
ar
X

iv
:2

30
2.

08
68

3v
2 

 [
cs

.G
R

] 
 2

2 
Fe

b 
20

23
Computer Graphics Forum Volume 18, (1999) Number 1 pp. 17–26

Animating Sand, Mud, and Snow

Robert W. Sumner James F. O’Brien Jessica K. Hodgins

College of Computing and Graphics, Visualization, and Usability Center
Georgia Institute of Technology

Abstract

Computer animations often lack the subtle environmental changes that should occur due to the actions

of the characters. Squealing car tires usually leave no skid marks, airplanes rarely leave jet trails

in the sky, and most runners leave no footprints. In this paper, we describe a simulation model of

ground surfaces that can be deformed by the impact of rigid body models of animated characters. To

demonstrate the algorithms, we show footprints made by a runner in sand, mud, and snow as well

as bicycle tire tracks, a bicycle crash, and a falling runner. The shapes of the footprints in the three

surfaces are quite different, but the effects were controlled through only five essentially independent

parameters. To assess the realism of the resulting motion, we compare the simulated footprints to

human footprints in sand.

Keywords: animation, physical simulation, ground interaction, terrain, sand, mud, snow.

1. Introduction

To become a communication medium on a par with
movies, computer animations must present a rich view
into an artificial world. Texture maps applied to three-
dimensional models of scenery help to create some of
the required visual complexity. But static scenery is
only part of the answer; subtle motion of many ele-
ments of the scene is also required. Trees and bushes
should move in response to the wind created by a pass-
ing car, a runner should crush the grass underfoot,
and clouds should drift across the sky. While simple
scenery and sparse motion can sometimes be used ef-
fectively to focus the attention of the viewer, miss-
ing or inconsistent action may also distract the viewer
from the plot or intended message of the animation.
One of the principles of animation is that the viewer
should never be unintentionally surprised by the mo-
tion or lack of it in a scene1.

Subtle changes in the scenery may also convey im-
portant information about the plot or scene context
to the viewer. For example, figure 1 shows an image
of alien bikers riding across a desert landscape. The
presence of tracks makes it clear that the ground is
soft sand rather than hard rock, and that other bikers
have already passed through the area. Figure 2 shows

Figure 1: Image of tracks left in the sand by a group

of fast moving, alien bikers.

the same scene without the sand. In addition to being
visually less interesting, the altered image lacks some
of the visual cues that help the viewer understand the
scene.

Movie directors face a related problem because they
must ensure that the viewer is presented with a consis-

© The Eurographics Association 1999. Published by Blackwell

Publishers, 108 Cowley Road, Oxford OX4 1JF, UK and 238 Main

Street, Cambridge, MA 02142, USA.

http://arxiv.org/abs/2302.08683v2


2 R. W. Sumner, J. F. O’Brien, and J. K. Hodgins / Animating Sand, Mud, and Snow

Figure 2: Same image as shown in figure 1 but with-

out the simulated tracks in the sand.

tent view of the world and the characters. An actor’s
clothing should not inexplicably change from scene to
scene, lighting should be consistent across edits, and
such absent, unexpected, or anachronistic elements as
missing tire tracks, extra footprints, or jet trails must
be avoided. The risk of distracting the viewer is so
great that one member of the director’s team, known
as a “continuity girl,” “floor secretary,” or “second as-
sistant director,” is responsible solely for maintaining
consistency2.

Maintaining consistency is both easier and harder
in computer animation. Because we are creating an
artificial world, we can control the lighting conditions,
layout, and other scene parameters and recreate them
if we need to “shoot” a fill-in scene later. Because the
world is artificial, however, we may be tempted to re-
arrange objects between scenes for best effect, thereby
creating a series of scenes that could not coexist in
a consistent world. Computer-generated animations
and special effects add another facet to the consis-
tency problem because making models that move and
deform appropriately is a lot of work. For example,
most animated figures do not leave tracks in the en-
vironment as a human actor would and special effects
artists have had to work hard to create such subtle
but essential effects as environment maps of flicker-
ing flames. Because each detail of the scene represents
additional work, computer graphics environments are
often conspicuously clean and sparse. The approach
presented here is a partial solution to this problem;
we create a more interesting environment by allowing
the character’s actions to change a part of the envi-
ronment.

In this paper, we describe a model of ground sur-
faces and explain how these surfaces can be de-
formed by characters in an animation. The ground

material is modeled as a height field formed by vertical
columns. After the impact of a rigid body model, the
ground material is deformed by allowing compression
of the material and movement of material between the
columns. To demonstrate the algorithms, we show the
creation of footprints in sand, mud, and snow. These
surfaces are created by modifying only five essentially
independent parameters of the simulation. We eval-
uate the results of the animation through compari-
son with video footage of human runners and through
more dramatic patterns created by bicycle tire tracks
(figure 1), a falling bicycle (figure 7), and a tripping
runner (figure 10).

2. Background

Several researchers have investigated the use of pro-
cedural techniques for generating and animating back-
ground elements in computer-generated scenes. Al-
though we are primarily interested in techniques that
allow the state of the environment to be altered in re-
sponse to the motions of an actor, methods for animat-
ing or modeling a part of the environment independent
of the movements of the actors are also relevant be-
cause they can be modified to simulate interactions.

The first example of animated ground tracks for
computer animation was work done by Lundin3, 4. He
describes how footprints can be created efficiently by
rendering the underside of an object to create a bump
map and then applying the bump map to the ground
surface to create impressions where the objects have
contacted the ground.

The work most closely related to ours is that of Li
and Moshell5. They developed a model of soil that al-
lows interactions between the soil and the blades of
digging machinery. Soil spread over a terrain is mod-
eled using a height field, and soil that is pushed in front
of a bulldozer’s blade is modeled as discrete chunks.
Although they discount several factors that contribute
to soil behavior in favor of a more tractable model,
their technique is physically based and they arrive at
their simulation formulation after a detailed analysis
of soil dynamics. As the authors note, actual soil dy-
namics is complex and their model, therefore, focuses
on a specific set of actions that can be performed on
the soil, namely the effect of horizontal forces acting
on the soil causing displacements and soil slippage.
The method we present here has obvious similarities
to that of Li and Moshell, but we focus on modeling
a different set of phenomena at different scales. We
also adopt a more appearance-based approach in the
interest of developing a technique that can be used to
model a wide variety of ground materials for anima-
tion purposes.

Another method for modeling the appearance of

© The Eurographics Association 1999



R. W. Sumner, J. F. O’Brien, and J. K. Hodgins / Animating Sand, Mud, and Snow 3

ground surfaces is described by Chanclou, Luciani,
and Habibi6. They use a simulation-based ground
surface model that behaves essentially like an elas-
tic sheet. The sheet deforms plasticly when acted on
by other objects. While their model allows objects to
make smooth impressions in the ground surface, they
do not describe how their technique could be used to
realistically model real world ground materials.

Nishita and his colleagues explored modeling and
rendering of snow using metaballs7. Their approach
allowed them to model snow on top of objects and
drifts to the side of objects. They also developed a
method for realistically rendering snow that captured
effects due to multiple levels of light scattering.

Other environmental effects that have been ani-
mated include water, clouds and gases8, 9, 10, fire9, 11,
lightning12, and leaves blowing in the wind13. Among
these, water has received the most attention. Early
work by Peachey14 and by Fournier and Reeves15 used
procedural models based on specially designed wave
functions to model ocean waves as they travel and
break on a beach. Later work by Kass and Miller16

developed a more general approach using shallow wa-
ter equations to model the behavior of water under
a wider variety of conditions. Their model also modi-
fied the appearance of a sand texture as it became wet.
O’Brien and Hodgins17 extended the work of Kass and
Miller to allow the behavior of the water simulation
to be affected by the motion of other objects in the
environment and to allow the water to affect the mo-
tion of the other objects. They included examples of
objects floating on the surface and simulated humans
diving into pools of water. More recently Foster and
Metaxas18 used a variation of the three-dimensional
Navier-Stokes equations to model fluids. In addition
to these surface and volumetric approaches, particle-
based methods have been used to model water spray
and other loosely packed materials. Supplementing
particle models with inter-particle dynamics allows a
wider range of phenomena to be modeled. Examples
of these systems include Reeves19, Sims20, Miller and
Pearce21, and Terzopoulos, Platt, and Fleischer22.

Simulation of interactions with the environment
can also be used to generate still models. Several
researchers have described techniques for generating
complex plant models from grammars describing how
the plant should develop or grow over time. Měch and
Prusinkiewicz23 developed techniques for allowing de-
veloping plants to affect and be affected by their en-
vironment. Dorsey and her colleagues24, 25 used simu-
lation to model how an object’s surface changes over
time as environmental factors act on it.

Figure 3: The uniform grid forms a height field that

defines the ground surface. Each grid point within the

height field represents a vertical column of ground ma-

terial with the top of the column centered at the grid

point.

3. Simulation of Sand, Mud, and Snow

In this paper, we present a general model of a de-
formable ground material. The model consists of a
height field defined by vertical columns of material.
Using displacement and compression algorithms, we
animate the deformations that are created when rigid
geometric objects impact the ground material and cre-
ate footprints, tire tracks, or other patterns on the
ground. The properties of the model can be varied
to produce the behavior of different ground materials
such as sand, mud, and snow.

3.1. Model of Ground Material

Our simulation model discretizes a continuous vol-
ume of ground material by dividing the surface of
the volume into a uniform rectilinear grid that de-
fines a height field (figure 3). The resolution of the
grid must be chosen appropriately for the size of the
desired features in the ground surface. For example, in
figure 1 the resolution of the grid is 1 cm and the bi-
cycles are approximately 2meters long with tires 8 cm
wide. Though the resolution of the grid determines the
size of the smallest feature that can be represented, it
does not otherwise dramatically affect the shape of the
resulting terrain (figure 4).

Initial conditions for the height of each grid point
can be created procedurally or imported from a va-
riety of sources. We implemented initial conditions
with noise generated on an integer lattice and inter-
polated with cubic Catmull-Rom splines (a variation
of a two-dimensional Perlin noise function described
by Ebert8). Terrain data or the output from a model-
ing program could also be used for the initial height

© The Eurographics Association 1999



4 R. W. Sumner, J. F. O’Brien, and J. K. Hodgins / Animating Sand, Mud, and Snow

A B C D

Figure 4: Footprint in sand computed with different grid resolutions. (A) 20mm, (B) 10mm, (C) 5mm, and

(D) 2.5mm. As the grid resolution increases, the shape of the footprint is defined more clearly but its overall shape

remains the same.

field. Alternatively, the initial conditions could be the
output of a previous simulation run. For example, the
trampled surface of a public beach at the end of a busy
summer day could be modeled by simulating many
crisscrossing paths of footprints.

3.2. Motion of the Ground Material

The height field represented by the top of the columns
is deformed as rigid geometric objects push into the
grid. For the examples given in this paper, the ge-
ometric objects are a runner’s shoe, a bicycle tire
and frame, and a jointed human figure. The motion
of the rigid bodies was computed using a dynamic
simulation of a human running, bicycling, or falling
down on a smooth, hard ground plane26. The result-
ing motion was given as input to the simulation of the
ground material in the form of trajectories of positions
and orientations of the geometric objects. Because of
this generic specification of the motion, the input mo-
tion need not be dynamically simulated but could be
keyframe or motion capture data.

The surface simulation approximates the motion of
the columns of ground material by compressing or dis-
placing the material under the rigid geometric objects.
At each time step, a test is performed to determine
whether any of the rigid objects have intersected the
height field. The height of the affected columns is re-
duced until they no longer penetrate the surface of the
rigid object. The material that was displaced is either
compressed or forced outward to surrounding columns.
A series of erosion steps are then performed to re-
duce the magnitude of the slopes between neighbor-
ing columns. Finally, particles can be generated from
the contacting surface of the rigid object to mimic the
spray of material that is often seen following an im-
pact. These stages are illustrated in figure 5. We now
discuss each stage of the algorithm in more detail: col-
lision, displacement, erosion, and particle generation.

Collision. The collision detection and response algo-
rithm determines whether a rigid object has collided

with the ground surface. For each column, a ray is cast
from the bottom of the column through the vertex at
the top. If the ray intersects a rigid object before it
hits the vertex, then the rigid object has penetrated
the surface and the top of the column is moved down
to the intersection point. A flag is set to indicate that
the column was moved, and the change in height is
recorded. The computational costs of the ray inter-
section tests are reduced by partitioning the polygons
of the rigid body models using an axis-aligned bound-
ing box hierarchy27.

Using a vertex coloring algorithm, the simulation
computes a contour map based on the distance from
each column that has collided with the object to the
closest column that has not collided (figure 6). This
information is used when the material displaced by
the collision is distributed. As an initialization step,
columns not in contact with the object are assigned
the value zero. During subsequent iterations, unla-
beled columns adjacent to labeled columns are as-
signed a value equal to the value of the lowest num-
bered adjacent column plus one.

Displacement. Ground material from the columns
that are in contact with the object is either com-
pressed or distributed to surrounding columns that
are not in contact with the object. The compression
ratio α is chosen by the user and is one of the param-
eters available for controlling the visual appearance of
the ground material. The material to be distributed,
∆h, is computed by ∆h = αm, where m is the total
amount of displaced material. The material that is not
compressed is equally distributed among the neighbors
with lower contour values, so that the ground mate-
rial is redistributed to the closest ring of columns not
in contact with the rigid object. The heights of the
columns in this ring are increased to reflect the newly
deposited material.

Erosion. Because the displacement algorithm de-
posits material only in the first ring of columns not in
contact with the object, the heights of these columns

© The Eurographics Association 1999



R. W. Sumner, J. F. O’Brien, and J. K. Hodgins / Animating Sand, Mud, and Snow 5

A B C D

Figure 5: The motion of the ground material is computed in stages. (A) First, the geometric objects are intersected

with the ground surface. (B) Next, the penetrating columns are adjusted, and (C) the material is distributed to

non-penetrating columns. (D) Finally, the erosion process spreads the material.

000

000

0

00

0

0

0

0

00

0

0

0

0

0

0

0

0 0

0 0 0 0

0 0

0 0

0

0 0 0

0 0 0 0

0 0

0 0

0 0

0

0

0

01

00

1 1 1

1

1

1

1

1

111

11

1

1

1

11

1

1

1

1

1 1

1

1

1

1

0 1 1 2 2 2

2

2

2

222

22

2

2

2

22

2

2

2 2

2

2

2

2

2 2 3 3

3

333

3

3

3 3

3

3

4

0

Figure 6: The contour map represents the distance

from each column in contact with the foot to a column

that is not in contact. For this illustration, we used

columns that are four-way connected. However, in the

examples in this paper we used eight-way connectivity

because we found that the higher connectivity yielded

smoother results.

may be increased in an unrealistic fashion. An “ero-
sion” algorithm is used to identify columns that form
steep slopes with their neighbors and move material
down the slope to form a more realistic mound. Sev-
eral parameters allow the user to control the shape of
the mound and model different ground materials.

The erosion algorithm examines the slope between
each pair of adjacent columns in the grid. For a column
ij and a neighboring column kl, the slope, s, is

s = tan−1(hij − hkl)/d (1)

where hij is the height of column ij and d is the dis-
tance between the two columns. If the slope between
two neighboring columns is greater than a threshold
θout, then ground material is moved from the higher

column down the slope to the lower column. In the
special case where one of the columns is in contact
with the geometric object, a different threshold, θin,
is used to provide independent control of the inner
slope. Ground material is moved by computing the av-
erage difference in height, ∆ha, for the n neighboring
columns with too large a downhill slope:

∆ha =

∑
(hij − hkl)

n
. (2)

The average difference in height is multiplied by a
fractional constant, σ, and the resulting quantity is
equally distributed among the downhill neighbors.
This step in the algorithm repeats until all slopes are
below a threshold, θstop. The erosion algorithm may
cause some columns to intersect a rigid object but this
penetration will be corrected on the next time step.

Particle Generation. We use a particle system to
model portions of the ground material that are thrown
into the air by the motion of the rigid geometric ob-
jects. The user controls the adhesiveness between the
object and the material as well as the rate at which
the particles fall from the object. Each triangle of the
object that is in contact with the ground picks up a
volume of the ground material during contact. The
volume of material is determined by the area of the
triangle multiplied by an adhesion constant for the
material. When the triangle is no longer in contact
with the ground, it drops the attached material as
particles according to an exponential decay rate.

∆v = v(e(−t+tc+∆t)/h − e(−t+tc)/h) (3)

where v is the initial volume attached to the triangle, t
is the current time, tc is the time at which the triangle
left the ground, ∆t is the time step size, and h is a half
life parameter that controls how quickly the material
falls off. The number of particles released on a given
time step is determined by n = ∆v/φ, where φ is the
volume of each particle.

© The Eurographics Association 1999



6 R. W. Sumner, J. F. O’Brien, and J. K. Hodgins / Animating Sand, Mud, and Snow

Figure 7: The left figure shows the ground area that has been created in the hash table. The currently active area

is highlighted in red. The right figure shows the same scene rendered over the initial ground surface. There are

approximately 37,000 columns in the active area and 90,000 stored in the hash table; the number of columns in

the entire virtual grid is greater than 2 million.

The initial position, p0, for a particle is randomly
distributed over the surface of the triangle according
to:

p0 = baxa + bbxb + bcxc (4)

where xa, xb, and xc are the coordinates of the vertices
of the triangle and ba, bb, and bc are the barycentric
coordinates of p0 given by

ba = 1.0−√
ρa (5)

bb = ρb(1.0− ba) (6)

bc = 1.0− (ba + bb) (7)

where ρa and ρb are independent random variables
evenly distributed between [0..1]. This computation
results in a uniform distribution over the triangle28 .

The initial velocity of a particle is computed from
the velocity of the rigid object:

ṗ0 = ν + ω × p0 (8)

where ν and ω are the linear and angular velocity
of the object. To give a more realistic and appealing
look to the particle motion, the initial velocities are
randomly perturbed.

The final component of the particle creation algo-
rithm accounts for the greater probability that mate-
rial will fall off rapidly accelerating objects. A particle
is only created if (|p̈0|/s)γ > ρ, where s is the min-
imal acceleration at which all potential particles will
be dropped, γ controls the variation of the probabil-
ity of particle creation with speed, and ρ is a random
variable evenly distributed in the range [0..1].

If particles are only generated at the beginning of
a time step then the resulting particle distribution

will have a discrete, sheetlike appearance. We avoid
this undesirable effect by randomly distributing each
particle’s creation time within the time step interval.
The information used to calculate the initial position
and velocity is interpolated within the interval to ob-
tain information appropriate for the particle’s creation
time.

Once generated, the particles fall under the influ-
ence of gravity. When a particle hits the surface of a
column, its volume is added to the column.

3.3. Implementation and Optimization

Simulations of terrain generally span a large area. For
example, we would like to be able to simulate a run-
ner jogging on a beach, a skier gliding down a snow-
covered slope, and a stampede of animals crossing a
sandy valley. A naive implementation of the entire ter-
rain would be intractable because of the memory and
computation requirements. The next two sections de-
scribe optimizations that allow us to achieve reason-
able performance by storing and simulating only the
active portions of the surface and by parallelizing the
computation.

Algorithm Complexity. Because the ground model
is a two-dimensional rectilinear grid, the most
straightforward implementation is a two-dimensional
array of nodes containing the height and other infor-
mation about the column. If an animation required
a grid of i rows and j columns, i × j nodes would
be needed, and computation time and memory would
grow linearly with the number of grid points. Thus,
a patch of ground 10m × 10m with a grid resolu-
tion of 1 cm yields a 1000×1000 grid with one million

© The Eurographics Association 1999



R. W. Sumner, J. F. O’Brien, and J. K. Hodgins / Animating Sand, Mud, and Snow 7

2 4 6 8 10 12 14 16

Number of Bikes

0

500

1000

1500

2000

2500

S
e
c
o

n
d

s

Serial

Parallel

Figure 8: These timing results were computed on

a Silicon Graphics Power Challenge system with 16
195MHz MIPS R10000 processors and 4Gbytes of

memory. Each character is an alien biker like the ones

shown in figure 1. Times plotted are for one second of

simulated motion.

nodes. If each node requires 10 bytes of memory, the
entire grid requires 10Mbytes of storage. Even this
relatively small patch of ground requires significant
system resources. However, most of the ground nodes
are static throughout the simulation, allowing us to
use a much more efficient algorithm that creates and
simulates only the active nodes.

The active area of the ground surface is determined
by projecting an enlarged bounding box for the rigid
objects onto the surface as shown in figure 7. The
nodes within the projection are marked as active, and
the collision detection, displacement, and erosion al-
gorithms are applied, not to the entire grid, but only
to these active grid points. Additionally, nodes are not
allocated for the entire ground surface, rather they are
created on demand as they become active. The ij po-
sition of a particular node is used as the index into a
hash table allowing the algorithms to be implemented
as if a simple array of nodes were being used.

Because only the active grid points are processed,
the computation time is now a function of the size of
the rigid objects in the scene rather than the total
grid size. Memory requirements are also significantly
reduced, although the state of all modified nodes must
be stored even after they are no longer active.

Parallel Implementation. Despite the optimiza-
tion provided by simulating only active nodes, the
computation time grows linearly with the projected
area of the rigid objects. Adding a second charac-
ter will approximately double the active area (see fig-
ure 8), but the computation time for multiple charac-

ters can be reduced by using parallel processing when
the characters are contacting independent patches of
ground.

We have designed and implemented a parallel
scheme for the ground surface simulation. A single
parent process maintains the state of the grid and co-
ordinates the actions of the child processes. During
initialization, a child process is created for each char-
acter that will interact with the ground surface. The
children communicate with the parent process via the
UNIX socket mechanism and may exist together on a
single multiprocessor machine or on several separate
single processor machines.

Each child computes the changes to the grid caused
by its character as quickly as possible, without any
direct knowledge about the progress of the other chil-
dren. When a child completes the computation for a
time step, it reports the changes it has made to the
parent process and then waits for information about
any new grid cells that will be in the bounding box
for its character during the next time step. However,
if the child is ready to compute a time step before an-
other child has reported prior changes that are within
the bounding box of a character assigned to the first
child, the parent will prevent the first child from con-
tinuing until the changes are available. For example,
in an animation of a cyclist that rides across a foot-
print left by a runner, the child process computing the
cyclist may arrive at the footprint location before the
process computing the runner has simulated the cre-
ation of the footprint. If two or more characters have
overlapping bounding boxes for the same time step,
the computation for those characters is reassigned to
a single child process until they no longer overlap.

Simulation run times for both the serial and paral-
lel versions of our algorithm are shown in figure 8. As
expected, the time required by the serial implemen-
tation grows linearly with the number of characters.
Ideally, the time required by the parallel implemen-
tation would be constant since each character has its
own processor. However, due to communication over-
head and interactions between the characters, the run
time for the parallel version grows as the number of
characters increases, but at a much slower rate than
the serial version.

4. Animation Parameters

One goal of this research is to create a tool that al-
lows animators to easily generate a significant fraction
of the variety seen in ground materials. Five param-
eters of the simulation can be changed by the user
to achieve different effects: inside slope, outside slope,
roughness, liquidity, and compression. The first four

© The Eurographics Association 1999



8 R. W. Sumner, J. F. O’Brien, and J. K. Hodgins / Animating Sand, Mud, and Snow

M
u

d
S

n
o

w
S

a
n

d
V

id
e
o

Figure 9: Images from video footage of a human runner stepping in sand and a simulated runner stepping in

sand, mud, and snow. The human runner images are separated by 0.133 s; the simulated images are separated by

0.1 s.

Figure 10: Images of a runner tripping over an obstacle and falling onto the sand. The final image shows the

pattern she made in the sand.

are used by the erosion algorithm, and the fifth is used
by the displacement algorithm.

The inside and outside slope parameters, θin and
θout, modify the shape of a mound of ground material
by changing the slope adjacent to intersecting geom-
etry and the slope on the outer part of the mound.
Small values lead to more erosion and a more grad-
ual slope; large values yield less erosion and a steeper
slope.

Roughness, σ, controls the irregularity of the ground
deformations by changing the amount of material that
is moved from one column to another during erosion.
Small values yield a smooth mound of material while
larger values give a rough, irregular surface.

Liquidity, θstop, determines how watery the material

appears by controlling the amount of erosion within a
single timestep. With less erosion per time step, the
surface appears to flow outward from the intersecting
object; with more erosion, the surface moves to its
final state more quickly.

The compression parameter, α, offers a way to
model substances of different densities by determin-
ing how much displaced material is distributed out-
ward from an object that has intersected the grid. A
value of one causes all material to be displaced; a value
less than one allows some of the material to be com-
pressed.

When particles are used, additional parameters are
required to determine their appearance. We included
parameters to control adhesion, particle size, and the

© The Eurographics Association 1999



R. W. Sumner, J. F. O’Brien, and J. K. Hodgins / Animating Sand, Mud, and Snow 9

Effect Variable Sand Mud Snow

inside slope θin 0.8 1.57 1.57
outside slope θout 0.436 1.1 1.57
roughness σ 0.2 0.2 0.2
liquidity θstop 0.8 1.1 1.57
compression α 0.3 0.41 0.0

Table 1: Table of parameters for the three ground ma-

terials.

rate at which material falls off of the objects. We used
particles in the animations of sand but did not include
them in the animations of mud or snow. Other more
dynamic motions such as skiing might generate signif-
icant spray, but running in snow appears to generate
clumps of snow rather than particles.

5. Results and Discussion

Figure 9 shows images of a human runner stepping in
sand and a simulated runner stepping in sand, mud,
and snow. The parameters used for the simulations of
the three ground materials are given in table 1. The
footprints left by the real and simulated runners in
sand are quite similar.

Figures 7 and 10 show more complicated patterns
created in the sand by a falling bicycle and a tripping
runner. For each of these simulations, we used a grid
resolution of 1 cm by 1 cm yielding a virtual grid size
of 2048×1024 for the bicycle and 4096×512 for the
runner.

The images in this paper were rendered with Pixar’s
RenderMan software. We found that rendering the
ground surface using a polygonal mesh was compu-
tationally expensive and that the data files required
to describe the mesh were large and difficult to work
with. We achieved better results using a single polygon
with a displacement shader that modeled the ground
surface.

The simulation described in this paper allows us to
capture many of the behaviors of substances such as
sand, mud, and snow. Only about fifteen iterations
were required to hand tune the parameters for the de-
sired effect with each material. The computation time
is not burdensome: a 3-second simulation of the run-
ning figure interacting with a 1 cm by 1 cm resolution
ground material required less than 2minutes of com-
putation time on a single 195MHz MIPS R10000 pro-
cessor.

Many effects are missed by this model. For exam-
ple, wet sand and crusty mud often crack and form
large clumps, but our model can generate only smooth

Figure 11: Images of actual tire tracks in snow and

human footprints in snow and in mud.

surfaces and particles. Actual ground material is not
uniform but contains both small grains of sand or dirt
as well as larger objects such as rocks, leaves, and sea
shells. More generally, many factors go into creating
the appearance of a given patch of ground: water and
wind erosion, plant growth, and the footprints of many
people and animals. Some of these more subtle effects
are illustrated by the human footprints in snow and
mud shown in figure 11.

One significant approximation in the ground simu-
lation is that the motion of the rigid objects is not
affected by the deformations of the surface. For the
sequences presented here, each of the rigid body sim-
ulations interacted with a flat, smooth ground plane.
A more accurate and realistic simulation would allow
the bike and runner to experience the undulations in
the initial terrain as well as the changes in friction
caused by the deforming surfaces. For example, a bike
is slowed down significantly when rolling on sand and
a runner’s foot slips slightly with each step on soft
ground.

Other approximations are present in the way that
the sand responds to the motion of the rigid objects.
For example, a given area of sand has no memory
of the compression caused by previous impacts. Be-
cause the motion of the rigid objects are specified in
advance, this approximation does not cause any no-
ticeable artifacts. Compression could also be used to
change rendering parameters as appropriate.

We do not take the velocity of the rigid object into
account in the ground simulation. For bicycling and
running, this approximation is negligible because the
velocities of the wheel and the foot with respect to
the ground are small at impact. For the falling runner
or bicycle, however, this approximation means that
the ridge of sand is uniformly distributed rather than
forming a larger ridge in the direction of travel.

The motions of sand, mud, and snow that we gener-
ated are distinctly different from each other because of
changes to the simulation parameters. Although much
of the difference is due to the deformations determined
by our simulations, part of the visual difference results
from different surface properties used for rendering. To

© The Eurographics Association 1999



10 R. W. Sumner, J. F. O’Brien, and J. K. Hodgins / Animating Sand, Mud, and Snow

generate the images in this paper, we had not only to
select appropriate parameters for the simulation but
also to select parameters for rendering. A more com-
plete investigation of techniques for selecting render-
ing parameters and texture maps might prove useful.

We regard this simulation as appearance-based
rather than engineering-based because most of the pa-
rameters bear only a scant resemblance to the physical
parameters of the material being modeled. The liquid-
ity parameter, for example, varies between 0 and π/2
rather than representing the quantity of water in a
given amount of sand. It is our hope that this repre-
sentation for the parameters allows for intuitive ad-
justment of the resulting animation without requiring
a deep understanding of the simulation algorithms or
soil mechanics. The evaluation is also qualitative or
appearance-based in that we compare simulated and
video images of the footprints rather than matching
initial and final conditions quantitatively.

Acknowledgments

A previous version of this paper appeared in The Pro-

ceedings of Graphics Interface ’98.

This project was supported in part by NSF NYI
Grant No. IRI-9457621 and associated REU fund-
ing, Mitsubishi Electric Research Laboratory, and a
Packard Fellowship. The second author was supported
by an Intel Fellowship.

References

1. F. Thomas and O. Johnston, Disney Animation:

The Illusion of Life. New York: Abbeville Press,
(1984).

2. K. Reisz and G. Millar, The Technique of Film

Editing. Focal Press, (1989).

3. D. Lundin, “Motion simulation”, in Nicograph

’84, (Nov. 1984).

4. D. Lundin, “Works’ ant”, in SIGGRAPH Video

Review, vol. 100, ACM SIGGRAPH, (1994). Spe-
cial Issue: Fifteen Years of Computer Graphics
1979–1994.

5. X. Li and J. M. Moshell, “Modeling soil: Realtime
dynamic models for soil slippage and manipula-
tion”, in SIGGRAPH ’93 Conference Proceedings,
pp. 361–368, ACM SIGGRAPH, (1993).

6. B. Chanclou, A. Luciani, and A. Habibi, “Phys-
ical models of loose soils dynamically marked by
a moving object”, in Computer Animation ’96,
pp. 27–35, (1996).

7. T. Nishita, H. Iwasaki, and E. Nakamae, “A mod-
eling and rendering method for snow by using
metaballs”, Computer Graphics Forum, 16(3),
pp. 357–364 (1997).

8. D. Ebert, K. Musgrave, D. Peachey, K. Perlin,
and S.Worley, Texturing and Modeling: A Proce-

dural Approach. New York: Academic Press, (Oct.
1994).

9. J. Stam and E. Fiume, “Depicting fire and other
gaseous phenomena using diffusion processes”, in
SIGGRAPH ’95 Conference Proceedings, pp. 129–
136, ACM SIGGRAPH, (1995).

10. N. Foster and D. Metaxas, “Modeling the mo-
tion of a hot, turbulent gas”, in SIGGRAPH ’97

Conference Proceedings, pp. 181–189, ACM SIG-
GRAPH, (1997).

11. N. Chiba, S. Ohkawa, K. Muraoka, and M. Miura,
“Two–dimensional visual simulation of flames,
smoke and the spread of fire”, The Journal

of Visualization and Computer Animation, 5(1),
pp. 37–54 (1994).

12. T. Reed and B. Wyvill, “Visual simulation of
lightning”, in SIGGRAPH ’94 Conference Pro-

ceedings, pp. 359–364, ACM SIGGRAPH, (1994).

13. J. Wejchert and D. Haumann, “Animation aero-
dynamics”, in SIGGRAPH ’91 Conference Pro-

ceedings, pp. 19–22, ACM SIGGRAPH, (1991).

14. D. R. Peachey, “Modeling waves and surf”, in
SIGGRAPH ’86 Conference Proceedings, pp. 65–
74, ACM SIGGRAPH, (1986).

15. A. Fournier and W. T. Reeves, “A simple model
of ocean waves”, in SIGGRAPH ’86 Confer-

ence Proceedings, pp. 75–84, ACM SIGGRAPH,
(1986).

16. M. Kass and G. Miller, “Rapid, stable fluid dy-
namics for computer graphics”, in SIGGRAPH

’90 Conference Proceedings, pp. 49–57, ACM SIG-
GRAPH, (1990).

17. J. F. O’Brien and J. K. Hodgins, “Dynamic sim-
ulation of splashing fluids”, in Computer Anima-

tion ’95, pp. 198–205, (1995).

18. N. Foster and D. Metaxas, “Realistic animation
of liquids”, in Proceedings of Graphics Interface

’96, pp. 204–212, (1996).

19. W. T. Reeves, “Particle systems–a technique for
modeling a class of fuzzy objects”, ACM Trans-

actions on Graphics, 2, pp. 91–108 (1983).

20. K. Sims, “Particle animation and rendering using
data parallel computation”, in SIGGRAPH ’90

© The Eurographics Association 1999



R. W. Sumner, J. F. O’Brien, and J. K. Hodgins / Animating Sand, Mud, and Snow 11

Conference Proceedings, pp. 405–413, ACM SIG-
GRAPH, (1990).

21. G. Miller and A. Pearce, “Globular dynamics: A
connected particle system for animating viscous
fluids”, Computers and Graphics, 13(3), pp. 305–
309 (1989).

22. D. Terzopoulos, J. Platt, and K. Fleischer, “Heat-
ing and melting deformable models (from goop to
glop)”, in Proceedings of Graphics Interface ’89,
pp. 219–226, (1989).

23. R. Měch and P. Prusinkiewicz, “Visual models
of plants interacting with their environment”, in
SIGGRAPH ’96 Conference Proceedings, pp. 397–
410, ACM SIGGRAPH, (1996).

24. J. Dorsey and P. Hanrahan, “Modeling and ren-
dering of metallic patinas”, in SIGGRAPH ’96

Conference Proceedings, pp. 387–396, ACM SIG-
GRAPH, (1996).

25. J. Dorsey, H. K. Pedersen, and P. Hanrahan,
“Flow and changes in appearance”, in SIG-

GRAPH ’96 Conference Proceedings, pp. 411–
420, ACM SIGGRAPH, (1996).

26. J. K. Hodgins, W. L. Wooten, D. C. Brogan, and
J. F. O’Brien, “Animating human athletics”, in
SIGGRAPH ’95 Conference Proceedings, pp. 71–
78, ACM SIGGRAPH, (1995).

27. J. Snyder, “An interactive tool for placing
curved surfaces without interpenetration”, in
SIGGRAPH ’95 Conference Proceedings, pp. 209–
218, ACM SIGGRAPH, (1995).

28. G. Turk, Generating Random Points in Triangles,
vol. I of Graphics Gems, pp. 24–29. New York,
NY: Academic Press, (1990).

© The Eurographics Association 1999


