this level for spatial representation theories.
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Proofs of theorems of sections4 and 5

We begin by showing a few useful lemmas :

Lemmal zC,y -z xy
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Proof

1 2Cy > Vu (uxz — uxy)
2 rxx

3 zxy

(def. ofC)
(Ax. 12)
(with (1) and (2))

O

Lemmaz2 zoy = xxy

Pr oof
1 zoy — F2(2Cy A 2C 1)

2 Yu (uxz— uxy) (1 and def. of C))

3 Vu (uxz— uxz) (1 and def. of C))

4 zxz (Ax 11)

5 zxz (4and 2)

6 rxy (Ax 4.12,5and 3)
a

Th3 z<y — —xoy

We show the contrapositive:

Proof

1 zoy = axxy (Lemma 2)

2 "z <y (Ax 4.13and 1)
O

Th4d (z<y A yoz A z<t) = <t

Proof

1 yoz—yxz (Lemma 2)

2 (z<y Nyxz A z<t) > x<t (Ax. 15)

3 (z<y A yoz N z<t) > <t (from 1 and 2)
O

ThS (z<y A yCiz A z<t) > x<t



Proof

1 yGiz—yxz (Lemma 1)

2 (z<y N yxz A z<t) > x<t (Ax. 15)

3 (z<y N yCiz A z<t) — <t (from 1 and 2)
O

Th6 (zCy AN yCiz) > x2Sz

Proof

1 2Cy > Vu (uxz - uxy) (def. of C))

2 yCiz > Vu (uxy > uxz) (def. of C)

3 Vu (uxz — u3xz) which is the definition of x C; 2 (from 1 and 2)
O

Th7 2Cy = Vz (200 — zoy)

Proof

1 zox — Ju (uCiz A uCyz) (def. of o)

2 (uCiz N 2C4y) > uChy (Th)

3 Ju(uCiy A uCiz) — zoy (1, 2 and def. of o)
O

Th1ll Ozy — zoy

Proof

1 3z (Pzy A Pzz) (Ozy)

2 Pzy — 2Cy (Ax 20 and 1)

3 Pzx —2C;x (1)

4 oy (def. of o and 2 and 3)
O

Th12 (z <y APzz APty) - z<t
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Proof

1 Pzx — 2Czx (Ax. 20)
2 (z<y AN zCz) > z<y (AX. 16)
3 Pty - tCy (Ax. 20)
4 (z<y ANtCy) > z<t (Ax. 16 and 1, 2, 3)

O

Th13 (zoy A Pzz A Pyt) — zot

Proof

1 Prz —z2C2 (Ax. 20)

2 Pyt - yCyt (Ax. 20)

3 zoy— Ju (ulix A uliy) (def. of o)

4 (uCix N 2C2) > uCyz (Ax. 6)

5 (uCiy N yCit) » uCyt (AX. 6)

6 (zoy A Pxz A Pyt) — zot (def. of 0 and 1, 2, 3, 4, 5)
O

Th14 (z+y)oz <> zoz V yoz

First, we show the following lemma::

Lemma3 uCy(z+y) — (uoz V uoy)

Proof

1 C(iu)u (def. of interior)

2 uxu (1 and ax. 19)

3 wux(z+vy) (hypothesis, def. of C;and 2)

4 juxx V uxy (3 and ax.24)

5 wuxzr — uox (ax. 25)

6 uxzr V uxy (4 and 5) O

Then we can show the direct sense of the theorem:

Proof

1 Ju(uCi(z+y) A uC;z) (hypothesis and def. of o)

2 uoxr V uoy (1 and lemma 3)

3 Fv(wlu AvSz)V Iv(wiu A vCy) (def. of o and 2)
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el

4 (vCiu AN uCiz) > vChz (th. 6)
5 zox V zoy (3and 4) O

The converse is shown by:

Proof
1 Pr(z+y) = 2C(v+y) (ax. 20)
2 zoz— Ju (uliz A uCyz) (def. of o)
3 uCy(zr+vy) (from 1, 2 and th. 6)
4 zo(x+vy) (from 1 and 2)
5 it can be shown likewise that yoz — zo(x + y).

O
Th15 TSzz
We have Pzz and Vz(Pzz —Pzz) so by definition from TS, Va TSzz.
Th16 (TSzy A TSyz) -z =1y
Straightforward by definition of TS, as PxyAPyz — = = v.
Th 17 (TSzy A TSyz) —TSzz
Proof
1 TSzy —Pzxy (def. of TS)
2 TSyz —Pyz (def. of TS)
3 (Pxy A Pyz) —»Pzz (transitivity of P)
4 TSzy — Vu ((Puy A uCiz) »Pux) (def. of TS)
5 TSyz — Vu ((Puz A uCiy) —Puy) (def. of TS)
6 Pry - 2Cy (Ax 20)
7 (uCrxz N 2Cy) > uChy (6)
8 (Puz AN uCyy) —»Puy (5)
9 (Puy A uCyz) »Pux 4)
0 (Puz A uCiz) —»Puzx (6,7,8,and 9)
1 3and 10 yield TSz z by definition of TS.

|
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Th18 (TSzy A TSzy A = C; z) »TSzz

Proof
1 TSzy —Pzy
2 (Pxy N xCiz A TSzy) —Pxz (def. of TS.)
3 TSyz —Pzy (def. of TS.)
4 (Puz A Pzy) —»Puy (transitivity of P)
5 (Puy A uCiz) »Pux (TSzy)
6 (Puz A uCix) —Pux (4 and 5)
7 from 2 and 6 we get by definition that TSzz
O
Th19 Vz,y(xoy — Ju(TSuz A uC,y))
Proof
1 zoy — 3z (2Ciz A 2C4y)
2 z2Cx — Ju (TSuz A z=;u) (AX. 26)
3 (z=u N 2Cy) 2 ulhy O
Th20 Pzy — 32(TSzy A 2= x)
Proof
1 Pxy > 2Cy (Ax. 20)
2 zoy — 3z (TSzy A z = x) (Ax. 26)
O

Th2l (TSzyATSzy ANz =2) sz =z
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Proof

1 Yu(Puy A uCiz) —Puzx (TSzy)
2 TSzy —Pzy
3 x=2—2Cx (def of =)
4 Pzx (from 1, 2 and 3)
5 by symmetry of the hypotheses with respect to x and z, we have likewise Pxz,
hence z = 2.

O
Th22 TS(f(x),a)
Proof
1 Pf(z)a (def. of a)
2 =< f(x) (th. 9)
3 Vu (ul;f(z) = x < u) (2 and th. 8)
4 Yy (r < u—Puf(x)) (def. of f(x))
5 Vu (Pua A uC, f(z) =Puf(x)) (4)
6 from 1and5 we get TS(f(z),a) by definition of TS.

O
It can be shown likewise that TS(p(x), a).
Th23 (z=y A Jz(z<2) = flz) = f(y)
Proof
1 z< f(x) (def. of f(x))
2 (< f(@) A yCea) =y < f(o) (th. 8)
3 y < flz) =Pf(z)f(y) (def. of f(y))

4 by symmetry of the hypotheses with respect to = and y we also have P f(x) f (y)
therefore f(x) = f(y).
O
Likewise (z =y A 3z (2 < z)) — p(x) = p(y)

Lemma4d4 ATz — —-BETWyx
We show the contrapositive:
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Proof

1 sz, 2 (=21 420 A 21 <y <o) (def. of BETW and th. 25)
2 11 <y <x9— —Cxia9 (ax. 13 and ax. 19)
3 _|(371 = 332) (2)
4 (x=xz14+x2 N (21 =129)) = 2ATZ (def. of AT)

|

Th25 (ATz A ATy) — (ORD(z,y) V x = y)

We are going to show that (ATz A ATy A —ORD(z,y)) — = = y.

Proof

1 (ATz A ATy A =ORD(z,y)) — xxvy) (previous lemma and ax. 28)
2 ATz wix =z (def. of atom and P(iz)x)
3 ixxy (1and 2)
4 oy (3 and ax. 25)
5 Ju (uCix A uly) (4 and def. of o)
6 Jui,ve (11 =2x/u A va=y/u N v =4 v) (ax. 26 and 5)
7 (ATz AATy) = (1 =2 A vy =y) (def. of AT and P(z/u)z and P(y/u)y)
8 r=y (6 and 7)

O

Th26 (CONyz ACONwy) = (x <y V zxy V y<uzx)

This is a corollary of the following lemma (by axiom 28), whose contrapositive is
shown below:

Lemma5 CONyz — -BETWyzx

Pr oof

1

2 Y, x1,20 (T=21+22 N 11 <Y < 129) (def de BETW and th. 25)
3 11 <y < w9 = —Cericxs (ax. 13 and ax. 19)
4 —CON;z (def. of CON; and 3)

O
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Th 27 Vz[(3y(y < z)) — (p(z) < —p(z))]

Th28 Vz[(3y(z <y)) = (=f(z) < f(=z))]
There are only the following possibilities: either

1 BETW (—p(z),p(z)) : Jui,us, v(Puip(z) A Pugp(z) A Puv(—(p(z))) A
up < v < ug)
from Puyp(x) we draw us < z and thenv < up < z
and Pv(p(x)) and Op(z)(-p(x)) : contradiction.

2 or BETW (p(z), —p(z)) : Fuy, ug, v(Puy—p(z) A Pus—p(z) A Po(p(x)) A
up < v < uy)
Py(p(z)) implies v < z and then u; < z d’oll Pu 1p(z)
and then Op(z)(—p(z)) : contradiction.

3 or —p(z) < p(z) : so —p(z) < = and then P(—p(x))p(x).

4 or p(x)x—(p(x)) : with the “normality” axiom and because TSp(z)a, we get
Cp(z)(—p(z)) which gives a contradiction.

This only remaining possibility then is p(z) < —p(x). The similar theorem for f
is shown along the same line.

Proof
1 —f(z) < f(2) (th. 28)
2 P(=f(=),p(f(2))) (1 and def. of p(f(z)))
3 p(f(x) < flz (def. of p())
4 p(f(z)) < f(z) = = f(z) xp(f(2)) (ax. 13)
5 ~f(z)=p(f(z)) = ~C(f(z),p(f(z))) (ax. 19)
6 P(p(f(x)),—f(x)) (5 and def. of complement)
7 —f(z) =p(f(z)) (2 and 6)
O

Likewise —p(x) = f(p(z)).
The following are just rewriting of these two theorems since for any z,
a=z+(—x).
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Th31l a=p(z)+ f(p(x))
Th32 o= f(z) +p(f(x))

Th33 (DCzy A z =;y) — Vu(TSuz —-DCxyyu)

By the definition of P and DC, DCxy A Puxz —DCuy and since slices of an entity
are parts by definition, the theorem follows.

Th34 (O,zy — Vu(TSuz —O0z4yy)

Proof
H TSuzx
1 TSuz - uCx (H and def of TS)
2 x =2y (def of O,y)
3 ulizy (1,2 and def of =)
4 ' (TSz'(z-y) A 2’ = u) (3 and ax.(26)
5 Pz'x (def of TS and 4)
6 2'Ciu (4 and def of =)
7 Px'u (H, def of TS and 5 and 6)
8 Pzx'y (def of TS and 4)
9 Ouy (7,8, def of O)
10 w is aslice of x so by definition =/, = u
11 uCy—u=yn (ax 26)
12 Oz, (9, 10, 11)

O

Th 35 (POyzy — Vu(TSuz —POzyyu)

This is shown in a similar way to the previous theorem, first by stating O,zy,
then by considering (xz — y) instead of (x-y) in the proof. Thus we prove there is
always a (z—y) ,, for all slices u of z and that the corresponding overlap is partial.

Th36 (Pzy A z = y) — Vu(TSuz —Pxyyu)
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Proof

1 TSuzx —Pux

H Pzy

2 Puy

4 wuisaslice of x so by definition z,, = u

5 P(@/)(yu)

46

(transitivity of P)
(2 and def of y,,)

(3and 4)
O



