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Abstract

We envision a future economy where e-markets will play an essential role as exchange hubs

for commodities and services. Future e-markets should be designed to be robust to manipu-

lation, flexible, and sufficiently efficient in facilitating exchanges. One of the most important

aspects of designing an e-market is market mechanism design. A market mechanism defines

the organization, information exchange process, trading procedure and clearance rules of a

market. If we view an e-market as a multi-agent system, the market mechanism also defines

the structure and rules of the environment in which agents (buyers and sellers) play the market

game. We design an e-market mechanism that is strategy-proof with respect to reservation

price, weakly budget-balanced and individually rational. Our mechanism also makes sellers

unlikely to under-report the supply volume to drive up the market price. In addition, by bound-

ing our market’s efficiency loss, we provide fairly unrestrictive sufficient conditions for the

efficiency of our mechanism to converge in a strong sense when (1) the number of agents who

successfully trade is large, or (2) the number of agents, trading and not, is large. We implement

our design using the RETSINA infrastructure, a multi-agent system development toolkit. This

enables us to validate our analytically derived bounds by numerically testing our e-market.

keywords: electronic market, auction, mechanism design, multi-agent system, market

clearing.
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1 Introduction

Recent years have seen a growing interest among both academia and industry in Internet market-

places. Enabled by modern network technologies, e-markets promise nearly friction-free infor-

mation exchange, broad access to potential buyers and sellers, and almost perfect competition.

Launching a new e-market on the Internet is easy nowadays: the underlying software, hardware

and network infrastructure are readily accessible. However, this does not mean every e-market

can easily survive and succeed: easy launching means that there may exist many similar e-markets

competing for potential buyers and sellers. To succeed in this e-market competition, one has to

carefully design one’s e-market to meet the needs of both buyers and sellers, providing attrac-

tive features, services, and conveniences for the market players. We envision a future economy

where e-markets will play an essential role as exchange hubs for commodities and services. Fu-

ture e-markets should be robust to manipulation, flexible, and sufficiently efficient in facilitating

exchanges. In this paper, we shall show the design a multi-unit double auction (MDA) e-market

that is sophisticated enough to satisfy all of these needs.

In an MDA market such as the stock market, sellers and buyers submit “asks” and “bids” respec-

tively. A trade is made if a buyer’s bid exceeds a seller’s ask. Typically, a seller has multiple units

for sale and a buyer wants to purchase more than one unit. Therefore, a seller’s ask may match

several buyers’ bids and a buyer’s bid may satisfy several sellers’ asks. An MDA e-market must be

able to deal with this sort of matching between multiple sellers and multiple buyers involving mul-

tiple units. We organize our e-market as an MDA market because it is highly flexible: both buyers

and sellers can state how much to trade and at what price. In addition to MDAs, there are other

ways to organize an e-market:“take-it-or-leave-it”(prices are set by one side of the market), one-
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to-one negotiations, one-side auctions, and single-unit double auctions (SDAs). However, none of

these ways of organizing an e-market can accommodate simultaneous trading by multiple buyers

and sellers, and at the same time quickly clear a market
�

where each seller sells multiple units and

each buyer buys multiple units. Because of their flexibility, we anticipate that MDA e-markets will

play an important role in future e-commerce.

The central issue of MDA e-market design is mechanism (trading rule) design. The mechanism of

an e-market defines the organization, information exchange process, trading procedure and clear-

ance rules of the market. The market mechanism is also a promise offered by the market maker,

who operates and manages the e-market, to all the participating agents. Once the market mech-

anism is chosen, other related design aspects, such as communication protocol, integration and

transaction support, security issues, etc., are implicitly constrained. The communication protocol

should be designed to facilitate the information exchange process; transaction support should obey

the specific market clearance rules; security measures should be deployed to protect the specific

sensitive information, and so on.

The mechanism is announced before the opening of the market so that every agent
�

knows ex-

actly how the market will operate in advance. We anticipate intelligent software agents, acting as

delegates of their human masters, becoming important market players in future e-markets. These

agents are assumed to be self-interested and autonomous; they pursue their own interests maxi-

mizing their own utilities. Taken together they form a multi-agent system. Therefore, we can view

an e-market as a multi-agent system where the market mechanism defines the structure and rules

of the environment in which agents will play the market game. A fundamental issue in mechanism�
Clearing a market means determining quantities and pairings for all trades.�
We use “agents” to refer to both buyers and sellers.
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design thus becomes creating an environment where it is in the agents’ individual interests to act

in a way that also benefits the market as a whole. The MDA mechanism (see Section 3) we de-

signed is theoretically guaranteed to ensure this is the case. Specifically, our MDA mechanism is

strategy-proof with respect to reservation price, weakly budget-balanced, asymptotically efficient,

and individually rational. The exact definitions of all these terms will be given in later paragraphs

in this section. However, before going into these details, we would like to motivate this research

by showing what these properties mean to an individual agent who participates in the e-market. By

doing so, we provide an intuitive understanding of the designing goals we are pursuing and why

they are important.

Efficiency is one of the most important goals people usually pursue when designing a market

mechanism. An efficient market maximizes the total profit obtained by all participating agents

(Fudenberg and Tirole 1991). An efficient market attracts both buyers and sellers, since it is not

biased in favor of either party and it promises to maximize their collective profit. One ideal way

of organizing a 100-percent efficient MDA e-market is to let the buyers/sellers submit bids/asks

about how many items they want to purchase/sell and at what reservation prices
�
; then based on

this information, the market maker solves an optimization problem to determine how many units

each agent should purchase/sell and at what price to maximize the total profit
�

of the market (see

the problem (LP) in Section 3). However, this method is infeasible because one cannot prevent

agents from lying. In fact, the participants in an e-market are usually geographically distributed�
The reservation price for a buyer is the maximum price he is willing to pay for one unit item; the reservation price

for a seller is the minimum price for which she is willing to sell one unit item.	
A buyer’s profit (or utility) is the quantity he purchases multiplied by the difference between his reservation price

and the trading price; a seller’s profit is the quantity she sells multiplied by the difference between the trading price

and her reservation price.
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all over the world; they may be humans or software agents; and the market maker has no control

whatsoever over what they report and whether they report truthfully. And most importantly, agents

have very strong incentives to lie: every buyer would like to under-report his reservation price and

every seller would like to over-report her reservation price. This sort of mis-reporting has two

consequences. First, the e-market itself may collapse because the buyers/sellers fear that they will

be exploited by the other party. Due to such mistrust, buyers and sellers would exceedingly under-

report/over-report their reservation prices, which causes all trades to be impossible and thus hurts

all agents. Second, all three parties involved in the e-market, i.e., the market maker, the buyers and

the sellers, have no way to determine whether the market is efficient or not, or how efficient it is,

because no one has complete information about the market. In fact, if an agent can make an extra

profit by cheating, it is more likely that the total loss of all other agents is greater than the extra

profit this dishonest agent gets, i.e., the market is more likely to be inefficient. Taken together, this

moral hazard, that a dishonest agent could get a higher profit, discourages agents to participate in

the e-market and has the potential to ruin the whole e-market.

Obviously, the market maker would like the agents to tell the truth, not only for the reason that it

wants to maintain its e-market, but also for the collective interest of all the agents. However, in a

free environment like the Internet, we cannot force the agents to reveal the truth. Instead, we need

to design a mechanism that induces the agents to tell the truth. This kind of mechanisms is said to

be strategy-proof, which means that truthfully revealing information is each agent’s best strategy

independent of what other agents are doing. Strategy-proofness is often achieved by arranging

some special form of payments between buyers and sellers. If all these payments sum to zero

exactly (counting the amount paid by buyers as positive and the amount received by sellers as

negative), the mechanism is exactly budget-balanced; if they sum to a nonnegative number, the
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mechanism is weakly budget-balanced. An agent will participate in an e-market only if it expects

a nonnegative profit. Therefore, an MDA mechanism must also be designed to be individually

rational, i.e., it attracts individual agents to voluntarily participate in the e-market because they

expect nonnegative ex ante profits. Unfortunately, it is well known that no mechanism can achieve

strategy-proofness, be exactly budget-balanced, efficient and individual rational simultaneously,

even for simple one-side auction markets (Myerson and Satterthwaite 1983; Fudenberg and Tirole

1991), let alone our MDA market.

As mentioned before, our MDA mechanism is strategy-proof with respect to reservation price,

weakly budget-balanced, asymptotically efficient, and individually rational. Strategy-proofness

with respect to reservation price means that each agent will honestly report his or her reservation

price. In addition to mis-reporting their reservation prices, sellers in an MDA market may also

drive up the trading price by mis-reporting the number of units they want to sell (see Section 3).

We also consider this problem and show why it is unlikely to happen in our e-market.

Our e-market is asymptotically efficient, which means its efficiency increases to

��
���

as the num-

ber of agents increases. This result is theoretically proved. In fact, it is generally believed that

double auctions are highly efficient, especially when the number of agents is large. A number of

empirical studies support this belief (Gjerstad and Dickhaut 1998; Cason and Friedman 1996; Plott

and Gray 1990; Smith 1982). However, none of these studies showed rigorously how efficiency is

achieved in an MDA market. We do so here.

Another property of our e-market is that it is weakly budget-balanced, i.e., there is a surplus after

all transactions clear. This surplus is absorbed by the market maker. Clearly, a nonnegative surplus

justifies the very existence of the market, otherwise the market needs to be subsidized by outside

sources and would not be able to survive for a long time. Weak budget-balance is a relaxation of
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exact budget-balance and seems to be a more practical design requirement. In real markets (physi-

cal or electronic), market makers are paid for their efforts bringing buyers and sellers together; for

example, stock brokers get a certain payment for every transaction they execute for their customers.

The market maker of our e-market is paid by the surplus generated by our mechanism.

Many existing e-markets are simple one-side auction markets, such as Ebay and uBid; some labo-

ratory e-markets such as TAC server (Wellman et al. 2001) support a double auction mechanism

without the guaranteed properties of our mechanism. To the best of our knowledge, our design is

the first MDA mechanism that theoretically guarantees all the properties mentioned above.

We implemented our design in a prototype e-market using RETSINA, an open multi-agent infras-

tructure developed at Carnegie Mellon University (Sycara et al. 2002). RETSINA supports quick

development of distributed multi-agent systems by providing various system services, reusable

common components, agent communication languages, ontology support and management, and

visualization tools for developers. Building multi-agent systems using the RETSINA infrastruc-

ture, one can concentrate on the specific tasks one’s system is supposed to accomplish and enjoy

all the services, conveniences and tools provided by RETSINA. RETSINA does not employ any

form of centralized control over the multi-agent systems running above it, rather, it presumes that

any coordination structure will be implemented by the specific system itself, and provides various

facilities to support this. This philosophy ensures that RETSINA is open to various multi-agent

system designs. Our e-market design consists of three types of agents: buyers, sellers and a market

maker. We incorporated our mechanism into the market maker, developed user-interfaces for the

buyer and seller agents and let RETINA handle all the communications and agent interactions.

This paper is organized as follows. Section 2 surveys the related work on double auction research.

Papers reviewed are drawn from multiple disciplines, including game theory, experimental eco-
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nomics and multi-agent systems. Section 3 shows our mechanism and presents the theorem on

strategy-proofness, weakly budget-balance and individual rationality. Section 4 focuses on effi-

ciency. We first define a market efficiency measure and then show how our e-market achieves

asymptotic efficiency. Section 5 discusses the implementation issues of our e-market and presents

some experimental results. Section 6 concludes this paper.

2 Related Work

Voluminous game theory literature focuses on auction markets, specifically one-side auction mar-

kets where there is a monopoly with multiple buyers, or an oligopoly with multiple sellers. How-

ever, the literature on double auction market design is limited. Satterthwaite and Williams (1989)

and Williams (1991) were among the early researchers studying double auction markets. They de-

signed a single-unit double auction (SDA) market where they simplified the analysis by eliminating

the strategic behavior (mis-reporting one’s true reservation price) on the sellers’ side and showed

that the difference between a buyer’s bid and his reservation value went to zero in the limit as the

number of traders grows. Thus the market converged to efficiency. In Satterthwaite and Williams,

no third party was required to balance the market budget. Still in a SDA market, McAfee (1992)

allowed strategic behavior on both sides of the market and required a market maker to balance the

budget. He proposed a strategy-proof mechanism and showed that the inefficiency converged to

zero as the market became large in a weak sense, i.e., the surplus taken by the market maker was

not counted as efficiency loss. Barbera and Jackson (1995) characterized a set of strategy-proof

mechanism for a multi-unit exchange market where every agent could choose to be a buyer or a

seller. Their mechanism was not asymptotically efficient and required a third party to pre-specify
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a set of price proposals. Our mechanism extends that of McAfee’s in the SDA setting to an MDA

market: price is formed collectively by all participating agents instead of being set by a third party,

and the efficiency converges in a strong sense as the market grows large.

Another interesting approach to study double auction markets is from a bounded rationality stand-

point. Since every agent has limited computational resources, and has to make a decision in a

limited time frame, the rationality of every agent is not perfect. Therefore if a mechanism is not

strategy-proof it may still be applicable because, due to agents’ bounded rationality, they cannot

behave strategically (i.e. lie). Gode and Sunder (1993) studied a double auction market full of

“zero-intelligence” agents who submitted random bids and asks. They showed that the market was

close to efficient even with a few traders. Gjerstad and Dickhaut (1998) allowed agents to use sim-

ple rules to form beliefs about their opponents’ offers based on trade history and showed that the

market price converged to competitive equilibrium quickly. Cason and Friedman (1996) conducted

a series of experiments to compare several models by imposing different levels of rationality on

agents. Since these studies artificially imposed rationality constraints on trading agents, and it is

hard, if not impossible, to model the “upper bound” of rationality of agents in real life auctions,

application of these models has been limited.

In recent years, there has been a growing interest in the multi-agent community in auction theory

and its application in artificial market design. Babaioff and Nisan (2000) showed how to use dou-

ble auctions to integrate a decentralized supply chain where each stage in the chain was modeled

as an individual agent. Yokoo et al. (2001) proposed a double auction mechanism against false-

name bids. Das et al. (2001) conducted a series of experiments where humans and software agents

competed with each other in a double auction market. Sandholm and Suri (2001) showed that if

a double auction market allows agents to submit discriminatory bids, the problem of clearing the
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market faced by the market maker is NP-Complete, which is reminiscent of the result of Lehmann

et al. (2000) in one-side combinatorial auction. Several experimental auction systems supporting

software agents have also been developed, among them eMediator(Sandholm, 2000) and Auction-

Bot (Wurman et al. 1998). There is also an annual Trading Agent Competition held as part of main

multi-agent conferences, drawing dozens of teams from all over the world to compete (Wellman et

al. 2001).

3 Presentation and Analysis of the Mechanism

In an MDA market with � buyers and � sellers, each buyer � wants to purchase ��� unit items

and each seller � has ��� unit items to sell. We assume both ��� and ��� are public information,

i.e., known to every agent. The reservation prices, which are private, for buyer � and seller � are� � and ��� , respectively. We assume the reservation price for each agent is static. Let � �!� denote

the quantity buyer � buys from seller � , and "#�$� denote the trading price. Buyer � ’s utility for this

transaction is then defined as % � �'& ()�+* �-, � �/.0"1�!�324�5�!� 6 (1)

and seller � ’s utility is % ���7& 8)�9* � , "1�!�:.;���32<�3�!�>= (2)

If all information is public, the maximum total market value, which is the maximum collective

utility obtained by all participating agents, can be obtained by solving the linear programming
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problem: ?A@>BDC 8�9* � C (�+* � �5�!� , � �#.;���32C 8�9* � �5�$�FEG�H� for every seller �C (�-* � �3�!�FEI�J� for every buyer � , LP 2�3�!�LK � M �-6N�
The two constraints state that a seller sells no more than what she possesses and a buyer will not

buy more than he needs. The trading price does not show up in the problem (LP) because the

maximum total market value is determined collectively by each agent’s reservation price. If buyer� buys quantity �O�!� from seller � at price "P�!� , then the market value this transaction implements

is the sum of buyer � ’s utility plus seller � ’s utility, which is , � �Q.G���52<�5�$� , independent of "P�!� , the

trading price. However, it is clear that the trading price will affect each agent’s utility.

In most situations, the centralized solution is not available because agents have their own private

reservation prices. To induce the agents to report their true reservation prices, we apply a Vickrey-

like auction on each side of the market. On the buyers’ side, each buyer � reports a price R � � (which

may or may not equal
� � ); and on the sellers’ side, each seller � reports a price RS�5� (which may or

may not equal �T� ). Without loss of generality, we assumeR � �:U R � � =V=W= U R � 8 6 (3)

and RS� �YX R
� � =W=W= X R
� ( = (4)

We assume strict order relations here because if two buyers report the same reservation price, we

can add their volumes together to form an equivalent bid. The same thing may be done with the

sellers. Agents are allowed to split their volumes. For example, a buyer who wants to buy 6 items
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may submit a bid of $20 for 2 items and $60 for the remaining 4 items. In this case, this buyer will

be treated as two different buyers. However, as will become clear in the following paragraphs, as

we assume every agent has only one reservation price, he/she will always submit a bid or a ask at

his/her reservation price and will not split the volume.

Z<Z<Z<Z<Z<Z<Z<ZZ<Z<Z<Z<Z<Z<Z<ZZ<Z<Z<Z<Z<Z<Z<ZZ<Z<Z<Z<Z<Z<Z<ZZ<Z<Z<Z<Z<Z<Z<ZZ<Z<Z<Z<Z<Z<Z<ZZ<Z<Z<Z<Z<Z<Z<ZZ<Z<Z<Z<Z<Z<Z<ZZ<Z<Z<Z<Z<Z<Z<ZZ<Z<Z<Z<Z<Z<Z<Z[<[<[<[<[<[<[<[[<[<[<[<[<[<[<[[<[<[<[<[<[<[<[[<[<[<[<[<[<[<[[<[<[<[<[<[<[<[[<[<[<[<[<[<[<[[<[<[<[<[<[<[<[[<[<[<[<[<[<[<[[<[<[<[<[<[<[<[[<[<[<[<[<[<[<[
Price

Volumeq*

(rb   , X   )1  1

 

(rb   , X   )rb K
K K

(rb        , X       )K−1

 L−1(rs       , Y       )

  K−1

 L−1

(rs   , Y  ) 1  1

A B
rsL

(rs   , Y   )  L    L

Figure 1: A multi-unit double auction market where \]. 

buyers and ^_. 


sellers successfully

trade.

Our mechanism works as follows. It arranges the demand volumes according to the ascendent

price order as shown in (3) and the supply volumes according to the decedent price order as shown

in (4) (refer to Figure 1). At the critical point �
` where the aggregate demand and supply meet,

there are a buyer \ and a seller ^ . Either their reported prices satisfyR �3a KbRS�dc�KGR �Tafe � 6 (5)

and the aggregate demand and supply satisfyc�g �) � ���LE a) � �J�hE c) � �H� (6)

13



(Case I, as shown in Figure 1), or their reported prices satisfyRS�dc e � KbR �Ta KbR
�dc (7)

and the aggregate demand and supply satisfya g �) � �i�hE c) � ���LE a) � �J�j6 (8)

(Case II).

We state our mechanism for Case I; Case II is similar. To clear the market, we first check whether

inequality a g �) � �i�hK ckg �) � ����6 (9)

or a g �) � �i�hE ckg �) � ����6 (10)

holds. If (9) holds, as in Figure 1, we follow

rule1: all the sellers with indices � X ^ sell all their volume �1� at price RS��c ; all the buyers with

indices � X \ trade at price R �3a and each of them buys a volume equal to �A�l. , C a g �� �J�m.C ckg �� �H�32-n ,jo . 
 24p .
If (10) holds, we follow

rule2: all the buyers with indices � X \ buy all their volume �A� at price R �3a ; all the sellers

with indices � X ^ trade at price R
��c and each of them sells a volume equal to �1�q. , C c�g �� ���r.C a g �� �J�s2-n , ^t. 
 2 .u
If v Cxwzy �� {7|~} C��
y �� ���-�j� v�� }�������{7| for some buyer � , this buyer buys nothing and the “burden left”,v C�wzy �� {q|H} Cx�
y �� � �-��� vV� }x�-�#}�{7| , is averaged over the � }�� buyers left. Continue this procedure until each

buyer left trades a positive volume. A similar procedure may also apply to rule2.
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If (9) holds, there is a over-demand, and this over-demand is averaged over all the first \�. 

buyers; If (10) holds, there is a over-supply, and this over-supply is split over all the first ^D. 

sellers.

The total trade volume is ?��V� , a g �) � �i�j6 c�g �) � ���52T=
The trading surplus , R �5a .DRS��c�2 ?i��� , C a g �� �J�j6 C ckg �� �H�32 (shaded region � in Figure 1) is taken

by the market maker. The potential trading value represented by the shaded region � is sacrificed,

not collected by any of the three parties, the sellers, the buyers or the market maker, involved in

the market. Since either buyers or sellers are forced to sacrifice part of their volumes, there is yet

another potential trading value � lost (not shown in the figure). If (9) holds, this loss is bounded

by ��E , R � � ._R �3a 2+�/c~6 (11)

and if (10) holds, this loss is bounded by��E , RS�dc�.�R
� � 2N� a = (12)

Considering (9) and (6) (or (9) and (8)) together, we get C a g �� �J�-. C c�g �� ���LEG�#c . Since R � � .�R �Ta
is the maximum price margin for buyers, inequality (11) holds; Considering (10) and (6) (or (10)

and (8)) together, we get C c�g �� ���F. C a g �� �J��E�� a
. Since R
�dcx.�RS� � is the maximum price

margin for sellers, inequality (12) holds. Note that part � , as part � , is also sacrificed and not

collected by any of the three parties involved in the market.

To summarize, our mechanism is as follows:
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Mechanism: The market maker first sorts the reported reservation prices from the buyers and

sellers according to inequalities (3) and (4). Every buyer with index less than \ and every seller

with index less than ^ will trade. Then depending on whether the market situation is Case I or

Case II, and whether inequality (9) or (10) holds, the market maker decides whether to apply rule1

or rule2.

The above mechanism is announced in advance, and every agent knows that these rules will be

followed by the market maker to operate the e-market. What this means to an individual agent is

stated in the following theorem.

Theorem 1: Under the assumption that the buyers and sellers’ volumes are public information, the

above mechanism is strategy-proof with respect to reservation price, weakly budget-balanced, and

individually rational.

Proof: We’ll prove for the scenario where inequality (12) holds. In this scenario, we apply rule2.

The proof of strategy-proofness for the buyers is the same as Vickrey’s argument. Suppose a buyer� with reservation price
� � reports R � � . If

� �fK�R �Ta , over-bidding, i.e., R � � U � � , will give the buyer

the same utility as if he bids
� � ; under-bidding, i.e., R � � X � � , may cause him to lose the trade he

otherwise would win, and even if he wins the trade, he gets the same utility as if he bids
� � . If� � X R �Ta , over-bidding may incur negative utility if the buyer is included in the final trade. Even

if the buyer is not included, he still gets zero, the same as if he bids
� � ; under-biding just gives him

utility zero, the same as if he bids
� � .

In scenario (12), sellers who successfully trade only sell part of their volumes. However, since

every seller who trades takes the same volume decrease, and no seller with index � X ^ can

mitigate her trading volume decrease by mis-reporting her true reservation price, for the same

reasons as shown for the buyers, every seller will report her true reservation price.
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The proof for the scenario (11) is similar.

It is clear that
�3a K���c , so the mechanism always gets nonnegative payment and hence it is weakly

budget-balanced.

Since every agent gets positive utility if it trades, or zero if it does not, our mechanism is individu-

ally rational. �
A minor change of our mechanism will make it exactly budget-balanced. If after balancing the

demand and supply by applying rule1 or rule2, we set the trading price to be any number betweenR �3a and RS�dc ( buyer \ and seller ^ do not trade), then the total payments from all agents add

up to zero and the market maker gets nothing. However, as stated before, we consider weak

budget-balance a more proper design goal since the market maker should be paid for managing the

e-market.

As showed in the proof of Theorem 1, the primary reason for our mechanism being strategy-proof

is that everyone who trades always pays (or sells at) the price proposed by someone else. Actually,

this is also a general principle to follow when designing a strategy-proof mechanism. In our MDA

market, we also need to match the total demand volume and the total supply volume exactly. To

do so, and at the same time keep our mechanism strategy-proof, we sacrifice the potential trading

value � and � .

Strategy-proofness of a mechanism usually requires some specific utility function form. For ex-

ample, Vickrey’s mechanism is strategy-proof when each agent’s utility function is quasi-linear

(Vickrey 1961; Clarke 1971; Groves 1973). Similarly, our mechanism requires that the trading

volume and price ( �O�$� and "1�!� in definition (1) and (2)) of each agent are “separable” in its utility

function, which simply means that "/�!� does not depend on �O�!� . If "1�!� and �5�!� are related, for example,

a seller may offer a discount price if a buyer wants to buy a large volume (discriminatory bidding),
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then complicated strategic mis-reporting of reservation price may be possible. Another problem

related to discriminatory bidding is that clearing the market becomes very difficult if there is a

large number of agents. Actually, clearing the market in discriminatory bidding is NP-Complete

(Sandholm and Suri 2001). Since we do not allow discriminatory bidding, our market clearance

algorithm is simple. It can be done either by sorting the reported prices and searching for the

agents “at the edge”, as done by our mechanism, or by solving a linear programming problem as

shown in (LP). However, note that the (LP) problem is under-constrained and has multiple optimal

solutions, one needs to find the unique solution corresponding to our mechanism.

We assume the volume of each agent is public information; in other words, each agent cannot

misrepresent his/her volume. In a real-life market, buyers usually will honestly report their required

volumes and seek low prices; a seller however has the incentive to under-report the quantities she

possesses in order to tighten the supply and drive the market price up. This can be reflected in our

market as follows (refer to Figure 1). A seller � X ^ may under-report her volume to shift the

supply curve to the left. By doing so, she hopes to put the seller ^ � 

“on the edge”. If every seller

who trades pays the price reported by the seller “at the edge”, then seller � may be better off using

this strategy: she may get a higher utility by selling a lower volume at the higher price instead of

a larger volume at the lower price. Because of the presence of such sophisticated strategies, exact

analysis of MDA markets where volumes are also private information is extremely difficult. For

an example, refer to Figure 2, which is a copy of Figure 1. In Figure 2, we assume all the other

bids and asks are fixed and only seller



under-reports her volume. If seller



honestly reports her

true volume, she will get a utility equal to the area of the rectangle ¡�¢ . If she under-reports by an

amount £ , she puts seller ^¤� 

on the edge. Seller



then gets a higher utility equal to the area of the

rectangle ¡¦¥ . If she continues under-reporting the volume by another amount § , seller ^¦�©¨ moves
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to edge, and seller



gets a utility equal to the area of rectangle ¡�ª , which is smaller than the area

of the rectangle ¡�¢ . In Figure 3, we show the utility of seller



as a function of her own reported

volume. Point « represents seller



reporting her true volume; Point ¬ represents the utility she

gets by under-reporting by an amount £ ; Point ­ represents the utility of under-reporting by an

amount £®�b§ . In this example, seller



gets a lower utility in point ­ than in the original point« . It should be noted that the relation ­ X « X ¬ is for this example only, and will not hold in

general.

Price
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  K−1
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(rs   , Y   )  L    L

d e
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I
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Figure 2: Seller



under-reports her volume, assuming all other bids and asks in the market are

fixed.

Although possible, this strategy of under-reporting is difficult for the sellers to successfully im-

plement in our e-market for several reasons. First, only sellers included in the final trade (� X ^ )

can use this strategy to affect the trading price, but an individual seller does not know whether

she will be included or not when submitting an ask. Second, a seller cannot decide how much

to under-report without full information of the whole market; and arbitrarily under-reporting may
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Figure 3: Seller


’s utility as a function of her reported volume, assuming all other bids and asks

in the market are fixed.

actually lower her utility, as shown in Figure 3. Third, even if all sellers had full information

about the whole market (though our market mechanism does not provide them this information),

they would still have a difficult time deciding how much to under-report, because all sellers have

the incentive to under-report and an individual seller’s decision must take the others’ decisions

into consideration. Thus, every seller faces an iterative induction game: she knows everyone may

mis-report, everyone knows she knows everyone may mis-report, ......, and so on and so forth ad

infinitum. This problem structure is called “common knowledge” in game theory. It is generally

exceedingly difficult to find equilibrium solutions to this kind of game, especially when there are

multiple players.

In general, if all buyers report honestly, then any seller’s utility is a multi-variable function over all

the sellers’ reported volumes. We can view this function as a rugged surface in a high dimensional

space. Figure 3 is the projection of this surface into one dimension. In this surface, point « is a

local maximum. We posit that the lack of further information makes any seller unlikely to deviate

from « and explore other parts of the surface.
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4 Efficiency

Traditionally, economists view efficiency as a measure of how much of the maximum market value

a mechanism can “induce”, whereas how the implemented value is distributed is not a concern.

For instance, in a classical single-unit Vickrey auction, the maximum total market value equals

the highest bidder’s reservation price ¯ � . The highest bidder gets the item at the second highest

bidders’ reservation price ¯ � and his utility is hence ¯ � .D¯ � . All the other bidders get
�

and the

seller gets ¯ � . The collective utility obtained by all agents is thus ¯ � , so we say that the Vickrey

mechanism is efficient because it implements the maximum total market value. In a double auction

market, when counting the total market value a mechanism can implement, the surplus taken by the

market maker is usually included, as in McAfee (1992), even though this surplus is not taken by

any participating agents. Under this definition, McAfee showed that a single-unit double auction

is asymptotically efficient. We show that our mechanism is asymptotically efficient for multi-unit

double auctions under this definition. We achieve this by showing that even under a stronger effi-

ciency definition, our mechanism is still asymptotically efficient. By stronger efficiency definition,

we mean that the efficiency is defined as a measure of how much all traders actually obtain com-

pared to the maximum total market value: The surplus taken by the market maker is considered as

an efficiency loss. We refer to the traditional efficiency definition as weak and ours as strong. From

the participating agents’ point of view, our efficiency definition makes more sense: participating

agents are only concerned with how much they obtain; the surplus taken by the market maker actu-

ally is a loss to them. We show that even under this stronger definition, asymptotic efficiency still

holds for our mechanism.

Assuming �i�j6°��& 
 6d=V=W=±� , the demand volumes from the � buyers, are independent random
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samples equal in distribution to a random variable � ; and �P��6h��& 
 6d=V=W=±� , the supply volumes from

the � sellers, are independent random samples equal in distribution to a random variable � . We

further assume the reservation prices of the � buyers are drawn independently from a distribution¡ with continuous density ² and support on the compact interval ³ � 6 ��´ ; and the reservation price of

the � sellers are drawn independently from a distribution µ with continuous density ¶ and support

on the compact interval ³±� 6 � ´ . We also require that the density functions ² and ¶ have nonzero

minimum values, i.e., · & ?i���/¸ ² ,º¹ 2q» � E ¹ E � ¼ U � 6 (13)½ & ?i���/¸ ¶ ,º¹ 2:»�� E ¹ E � ¼ U � = (14)

An illustration of distribution functions satisfying these assumptions can be found in Figure 4.

These assumptions are sufficient to show efficiency under the weak definition in a simple SDA

market (McAfee 1992). We shall show that these assumptions are sufficient to show the efficiency

under the strong definition in an MDA market if the number of agents who successfully trade is

large (Theorem 2).

If \ among the � buyers and ^ among the � sellers successfully trade, then, as stated in Section

3, the total efficiency loss includes three parts: the surplus taken by the market maker (the shaded

region A in Figure 1), the sacrificed trading value between buyer \ and seller ^ (the shaded region

B in Figure 1), and the sacrificed trading value � (as shown in inequality (11) or (12)). Define the

total efficiency loss as ¾ , \06�^¿2f&��;�;�À�Á�Â& , �3a .Ã�dc�2<� ` �;��=
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The total market value can be written as¯ , \06�^¿2f& a) � , � �~. �3a 24�J�H� c) � , ��c®.;�T�52+���m� , �Ta .Ã�dc124� ` =
Define �jR , \06�^¿2Ä& Å ³ ¾ , \06�^¿2 ´Å ³!¯ , \06�^Y2 ´
as the market “inefficiency ratio ”given \ and ^ are known. Since both agents’ reservation prices

and volumes are random variables, we take expectations of
¾ , \06�^¿2 and ¯ , \06�^¿2 and use their ratio

as a measure of how much efficiency is lost compared to the total market value. Our first step is

to show that �jR , \06�^¿2 converges to zero as \ and ^ become large. We need the following lemma,

which says the difference between the reservation prices of consecutive buyers/sellers always has

the same order of magnitude as the inverse of the number of buyers/sellers.

Lemma 1: 
Æ , ��� 
 2 E Å ³ � �#. � � e � ´ E 
· , ��� 
 2 6 (15)

for all �l& 
 6�¨H6d=W=Ç�È. 

; and 
É , �i� 
 2 E Å ³Ç��� e � .;��� ´ E 
½ , ��� 
 2 = (16)

for all �_& 
 6T¨�6d=V=±�°. 

, where

·
and ½ are constants defined in (13) and (14), and Æ and

É
are

constants defined as Æ & ?A@>B/¸ ² ,º¹ 2q» � E ¹ E ��¼ K · U � 6 (17)É & ?A@>B/¸ ¶ ,s¹ 27»�� E ¹ E � ¼ K ½ U � = (18)

Proof: We prove the case for Å ³±�3� e � .;��� ´ . The case for the buyers is similar.
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The joint distribution of �3� and ��� e � is¶d�4Ê � e � ,s¹ 6�Ë�2m&�� , �x.°��2+� �Tg �( g � µ ,s¹ 2 �Tg � ¶ ,s¹ 24¶ , Ë�2 , 
 .�µ , Ë�2-2 ( gÌ�Tg � 6
where � �Tg �( g � & Í ( g ��ÎÐÏÍ ��g ��ÎsÏ Í ( gÌ� ÎsÏ (refer to, e.g., David 1970). We can calculate the expectation directly:
� , ��.0�H2<� ��g �( g � Å ³Ç��� e � .;��� ´& Ñ ÒÒ Ñ�ÓÒ , Ë®. ¹ 2<µ ,s¹ 2 ��g � ¶ ,º¹ 24¶ , Ë12 , 
 .Ãµ , Ë�2-2 ( gÌ�Tg � £ ¹ £�Ë& Ñ ÒÒ ¶ , Ë12 , 
 .�µ , Ë�2-2 ( gÌ��g �YÔÖÕ× , Ë®. ¹ 2<µ ,s¹ 2 �� ØØØØØ Ó Ò � Ñ ÓÒ µ ,s¹ 2 �� £ ¹�ÙÚ £�Ë& Ñ ÒÒ ¶ , Ë12 , 
 .�µ , Ë�2-2 ( gÌ��g �� Û Ñ ÓÒ µ ,s¹ 2 � £ ¹�Ü £kË#=
Define Ý

, Ë12Þ& Ñ ÓÒ µ ,º¹ 2 � £ ¹ 6
then the above integral can be written asÑ ÒÒ ¶ , Ë�2 , 
 .�µ , Ë�2-2 ( gÌ�Tg �

Ý
, Ë12� £�Ë& . Ý

, Ë�2 , 
 .Ãµ , Ë�2-2 ( gÌ�� , �©.���2 ØØØØØ ÒÒ � Ñ ÒÒ , 
 .�µ , Ë�2-2 ( gÌ�� , �©.��H2 £ Ý , Ë�2& Ñ ÒÒ µ , Ë�2 � , 
 .Ãµ , Ë�2-2 ( gÌ�� , �©.��H2 £�Ë~=
so, we have

Å ³±��� e � .Ã��� ´ &�� �( Ñ ÒÒ µ , Ë�2 � , 
 .Ãµ , Ë�2-2 ( gÌ� £�Ë~= (19)

Note that by the integral transformation % &�µ , Ë�2 , we can write Å ³Ç�5� e � .��T� ´ as

Å ³±��� e � .;��� ´ & � �( Ñ �ß ¶ g � , % 2 % � , 
 . % 2 ( gÌ� £ % 6
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where ¶ g � , % 2f&Èà<á~âSã ÍÇä Îà ä is the derivative of the inverse distribution function µ g � , % 2 and¶ g � , % 2f& 
¶ , Ë12 =
Since ¶ , Ë12 is continuous on a closed interval ³±� 6 � ´ , it has a maximum value

É & ?�@>B/¸ ¶ , Ë�2¤»#� E¹ E � ¼ . Using assumption (14), we have
É EI¶ g � , % 2:E 
½ =
Noting that Ñ �ß % � , 
 . % 2 ( gÌ� £ % & �På , �©.���23å, �i� 
 23å 6
we have 
É , �i� 
 2 E Å ³±��� e � .;��� ´ E 
½ , �i� 
 2 = �
Equation (19) was first found by Pearson (1902) a century ago. Lemma 1 can be directly applied

to show the main result in McAfee (1992) in a much simpler manner than presented there.

Given Lemma 1, the following theorem is straight-forward, which says that the efficiency con-

verges linearly at a speed proportional to the number agents who successfully trade.

Theorem 2: Assume
� X Å ³ � ´ 6 Å ³±� ´ Xbæ , then��R , \06�^¿2:EGç ?�@>B , 
\è. 
 6 
^é. 
 236 (20)

where ç is a constant.

Proof: Rewrite ¯ , \06�^Y2 as¯ , \06�^¿2Ä& , � � . � � 24� � � , � � . � � 2 , � � �Ã� � 2ê�G=V=W= � , �3a g � . �Ta 2 a g �) � �J�� , � � .;� � 2+� � � , � � .Ã� � 2 , � � �Á� � 2ê�À=W=W= � , ��c®.;��ckg � 2 c�g �) � ���� , �Ta .;�dc124� ` =
25



By Lemma 1,

Å ³$¯ , \06�^¿2 ´ K 
Æ , ��� 
 2>Å ³ � � � , � � ��� � 2ê�À=W=V= � , a g �) � �J�º2 ´� 
É , �i� 
 2ÌÅ ³±� � � , � � �Á� � 2ê�À=W=W=>� , ckg �) � ���32 ´& \ , \ë. 
 2 Å ³ � ´¨ Æ , �ì� 
 2í îNï ðñ � ^ , ^é. 
 2 Å ³±� ´¨ É , �i� 
 2í îNï ðà =
We prove the theorem for CASE I. In CASE I, � ` & C a � �J� , inequality (5) holds and hence

Å ³ ¾ , \06�^Y2 ´ E Å ³ �3a . �Tafe � ´ Å ³ a) � �i� ´ � Å ³±� ´ =
If (11) holds, Å ³ ¾ , \06�^¿2 ´ can be further bounded as

Å ³ ¾ , \06�^¿2 ´ E Å ³ �Ta . �3afe � ´ Å ³ a) � �J� ´ � Å ³ , � � . �Ta 2<�#c ´E \ Å ³$� ´· , ��� 
 2 � \ Å ³!� ´· , ��� 
 2 6
and therefore �jR , \06�^¿2òE , amóêô õhö÷ Í 8 e ��Î � amóêô ø�ö÷ Í 8 e ��Î 2+n ,�ù �Á£�2E , amóêô õlö÷ Í 8 e ��Î � amóêô ø�ö÷ Í 8 e ��Î 2-n ù& �a g � , �4ú÷ � �4ú óêô øPö÷ óêô õhö 2T= (21)

Since Å ³ � ´
and Å ³±� ´

are constants, �jR , \06�^¿2 is bounded by

 n , \ë. 
 2 multiplied by a constant.

If (12) holds, we can bound Å ³ ¾ , \06�^¿2 ´ as

Å ³ ¾ , \06�^¿2 ´ E Å ³ �Ta . �Tafe � ´ Å ³ a) � �J� ´ � Å ³ , �dc�.Ã� � 2N� aû´E \ Å ³ � ´· , ��� 
 2í î4ï ðü � ^ Å ³ � ´½ , ��� 
 2í îNï ðý =
Note that

ü e ýñ e à E ?�@>B , ü ñ 6 ýà 2 , therefore in this scenario we have�jR , \06�^Y2�E ?�@>B , 
\è. 
 ¨ Æ· 6 
^t. 
 ¨ É Å ³$� ´½ Å ³±� ´ 23= (22)
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Combining inequalities (21) and (22), we can bound �jR , \06�^Y2 as in inequality (20). The proof for

CASE II is similar. �
Theorem 2 says that if the number of agents who successfully trade is large, the market inefficiency

converges to zero at rate ?�@>B , 
 n , \þ. 
 236 
 n , ^�. 
 2-2 . However, this theorem does not answer the

question of whether the market efficiency increases as the number of agents, trading and not,

increases. To measure the market efficiency in terms of � and � instead of \ and ^ , we define the

expected market inefficiency ratio as:¥Hÿ , �°6��ê2f& 8)a * � ()cS* ��� , \06�^Y24�jR , \06�^¿2T6 (23)

where � , \06�^¿2 denotes the probability that there are \ buyers and ^ sellers successfully trading

given that there are � and � buyers and sellers in the market respectively. As the number of agents

becomes large, we show that¥�ÿ , æ 6 æ 2m& � ��?8 Ê (���� ¥�ÿ , �°6�� 2�� � =
Theorem 3: A sufficient condition for market inefficiency going to zero is that \ and ^ go to

infinity as � and � go to infinity.

Proof: Let � , \ & æ 6�^D& æ 2 denote the probability that \ and ^ go to infinity as � and � go

to infinity. We thus assume this probability goes to 1, i.e.,

� ��?8 Ê (���� � , \]& æ 6�^_& æ 2	� 
 = (24)

Let � , \ Eb� ß 6�^DEb� ß 2 denote the the probability that \ÄEÀ� ß and ^DEb� ß . We have¥�ÿ , æ 6 æ 2& 8 
)a * � ( 
)c
* � � , \06�^¿2<��R , \06�^¿2 � �)a * 8 
 e � ( 
)c
* � � , \06�^¿2<��R , \06�^¿2
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� 8 
)a * � �)cS* ( 
 e ��� , \06�^¿2<��R , \06�^¿2'� �)a * 8 
 e � �)c
* ( 
 e ��� , \06�^¿2<�jR , \06�^Y2E � , \ÄEb� ß 6�^DEb� ß 2ê� � , \ÄKb� ß � 
 6�^DEb� ß 2� � , \ÄEb� ß 6�^DKb� ß � 
 2ê�Áç ?�@>B , 
� ß 6 
� ß 2 � , \ Kb� ß � 
 6�^DKb� ß � 
 2
The first three terms of the r.h.s. of the above inequality are obtained by observing that�jR , \06�^¿2:E 
 6 M \06¿^7=
The fourth term is obtained by using the fact that�jR , \06�^Y2:EGç ?A@ B , 
� ß 6 
� ß 236 M \ Kb� ß � 
 6¿^DKb� ß � 
 6
which in turn can be derived from inequality (20) in Theorem 2.

As � and � go to infinity, given any 
 U �
, we can always find finite � ß and � ß such thatç ?�@>B , 
� ß 6 
� ß 2qE�
�n
¨�=

Hence the fourth term in the r.h.s. of the above inequality is bounded by 
�nS¨ , as � , \ KÖ� ß �
 6�^ÁKb� ß � 
 2:E 

. As � and � become large, the sum of the first three terms can be bounded by


�n
¨ as well, implied by assumption (24). Therefore, ¥�ÿ , æ 6 æ 2�� �
as � and � go to infinity. �

Condition (24) is very easy to satisfy. If we restrict each agent’s trade volume to have finite

expectation, then as long as ³ � 6 ��´ and ³±� 6 � ´ intersect, condition (24) holds. Figure 4 shows one

possible way ³ � 6 ��´ and ³Ç� 6 � ´ can intersect, which is
� E�� E � E � . We show how this implies (24).

Choose % such that ³Ç� X % X ��´
then % divides the interval ³Ç� 6 ��´ into two parts, ³Ç� 6 % ´ and ³ % 6 ��´ . The

number of sellers whose reservation prices fall into ³±� 6 % ´ goes to infinity as � goes to infinity; and

the number of buyers whose reservation prices fall into ³ % 6 ��´ goes to infinity as � goes to infinity.

Further, either the number of buyers who trade is greater than the number of buyers in ³ % 6 ��´ , or the
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Figure 4: One possible way ³ � 6 ��´ and ³±� 6 � ´ intersect.

number of sellers who trade is greater than the number of sellers in ³±� 6 % ´ . Assume the former. In

this case, we already know the number of buyers who trade goes to infinity, and need only show

that the number of seller who trade goes to infinity. If the number of buyers who trade goes to

infinity, then the total trade volume must go to infinity as well. This total volume is sold by the

sellers who successfully trade. Since every seller’s volume has finite expectation, there must be

infinite number of sellers to support this total volume. Therefore the number of sellers who trade

goes to infinity as well. Thus condition (24) is satisfied.

There are three other ways ³ � 6 ��´ and ³±� 6 � ´ may intersect. They are � E � E ��E �
, � E � E � E � ,

and
� Eþ� E � E �

. The proof that for these cases condition (24) holds is similar. Note that if� X � , no trade is possible.

5 Implementation and Experiments

RETSINA provides a set of Agent Foundation Classes supporting various agent types. We use three

types of them: task agents, interface agents, and middle agents. The buyers and sellers are imple-
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mented as task agents; the market maker is derived from the default middle agent of RETSINA, the

MatchMaker; and we also use the standard interface agent, DemoDislay in RETSINA to visualize

and monitor our e-market (RETSINA AFC developers Guide 2002).

Task agents in RETSINA specialize in some specified tasks they are supposed to accomplish. In

our e-market, seller and buyer agents only need to submit asks and bids respectively, and accept

the information sent by the market maker about how much they sell or purchase and at what price.

This information exchange is handled by the communication component provided by RETSINA

(Shehory and Sycara, 2000). We show a seller agent in Figure 5; it has two input boxes to submit

asks and two output boxes to accept information from the market maker. Buyer agents are similar.

Figure 5: A seller agent interface.

The role of the market maker is to bring demand and supply together and execute the designed

mechanism to clear the e-market. This role fits perfectly with the role played by the RETSINA

MatchMaker, which serves as a “yellow pages” of agent capabilities, matching service providers

with service requesters based on agent capability descriptions. Our market maker is derived from
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the MatchMaker, and hence inherits the communication capacity from it. Our designed mechanism

instructs the market maker to match the demand from the buyer agents with the supply provided

by the seller agents. After the e-market clears, the market maker needs to send messages to all

participating agents, as mentioned before. To find the specific location of each agent to send

a message, the market maker invokes the Agent Name to Location Mapping Service (ANS) in

RETSINA. The location of a participating agent may be anywhere over the Internet; this stand-

alone ANS increases the system flexibility.

Figure 6: A MDA e-market with three buyers and three sellers. Lines linking the agents and the

MarketMaker represent that they are communicating. These lines are dynamically displayed as the

agents submit asks and bids.

Figure 6 visualizes our e-market using the RETSINA DemoDisplay. Each agent in the DemoDis-

play is represented by a small icon; lines linking them represent that they are exchanging messages.

Our e-market also keeps recording logs of every activity that takes place and every transaction ex-

ecuted.
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We let our agents generate random bids and asks to test our e-market. We study two types of

reservation price distributions, one is a uniform, the other is a beta. A uniform price distribu-

tion represents the case where agents’ prices are equally distributed over the support, while a beta

distribution represents the case where agents’ prices aggregate in some parts of the support. We as-

sume both the buyers’ volume ��� and the sellers’ volume ��� are drawn from a uniform distribution
Ý
, � 6 
 2 .
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Figure 7: ������������� as a function of � and � when agents’ reservation prices are uniformly dis-

tributed.

In the first experiment, we set the sellers’ reservation price distribution to be uniform ���! "�$#��&%�� ,
and shift the buyers’ reservation price distribution from ')(*�  "�,+.-0/��1#�-0/�� to '324�  "�$#��&%�� to

'356�7 ��8#�-0/��&%�-0/�� . For each distribution pair �9'3:;�<�=� , we run 8 simulations, each of which corre-

sponds to a certain number of participating agents. (We assume the number of buyers equals the

number of sellers and run simulations at �>�?�@�A/��1#�+��&%�+.�&/B+.�1#�+�+��&%�+�+.�C/�+�+.�1#1+�+�+.� respectively.)

For each simulation, we randomly generate #1+�+�+ trader groups and compute the expected trading
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Figure 8: �)���D���E��� , as a function of � and � when agents’ reservation prices are beta distributions.

inefficiency ratio as defined in (23). As we can see from Figure 7, which is plotted in a log-log

scale, the inefficiency ratios decrease at rate #�FB� as � and � increase. As the buyers’ distribution

support shifts from GH+�-I/��J#�-I/LK to GM#�-I/)�&%�-0/3K , the inefficiency ratio decreases, which is expected be-

cause more buyers tend to offer higher bidding prices and the number of successful trading agents

increases correspondingly.

In Figure 8, we set the seller’s reservation price to be a beta distribution ���N#PORQS�DT=�ETU�CV and shift

the buyers’ price distribution from 'U(��?+.-0/WOXQS��T=��TU� to 'L2Y�N#)O�QS��T=��TU� to '35Z�N#�-0/WO�QS�DT=�ETU� . All

the other settings remain the same as in the previous experiment. Two interesting observations are

worth mentioning: First, the inefficiency frontier in the case where '�5[�\#�-0/]O^Q_�DT=��T�� is slightly

higher than that in the case where '�2"�`#]OaQ_�DT=��T�� . The reason for this is that buyers’ bidding

prices aggregate around two in 'B5 and sellers’ asking prices aggregate around #�-0/ in � , thus bJc6dfe1g
h<ikjml3nDl1o

is a symmetric distribution with an unique mode at 0.5 and is supported on p q n$r$s .
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is generally larger when ²x& ² � than that when ²x&�² � , which causes more efficiency loss. Second,� ,�t 6 t 2 is not bounded below by a positive number, and thus condition (13) and (14) do not hold.

However, as shown in Figure 8, the inefficiency ratio still decreases at rate

 nÌ� when � and � are

large.

6 Conclusions

The efficiency of MDA markets has been a puzzle for many years, especially when trades involve

multiple units. This is because agents in an MDA market may have complicated trading strategies

available to suit their individual interests, and thus they may not necessarily reveal their truthful

intentions, which leads to market inefficiency. We shed light on how this puzzle is solved in one

MDA market by analyzing how strong ex-post efficiency is achieved. For this market we designed

and implemented an MDA e-market mechanism that is strategy-proof with respect to reservation

price, weakly or exactly budget-balanced, asymptotically ex-post efficient and individually ratio-

nal. Our market mechanism also makes sellers unlikely to under-report their supply volume to

drive up the trading price.

If we insist that the market be established based on individuals’ free will to trade, strategy-proofness

is essential because without truthful revelation, we cannot determine whether a market is efficient

or not. Our mechanism, and the consequent analysis of its efficiency makes mathematically con-

crete a long-speculated, but somewhat vague reason why free markets are indeed efficient: they

comprise a large population of players whose individual trading behavior has negligible effect on

the overall market.

We implemented a prototype e-market using the RETSINA infrastructure based on our design and
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tested its efficiency. Experimental results fit our efficiency theory very well. Another interesting

experiment would be testing our theory of strategy-proofness by introducing human traders into

our e-market. We plan to do this in future work.

In our MDA market, the trading agents are very simple, because the market mechanism prevents

them from manipulating the trading price. Or in other words, the trading agents “understand” the

mechanism and hence “know” that pursuing complicate strategies will not benefit them. If some

of the assumptions of our MDA market do not hold, it may be possible that “smarter” agents can

garner more profit by adopting complicated strategies. In these situations, designing more “intelli-

gent” trading agents is appropriate. One such situation is that a market that allows discriminatory

bidding, as we discussed in Section 3. Another one is that of a dynamic market. Our MDA mar-

ket is a one-shot market, we do not consider the problem where agents who were not included in

a trade may come back and resubmit bids. If we introduce timing and dynamics into our MDA

market, it will become very similar to the stock market, which seems to defy any exact analysis.
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