UCRL-JC-132353
PREPRINT

Fast Polyhedral Cell Sorting for Interactive
Rendering of Unstructured Grids

J. Comba
J.T. Klosowski
N. Max
J.S.B. Mitchell
C.T. Silva
P.L. Williams

This paper was prepared for submittal to the
Eurographics '99
Milan, Italy
September 7-11, 1999

October 30, 1998

This is a preprint of a paper intended for publication in a journal or proceedings.
Since changes may be made before publication, this preprint is made available with
the understanding that it will not be cited or reproduced without the permission of the
author.

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed,
or represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does
not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States
Government or the University of California. The views and opinions of authors expressed herein do
not necessarily state or reflect those of the United States Government or the University of California,
and shall not be used for advertising or product endorsement purposes.

Work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National
Laboratory under Contract W-7405-ENG-48.

EUROGRAPHICS '99 / P. Brunet and R. Scopigno Volume 181999, Number 3
(Guest Editors)

Fast Polyhedral Cell Sorting for Interactive Rendering of
Unstructured Grids

Jodio Comba James T. Klosowski Nelson Ma® Joseph S. B. Mitchéll Claudio T. Silvd Peter L. Williamg*

Abstract

Direct volume rendering based on projective methods works by projecting, in visibility order, the polyhedral cells of a
mesh onto the image plane, and incrementally compositing the cell’s color and opacity into the final image. Crucial to
this method is the computation of a visibility ordering of the cells. If the mesh is “well-behaved” (acyclic and convex),
then the MPVO method of Williams provides a very fast sorting algorithm; however, this method only computes an
approximateordering in general datasets, resulting in visual artifacts when rendered. A recent method of Silva et al.
removed the assumption that the mesh is convex, by means of a sweep algorithm used in conjunction with the MPVO
method; their algorithm is substantially faster than previous exact methods for general meshes.

In this paper we propose a new technique, which we call BSP-XMPVO, which is based on a fast and simple way of
using binary space partitions on the boundary elements of the mesh to augment the ordering produced by MPVO. Our
results are shown to be orders of magnitude better than previous exact methods of sorting cells.

Key Words and Phrases/olume rendering, scientific visualization, finite element methods, depth ordering, volume
visualization, visibility ordering.

1. Introduction based on Steirt al. 19). While approximate solutions pro-
vide reasonable results for “well-behaved” datasets, the arti-
facts they induce increase with the presence of non-convex
boundaries, and “badly-shaped” cells.

Direct volume rendering based on projective methods, such as
Max et al. 12 and Williams?0, works by projecting the polyhe-
dral cells of a mesh onto the image plane, in visibility order,
and incrementally compositing the cell’s color and opacity into Recently, Silvaet al. 17 described XMPVO, a fast sort-

the final image. Projective methods, as opposed to those usinging algorithm based on an extension of the MPVO algorithm.
ray tracing, have the advantage of being able to make extensive They showed it is possible to generalize the MPVO algorithm,
use of graphics hardware, and have the potential of avoiding which exploits the ordering implied by adjacencies within the
aliasing artifacts. mesh, by simply augmenting the DAG created in Phase Il of
the MPVO algorithm. Thus, their technique removes the re-
quirement of the MPVO algorithm that the mesh be convex.
The augmentation involves the use of a sweep plane method
to generate dependencies between external facets of the mesh.
The XMPVO algorithm is orders of magnitude faster than the
algorithm originally proposed by Stekt al. 1. For n cells,

with b boundary facets, XMPVO improves on Stehal. by
dropping the sorting complexity from®(n?) to O(b? + n).
However, the speeds reported in Sibtaal. 17 are still far from

those required to drive current high-performance 3D graphics

Williams’ MPVO method assumes that the mesh is “well-
behaved” (acyclic and convex). For such meshes, it com-
putes a visibility order at interactive rates; however, if this
method is applied to general datasets, it only computes an
approximateordering, resulting in visual artifacts when ren-
dered. Traditionally, there has been a big performance gap be-
tween approximate visibility sorting techniques., based
on Williams’ MPVO algorithm20), and exact solutionse(g,

T stanford University; comba@cs.stanford.edu hardware.

+ IBM T. J. Watson Research Center; jklosow@watson.ibm.com In this paper, we propose a new technique, “BSP-XMPVO”,

§ Lawrence Livermore National Laboratory; max2@IInl.gov which is an order of magnitude faster than that of Sitia

1 University at Stony Brook; jsbm@ams.sunysb.edu al. 17. We get this speed-up by moving the XMPVO view-

Il 1BM T. 3. Watson Research Center; csilva@watson.ibm.com dependent DAG augmentation, into a vigwdependenpre-

** Lawrence Livermore National Laboratory; plw@IInl.gov processing phase, based on constructing an appropriate binary

(© The Eurographics Association and Blackwell Publishers 1999. Published by Blackwell
Publishers, 108 Cowley Road, Oxford OX4 1JF, UK and 350 Main Street, Malden, MA
02148, USA.

Comba et al. / Fast Polyhedral Cell Sorting for Interactive Rendering of Unstructured Grids

space partition (BSP) tree on the set of boundary facets of the
mesh. By carefully utilizing the partial ordering information
implied by the BSP-tree, together with the MPVO ordering,
we are able to achieve an order of magnitude speed-up over
XMPVO.

2. Previous Work

An algorithm, called the “Meshed Polyhedra Visibility Order-
ing” (MPVO) algorithm, for visibility ordering the cells of

an acyclic convex mesh is described by WilliaPsA sim-

ilar algorithm to the MPVO Algorithm was developed inde-
pendently by Max, Hanrahan and Craw#fis Both algorithms
were based on the work of Edelsbrunner described in his paper
on the acyclicity of certain cell complexésThe MPVO algo-
rithm runs in linear time and uses linear storage. Willigths
also described a heuristic, called the MPVONC algorithm,
which sorts the cells of acyclinon-convexmeshes of con-
vex cells,i.e. meshes with cavities and/or voids. This heuris-
tic generates an exact sorting of the cells only ifomundary
anomaliesare present. The MPVONC algorithm, in practice,
is linear in time for most meshes. For some important classes
of meshes¢.qg, rectilinear meshes and Delaunay meshe#

is known that a visibility ordering always exists, with respect
to any viewpoint. If the visibility ordering graph has cycles for

a given viewpoint, then no visibility ordering exists. It is an
important problem to find a small number of “cuts” that parti-
tion the cells so as to eliminate such cycles;%e&eThe binary
space partition (BSP) tree algoritti which is typically used

to depth-sort polygons, is not suitable for visibility ordering
large polyhedral meshes, since the splitting planes can readily

cause an unacceptable increase in the number of polyhedra.

(Paterson and Ya® have shown the a BSP of objects in space
can have quadratic worst-case complexity; while this growth
is typically not experienced in practice, even a constant-factor
increase in the number of cells of the mesh is unacceptable for
large volumetric datasets.) An A-bufféris also not suitable

for visibility ordering large meshes for volume rendering be-

by de Berg, Overmars, and Schwarzkdpfwvho give an al-
gorithm requiring worst-case tim@(n*/3+€) (for any fixed

€ > 0) for determining an ordering or reporting that none exists
(because of a cycle in the “behind” relation). Their algorithm
utilizes a general framework for computing and verifying lin-
ear orders extending implicitly defined binary relations and
it relies on the rather complicated dynamic data structure of
Agarwal and Matosék?, which detects intersections between
line segments in space and “curtains” (shadow surfaces cast by
segments). Although not readily implemented, the theoretical
significance of this work is that it shows that it is possible to
determine, insubquadratic worst-case tim# a linear order-

ing exists, while avoiding the computation of the full behind
relation (which is worst-case quadratic in the number of ob-

jects being ordered).

Karasicket al. 11, building on the earlier work of Edels-
brunner, describe a linear expected time algorithm for sort-
ing the cells of 3DDelaunay mesheghe Delaunay tetrahe-
dralization of some set of discrete points). Their algorithm is
based on sorting the cells by their “powers”. While this ap-
proach is elegant and efficient, many unstructured and curvi-
linear meshes encountered in scientific visualization are not
Delaunay meshes.

3. Preliminaries

We begin with some basic definitions pdlyhedronis a closed
subset of]3 whose boundary consists of a finite collection of
convex polygons Z-faces or facet§ whose union is a con-
nected 2-manifold. Thedgeg1-face$ andvertices(0-face$

of a polyhedron are simply the edges and vertices of the polyg-
onal facets. A convex polyhedron is calleg@ytope A poly-

tope having exactly four vertices (and four triangular facets)
is called asimplex(tetrahedron. A finite setS of polyhedra
forms amesh(or anunstructured gridl if the intersection of
any two polyhedra frong is either empty, a single common
edge, a single common vertex, or a single common facet of
the two polyhedra. The polyhedra of a mesh are referred to as

cause there are too many transparent cells at each pixel, mak-the cells (or 3-face3. We say that celC is adjacentto cellC’

ing memory requirements prohibitive with current hardware.

Steinet al.19 describe an algorithm for visibility ordering an
arbitrary collection of acyclic non-intersecting convex polyhe-
dra. This algorithm runs in tim@(nz) (worst case) fon arbi-
trarily shaped, non-intersecting convex polyhedra with planar
faces, whose visibility ordering does not contain cycles. The

if C andC’ share a common facet. The adjacency relation is
a binary relation on elements &that defines amdjacency
graph

A facet that is incident on only one cell is calledaund-
ary facet We letB denote the set of boundary facetsfA
boundary cellis any cell having a boundary facet. The union

faces of adjacent cells need not be aligned, and the meshesof all boundary facets iB is theboundaryof the mesh. If the

may have disconnected portions. The algorithm is effectively
a 3D generalization of the Newell, Newell and Sancha sort for
polygons?3 14, Williams et al. 21 describe a correction and an
optimization to the original Stein algorithm. Even with the op-
timization, this algorithm does not run in interactive tireqgy.

it requires on the order of 3 minutes to sort 200,000 cells and
15 minutes to sort 1,000,000 cells, on an SGI Power Onyx us-
ing an R10000 194 MHZ CPU. (See the results in Section 5.)
Another related visibility-ordering technique based on Newell,
Newell and Sancha is described by Snyder and Lenyel

Theoretical results on exact visibility ordering are described

boundary of a mesBis also the boundary of the convex hull
of S, thenSis called aconvexmesh; otherwise, it is called a
non-convexmesh. If the cells are all simplicies, then we say
that the mesh isimplicial.

The input to our problem will be a given me&h having
convex cells, but arbitrary boundary. We ¢tedenote the num-
ber of connected components &flf ¢ = 1, the mesh igon-
nectedif ¢ > 1, the mesh islisconnectedWe letn denote the
total number of edges of all polyhedral cells in the mesh. Then,
there areO(n) vertices, edges, facets, and cells. For some of
our discussions, we will be assuming that the input mesh is

(© The Eurographics Association and Blackwell Publishers 1999.

Comba et al. / Fast Polyhedral Cell Sorting for Interactive Rendering of Unstructured Grids

given in a standard data structure for cell complexeg,(a
facet-edge data structuig so that each cell has pointers to its
neighboring (incident) cells, and basic traversals of the bound-
ary edges of facets are also possible by following pointers. If
the raw data does not have this topological information already

encoded in it, then it can be obtained by a preprocessing step,

using basic hashing methods, in worst-case frelogn).

We letv denote the viewpoint and Igt, denote the ray from
v through the pointi. We say that cell€ andC’ areimmedi-
ate neighborswith respect to viewpoint if there exists a ray
p from v that intersect< andC’, and no other celC” € S
has a nonempty intersecti@@{’ N p that appears in between
the segment€ N p andC’ N p alongp. Note that ifC andC’
are adjacent, then they are necessarily immediate neighbors
Further, in a convex mesh, tlomly pairs of cells that are im-
mediate neighbors are those that are adjacent.

A visibility ordering (or depth ordering, <y, of a meshS
from a given viewpointy € 02 is a total (linear) order of%
such that if cellC € Svisually obstructs celC’ € S partially
or completely, thel©’ precede< in the orderingC’ <, C. A
visibility ordering is a linear extension of the bingsghindre-
lation, “<”, in which cell C' is behindcell C (writtenC’ < C)
if and only if C andC’ are immediate neighbors afdat least
partially obstructsC'; i.e, if and only if there exists a rap
from the viewpointv such thatpNC #£ 0, pNC' £ 0, pNC
appears in betweewn and pNC’ alongp, and no other cell
C" intersectsp at a point betweepNC andpNC'. A visi-
bility ordering can be obtained in linear time (by topological
sorting) from the behind relatiofS, <), provided that the di-
rected graph on the set of nodgdefined by(S, <) is acyclic.

If the behind relation induces a directed cycle, then no visi-
bility ordering exists. We assume that our input m&stas a
visibility ordering.

A Binary Space Partitioning tre@GP-tre¢ is a data struc-
ture that represents a hierarchical convex decomposition of a
given space (in our casé]3). See5 1016, Each nodev of a
BSP-treel corresponds to a convex polyhedral regiBty),
of O3; the root node corresponds to all af. Each non-
leaf nodev also corresponds to a planie(v), which parti-
tions P(v) into two subregionsP(vt) = ht(v)nP(v) and
P(v=) =h~(v) NP(v), corresponding to the two childrew;
andv~, of v. Here,h™ (v) (resp.,h™(v)) is the halfspace of
points above (resp., below) plahgv).

Typically, a BSP-tree is built with respect to a given set
of objects €.g, polygons or polyhedra), with the construc-
tion proceeding recursively until some stopping criterion is
met (.9, that the regiorP(v) contains portions of at mo&t
objects, for some integde> 1). Often, then, the partitioning

planes are restricted to be from among those planes that sup-

port (contain) facets of the polyhedral objects; such BSP-trees
are calledauto-partition BSP-trees. Fuchst al. 1© demon-
strated that BSP-trees can be used for visibility ordering a set
of objects (or, more precisely, an ordering of the fragments
into which the objects are cut by the partitioning planes). The
key observation is that the structure of the BSP-tree permits a
simple recursive algorithm for “painting” the object fragments
from back to front: If the viewpoint lies in, say, the positive

(© The Eurographics Association and Blackwell Publishers 1999.

halfspacén™ (v), then we (recursively) paint first the fragments
stored in the leaves of the subtree rootedatthen the object
fragmentsS(v) C h(v), and then (recursively) the fragments
stored in the leaves of the subtree rootedat

4. The BSP-XMPVO Algorithm

The goal of our BSP-XMPVO algorithm is to obtain a valid
visibility ordering of the cells of the mes§ assuming such

an ordering exists. In order to do this efficiently, we build on
the idea of the MPVO method, utilizing the simple-to-compute
partial order induced by the adjacency graph of the mesh. We
augment this partial order with additional dependencies, in-
duced by the boundary facets of the mesh, in order to be able

‘to complete it into a total order. The main idea of the BSP-

XMPVO algorithm is to utilize the BSP-tree of the tof
boundary facets in order to determine these extra dependen-
cies efficiently.

The MPVO algorithm of Williams° works by construct-
ing (in preprocessing) the (undirected) adjacency gfapbf
the meshS, and then, for any given viewpoint determining
the corresponding orientation of each undirected edg@,of
so that the directed edge points fr@@htowards a neighbor-
ing C if C' lies behindC (a test that is simply an evaluation of
the viewpoint with respect to the plane equation for the shared
facet betweei€ andC’). In this case, we writ€' <ap;C, in
order to indicate the dependency, implied by adjacencyChat
must preced€ in a visibility ordering of cells. The resulting
directed graph defines a partial orderirgap) of cells; topo-
logical sorting (in linear time) then produces a total ordering
that yields the desired visibility ordering.

The correctness of the MPVO algorithm depends, however,
on the mesh being connected and convex. In the absence of
these assumptions, there are additional dependencies that ex-
ist among cells oSthat are not captured by the directed ad-
jacency graph. For example, in Figure 1, a two-dimensional
example is given to illustrate some basic principles. There, it
is seen that cell 10 lies behind cell 5, and cell 11 lies behind
cell 10, but neither of these dependencies is implied by the
adjacency relatiorzapy. (Indeed, the cells lie in distinct con-
nected components of the mesh.)

In order to augment the ordering information given by the
directed adjacency graph, we build a BSP-trke,using an
auto-partitioning of the seB of b = |B| boundary facets of
S Specifically, our construction algorithm uses the common
heuristic of selecting a partitioning plane, passing through a
facet ofB, that minimizes the number of elementsRvithin
the regionP(v) that are split. (Our actual implementation does
not examine all possible cuts, but rather selects a small num-
ber .g, 10) of candidate cuts at random, and picks the best
among these.) We I’ denote the set of facet fragments in-
duced byT .

It is known (.9, seel55) that the size of the BSP-tree
(or, equivalently, the numbey’ = |B'| of facet fragments) is
quadratic (D(bz)) in the worst-case; however, in most realis-
tic situations €.g, under assumptions of “fatness” of a set of
objects3), BSP-trees tend to exhibit near-linear complexity.

Comba et al. / Fast Polyhedral Cell Sorting for Interactive Rendering of Unstructured Grids

Viewing direction R

@)

M/A\B
VANVAN
SN
\ A
J/ G/ \F
/

H

(b)

Figure 1: Example of a two-dimensional mesh, with 5 connected components. Dashed lines show the cuts in a BSP-tree, shown on
the right. The viewpoint is assumed to be above and far away, so that the view direction is downward. The BSP-tree has been drawn
so that the right child is explored before the left child, for this particular view direction. Thus, the BSP-tree traversal proceeds in

the order AB,C,...,S.

Thus, we expect thdf = O(b), in practice, and that the con-
struction time forT is also near-linear ibh. Further, we expect
b to be much less than (the total number of cells i), in
practice. (For a regular grid, one expebts- O(n2/3).) Thus,
we expect a very low overhead for the computatioil gboth
in terms of memory and in terms of time.

Note that the BSP-treg¢ is cutting boundary facets into
fragments, but we are specificalfyt partitioning any of the

3-cells of the mesh, as this would cost considerably more both

in terms of time and memaory.

We now describe how the BSP-trde allows us to de-
fine two other types of dependencies among cells.G &
a boundary cell of, having boundary facet< B that lies im-
mediately behindC with respect to the viewpoint (In other
words, any ray fronv throughc passes through the interior of
C before exiting through facet) Let h denote the plane con-
taining facetc and letv be a node ofl that corresponds to
h. (There may be more than one such node; ig split into
fragments.) Thenh cuts the regiorP(v) into two regions,
P(vt) = ht NP(v) andP(v™) = h™ NP(v); without loss of
generality, assume thatc h™, which implies that als@ € h
(sincec lies immediately behin with respect tov). Then,
we define the following types of dependencies:

(a) We say that each boundary fragmentn the boundary of
C defines eBSP-dependendypr cell C, written ¢’ <ggpC.
The meaning of this dependency is that befoi@an be pro-
jected, each of its facet fragments (whether in fronCafr
behindC) must first be “projected.” Facet fragments are also

ordered according to the standard BSP-tree traversal for the

boundary seB; we say that’ <gspc”, for facet fragments

¢ andc”, if ¢’ precedes’ in the BSP-tree traversal (as in
the painter’s algorithm o). In reality, we are not “project-
ing” these facet fragments; rather, we are defining these de-
pendencies so that we obtain implied dependencies among
3-cells.

In our traversal algorithm, at the instant that the last facet
fragment of a boundary cell is projected, we simultaneously
project that 3-cell.

For example, in Figure 1, cell 5 cannot be projected until
its (unique) facet fragment is projected, and, from the BSP-
tree traversal, this will not happen until all facet fragments
in the halfspace below planeA™ have been projected; in
particular, the two facet fragments of cell 10 must both be
projected before the facet fragment of cell 5. This guaran-
tees that cell 10 precedes cell 5 in our ordering, since cell
10 will be projected at the instant that its seconed.(last)
facet fragment is projected.

(b) We say that there is BPC-dependencigetween a 3-cell

C’ and the 3-celC, writtenC’ <ppcC, if C' has been “par-
tially projected” at the time that the BSP traversal algorithm
examines node, and cellC' lies behind cellC with re-
spect to viewpoint. We say thaC' has beerpartially pro-
jectedif at least ongbut not all) of the facet fragments on
the boundary ofZ’ has been projected; thus, by the BSP-
dependencies, we know th@t itself has not yet been pro-
jected, ifitis partially projected, since it cannot be projected
beforeall of its facet fragments have been projected. Our al-
gorithm maintains a list, the “PPC-list”, of the set of cells
that are currently partially projected.

For example, in Figure 1, the boundary fragments of cell 11
on planes F” and “E” are the first two to be projected. At
this point, cell 11 is partially projected and is the sole ele-

(© The Eurographics Association and Blackwell Publishers 1999.

Comba et al. / Fast Polyhedral Cell Sorting for Interactive Rendering of Unstructured Grids

Algorithm BSP-XMPVQtraversal(node vp)
/* The algorithm projects in back-to-front

Algorithm BSP-XMPVQupdatedepnode
/* Updates the dependency counters

Algorithm MPVQ.traverse)
/* Modified MPVO traverse. */

order the part of the mesh for the cells whose faces 1. while (dequéc) != false)

corresponding to BSP tree nodede lie onnodes base plane. */ 2 outpu(C);

with respect to the viewpointp. */ 1. for (i =0;i < numPPGCi++) 3 for (i = 0; i < numFacegC); i++)
1. if (node== NULL) then 2. for (j = 0; j < numCutCellgnode; j++) 4 if arrow(i, C) == INBOUND
2. return; 3. Checkupdateppc.depcount(G;,Cj); 5. continue;
3. if(vpisin front plane) 4. for (i = 0;i < numCutCellgnodg; i++) 6 Ci = neighbo(C, i);
4. BSP-XMPVQtraversalbacknodg); 5. Update PPC(G)); 7 Decremnum.inboundG;);
5. BSP-XMPVQupdatedepnode); 6. for (i=0;i < numCutCellgnodg; i++) 8. if (numinboundC;) == 0) and
6. BSP-XMPVQtraversalfront(nodg; 7. Decrembspdepcoun{(GC); 9. (bspdepcoun(C;) == 0) and
7. else 8. if (num.inboundC;) == 0) and 10. (ppc.depcoun{C;) == 0) and
8. BSP-XMPVQtraversalfront(node; 9. (bspdepcoun(C;) == 0) and 11. (visitedC) == false))
9. BSP-XMPVQupdatedepnode); 10. (ppc.dep.couniC;) == 0) 12. enqueués);
10. BSP-XMPVQtraversalbacknods); 11. enqueués);

12. MPVQ.traverse();
@ (b) (©)

Figure 2: The complete BSP-XMPVO traversal algorithm. The node node of the BSP-tree is being projected. numCutCells(node)
is the number of cells with facets that are on the cutting plane associated with npéeofe of these cells. Its dependency
counts are given by: (i). nurmbound(§), the number of INBOUND arrows remaining (i.e., the numbe& gf;-predecessors);

(ii). bsp.dep.count(G), the number of BSP dependencies (i.e., the numbeggf-predecessors); and (iii). ppdep.count(G), the

number of PPC dependencies (i.e., the numberggic-predecessors). Also, numFaces(C) gives the number of facets of cell C (e.g.,

4, in the case of a tetrahedron), and arrow(i, C) gives the type of the ith “arrow” for cell C (i.e., INBOUND if the neighbor is
behind C, OUTBOUND otherwise). When a cell C is enqueued, it is marked as visited, as indicated by visited(C)P{&le

inserts or deletesi@n the PPC list; €is inserted when it is first visited, and hslpp.count(G) > 1, and it is deleted when it is one

(since it will be decremented to zero). At the time celisGleleted from the PPC, cells that have a dependency on it, are checked
for potential projection with code similar to lines 8-11 in (b).

ment in the PPC-list. Then, as cells 7-10 are considered, cell of each of the three types. Once all of the dependency counters
11 must be considered, as it generates a PPC-dependencyhit zero, an element is projectable, and then updates are made.
this prevents any of cells 7-10 from being projected before See Figure 2.

cell 11 is projected. The possibility that cell 11 generates
a PPC dependency for cell 6 is also considered when we
project the facet on plan@; however, it generates no PPC-
dependency, since cell 11 does not lie behind cell 6, with
respect to the viewpoint.

Note that we compute the PPC dependencies on an as-
needed basis. In order to speed up the test for PPC dependen-
cies, we use a simple bounding sphere test on a candidate pair
of cells, C;,Cj), in order to prune from consideration those
pairs whose corresponding cones are disjoint.

The technical justification for the BSP-XMPVO method
comes from two lemmas:

Note that, while we do not explicitly write the dependence
onv, each of the relationshipsapj, <gsp, and<ppc is de-
pendent on the viewpoint.

Lemma 1 The dependenciesapj, <gsp and<ppc induce a

Our BSP-XMPVO algorithm can be thought of as a means partial ordering on the s&UB'.

of running in lock stepa BSP-tree traversal algorithm (on
boundary facets), together with the MPVO traversal algorithm
of Williams. Another interpretation is that we perform a topo-
logical sort, based on the partial order induced by the three
types of dependenciesapj, <gsp, and<ppc, which induce ity assumed in the behind relation). Thus, a directed cycle, if
a partial ordering on the s&U B’ of 3-cells and facet frag- it exists, must contain edges of tyggssp. Assume that there
ments. As with standard topological sorting, we start by iden- is such a cycle and lef be a facet fragment that corresponds
tifying those elements that have “in-degree” zero — these have to a node in the cycle; in fact, assume thfais thelast such

no dependencies and can be projected immediately. With eachfacet fragment in the BSP-tree ordering given by the traversal.
projection of an element, we remove the dependencies that the(Such a “last” element exists, since the BSP traversal induces

ProofBy definition, if C <apj C' or C <ppc C', thenC is be-
hind C’; thus, a directed cycle could not consist purely of di-
rected edges corresponding<t@apj and<ppc (by the acyclic-

element had on other elements, as given by the relatiaps,
<gsp and <ppc, each of which can be thought of as a di-
rected edge in a graph on the §at B’ of cells and boundary

a partial ordering on facet fragments.) Then, there exists a di-
rected path front’ to some other facet fragmedt (possibly,
¢’ = c) in the cycle, with this path containing a node corre-

facet fragments. Our implementation is based on keeping three sponding to a 3-cell; le€ be the last such 3-cell. But this is a

separate dependency countamarflinbound bspdepcount
and ppc.depcound, which give the number of dependencies

(© The Eurographics Association and Blackwell Publishers 1999.

contradiction, since the only directed edges defined by our de-
pendencies that are directedt of a 3-cell are those that link

Comba et al. / Fast Polyhedral Cell Sorting for Interactive Rendering of Unstructured Grids

the 3-cell to another 3-celk{apj or <ppc). We conclude that
there can be no directed cycle. O

The second lemma asserts that the three dependencies that o
algorithm respects are sufficient for determining a visibility
ordering:

Lemma 2 Any linear ordering that conforms with the depen-
dencies<apj, <gsp and<ppc gives a valid visibility order-
ing of S

Proof Suppose that ce@’ lies behind celC; i.e.,C’' <, C. We
must exhibit a directed path within the directed graph induced
by <apJ, <Bsp and<ppc, fromC’ toC. SinceC’ <, C, there

is a rayp from the viewpointv that intersect€ beforeC'.

If the portion,rr’, of the rayp betweenpnC andpnC' lies
within the union of the cell§, then no boundary effects are
present, and there exists a directed path within the directed
adjacency graph, froi@’ to C, so we are done. Otherwise, the
segmenﬁ exits the mesh and then reenters, at least once. Let
ab denote one such segment that lies outside the mesh,
with a the closer endpoint te. Then,a lies on a boundary
facet fragmentc,, of a cellC; such thatc; <gspCy, andb

lies on a boundary facet fragmeay, of a cellC, such that

Co <gspCy. If, at the time in the traversal that we visit the
node corresponding to plateg that containgy, the cellC; is

in the list of partially projected cells (the PPC-list), then we
know thatC, <ppc C;, establishing the necessary link in the
partial ordering. Otherwise, at the time of visiting the node for
h; the cellC, has already been projected, and therefore@so
(which precedes; in the ordering<gsp.) O

Computational Complexity. In comparing the performance
of our algorithm to XMPVO, which take©(b? + n) time,
where b is the number of cells in the boundary; our technique
takes timeO(bp+ n), wherep = |PP{ (since we need to ex-
amine all elements of the PPC-list each time we update de-

pendencies). The PPC actually changes as the algorithm pro-

generation, BSP-XMPVO consists of just 600 lines of C++
code.
To evaluate the performance of BSP-XMPVO, we ran a

Lh)at’[ery of experiments. We measured basic statistics of the

BSP-tree construction (Table 2) and, of course, the time re-
quired to obtain a visibility sorting of the cells (Table 1).
We have experimentally validated the correctness of our code
by concurrently running the HIAC depth-witness-check code
of Williams et al. 2t during our cell projections. This check
projects the cells in the visibility order determined by our algo-
rithm and determines (by looking at the depth buffer) whether
a cell has been projected out of order.

Because of constraints in machine availability at this time, we
are forced to report timings on two separate machines: the
BSP-XMPVO and MPVONC times are reported on an IBM
RS/6000 43P, with a 333MHz PowerPC 604 processor (this
is a slower processor than the ones available on the high-end
PowerMacs), while all other times are on a single 194 MHz
R10000 CPU of an SGI Power Onyx, as in Siktaal. 17. We
estimate the 43P to be slightly faster than the R10000 (between
10%-30%). We report results on three irregular grid datasets,
ranging in size from roughly 13,000 cells to a mesh of over
240,000 cells.

5.1. BSP-Tree Performance

Our BSP-tree construction method uses a simple heuristic
in an attempt to get reasonably small trees that, in practice,
avoid the known worst-case quadratic behavior. At every node,
we evaluate a small set of randomly chosen candidates, and
choose the cutting plane that minimizes the number of cuts
of the input data. As the number of candidates increases, so
does the BSP tree generation time. We have chosen to use 10
candidates as our default, as this provides us with enough flex-
ibility to avoid cutting many cells, while at the same time is
not overly costly in construction time. Figure 3 shows the ef-
fect of the BSP-tree generation on the boundary facets of the
13,000 cell dataset.

Table 2 summarizes our construction results for all of the

gresses, but an upper bound on its size can be obtained byyaiasets. We feel it contains some interesting data. For in-
counting the boundary cells which are cut by more than one giance there is no direct correlation between the number of
face of the BSP. These are exactly the cells that will be in- boundary faces and the depth of the BSP tree. The depth of
cluded in the PPC. Fortunately, in practice the PPC-list does {ha BSP tree is more related to the complexity of the mesh

not grow to be big €.9, in our experiments reported below, ,ndary ¢.g, non-convexities). Our BSP tree construction
the PPC-list never grew above 0.3%, and averaged about 0.1%;qqrithm is working very well, as can be seen in the last col-

of the elements), Si';‘ce_ most mesh elements tend to be well-\,mn of the table. In the worst case, the number of BSP faces is
shaped and do not “spike in” behind other elements (as ;joes only two times the original number of boundary faces. This is
cell 11in Figure 1). The fact thatis most often less than 0.3% ¢, ther justification of our choice of 10 candidates when con-
of the total numbers of cells, and in general much smaller than structing the trees.

b (which can be 5%, or more of the total cells), makes our gince BSP traversal time is dominated by the number of nodes

algorithm essentially linear in the total number of cells. Fur- 54 not by the depth of the tree (as every node in the tree
ther, our bounding sphere-based test for possible dependen-is yisited during each traversal), we decided to optimize the

cies allows for a qu_ick filtering pf those_ PPC-listelements that ., nstruction for minimizing the number of unnecessary splits,
clearly are not behind the cell in question. which has the side effect of increasing the depth of the tree.

5. Results

The implementation of the BSP-XMPVO method is relatively
straightforward, due to the simplicity of the algorithm. In fact,
exclusive of the MPVO portion of the code, and the BSP-tree

5.2. Visibility Sorting Times

We compare our results with the algorithm of Steiral. 19,
the multi-tiled sort of Williamset al. 21, the XMPVO algo-
rithm of Silvaet al. 17, and MPVONC of Williams?. Table 1

(© The Eurographics Association and Blackwell Publishers 1999.

Comba et al. / Fast Polyhedral Cell Sorting for Interactive Rendering of Unstructured Grids

TSR,

VLR

AéXﬁ?ﬁ}%ﬂ'ﬁé‘
V4

N

LA TavEaY
QST v
SSrrAvavy)
VATV
VAW TAY

o SPS

LA
2 Ko
vavi SVt
ATV
T
%

@ (b) (©

Figure 3: The boundary of the 13,000 cell complex: (a) shows the original boundary facets; (b) and (c) show two views of the
BSP-facets. The BSP cuts are apparent. In the center of (a) and (b), a hole which runs through the center of the mesh can be seen.

No. Cells Stein Sort Multi-Tiled Sort XMPVO MPVONC BSP-XMPVO

13,000 14 sec. 7.2 sec. 3.5 sec. 0.07 sec. 0.37 sec.
190,000 2,880 sec. 162 sec. 25 sec. 0.70 sec. 2.5 sec.
240,000 N/A 475 sec. 48 sec. 0.90 sec. 2.9 sec.

Table 1: Comparative timings, in seconds, for visibility ordering using five methods: (1) the sort reported in SteifPe2lthe
multi-tiled sort of Williams et al?2, (3) the XMPVO algorithm of Silva et a7, (4) the MPVONC algorithm of William&, and

(5) our BSP-XMPVO algorithm. The first three timings were performed on an R10000 CPU of an SGI Power Onyx; MPVONC and
BSP-XMPVO were timed on a 333MHz PowerPC 604. Note that BSP-XMPVO is an order of magnitude faster than XMPVO.

summarizes our sorting times. We see that for all three (irreg- compress regular digital elevation map (DEM) datasets. We

ular) datasets, our BSP-XMPVO algorithm is over an order of are currently exploring this direction, as well as the paralleliza-

magnitude faster than the XMPVO algorithm, and almost as tion of our algorithm.

fast as MPVONC. Compared to the other two approaches, our

method looks even more promising. We can sort about 80,000 References

cells per second. 1. P. K. Agarwal and J. Matsek. Ray shooting and parametric
search.SIAM J. Comput.22(4):794-806, 1993.

6. Conclusion 2. M. de Berg. Ray Shooting, Depth Orders and Hidden Surface
In this paper, we have proposed a fast new method for visibil- Removalvolume 703 oflecture Notes Comput. ScBpringer-

ity ordering unstructured grids. We have achieved an order of Verlag, Berlin, Germany, 1993

magnitude improvement over the most recent improvements 3. M. de Berg. Linear size binary space partitions for fat objects.
of Silva et al. 7. The main innovation was the use of a coor- Proc. 3rd Annu. European Sympos. AlgorithinsCS Vol. 979,
dinated traversal algorithm, based on the MPVO ordering of Springer-Verlag, pp. 252-263, 1995.

Williams 20, together with a carefully augmented traversal of _ M. de Berg, M. Overmars, and O. Schwarzkopf. Computing and
a BSP-tree bas.ed purely on Fhe bOLfnda.ry facets of the mesh, verifying depth orders.SIAM Journal on Computing23:437—
which let to an improvement in running time fro®(b2 + n) 446, 1994,

to O(b|PPQ + n), whereb is substantially larger thai®PQ.

Our BSP-XMPVO method makes approximate visibility- 5. M.de Berg, M. van Kreveld, M.Overmars, and O.Schv_varz_kopf.
ordering techniques substantially less attractive as an option Computatlonlal Ge?metry: Algorithms and - Applications
for rendering irregular grids by projective methods. This helps Springer-Verlag, Berlin, 1997.

to close the gap between rendering regular and irregular grids, 6. L. Carpenter. ~ The A-buffer, an antialiased hidden surface
which historically has shown a disparity of orders of magni- method.Computer Graphigsvol. 18, no. 3, pp. 103-108, 1984.
tude in speed of rendering. It also opens up the possibility of 7. B.Chazelle, H. Edelsbrunner, L. J. Guibas, R. Pollack, R. Seidel,
using irregular grids to approximate volumetric datasets de- M. Sharir, and J. Snoeyink. Counting and cutting cycles of lines

fined on regular grids, in much the same way that triangulated and rods in space Comput. Geom. Theory Appll:305-323,
irregular networks (TINs) have been used to approximate and 1992.

(© The Eurographics Association and Blackwell Publishers 1999.

Comba et al. / Fast Polyhedral Cell Sorting for Interactive Rendering of Unstructured Grids

No. Cells Const. Time BSP Depth b)(No. Bndy Facets K) No. Facet Fragments No. BSP Noded' / b

13,000 3.0 sec. 233 2,760 5,584 4,925 2.02
190,000 6.4 sec. 44 13,516 16,263 283 1.20
240,000 5.8 sec. 43 9,884 14,482 2912 1.46

Table 2: Statistics of BSP-tree construction. Construction time is based on building the BSP-tree of the boundary facets B of the
input data, using 10 random candidate cutting planes at each node. During the construction, some of the b boundary faces are cut,
resulting in 1§ facet fragments. Times computed on an IBM RS/6000 43P with a 333Mhz PowerPC 604.

8. D.P.Dobkin and M. J. Laszlo. Primitives for the manipulation
of three-dimensional subdivisionélgorithmica 4:3-32, 1989.

9. H. Edelsbrunner. An acyclicity theorem for cell complexed in
dimensions.Combinatorica 10:251-260, 1990.

10. H. Fuchs, Z. M. Kedem, and B. Naylor. On visible surface gen-
eration by a priori tree structure€omput. Graph.14(3):124—
133, 1980. Proc. SIGGRAPH '80.

11. M. S. Karasick, D. Lieber, L. R. Nackman, and V. T. Rajan.
Visualization of three-dimensional Delaunay meshgfgjorith-
mica 19(1-2):114-128, September 1997.

12. N. Max, P. Hanrahan, and R. Crawfis. Area and volume coher-
ence for efficient visualization of 3d scalar functioSomput.
Graph, 24(5):27-33, 1990.

13. M. Newell, R. Newell and T. Sancha. Solution to the hidden sur-
face problem.Proc ACM National Conference 972, pp. 443—
450.

14. M. Newell. The utilization of procedure models in digital image
synthesis.Ph.D. Thesis, University of Utah, 1974 (UTEC-CSc-
76-218 and NTIS AD/A 039 008/LL).

15. M. S.Paterson and F. F. Yao. Efficient binary space partitions for
hidden-surface removal and solid modelinDiscrete Comput.
Geom, 5:485-503, 1990.

16. H. Samet. Spatial Data Structures: Quadtrees, Octrees, and
Other Hierarchical Methods Addison-Wesley, Reading, MA,
1989.

17. C.T. Silva, J. S. B. Mitchell, and P. Williams. An Exact Inter-
active Time Visibility Ordering Algorithm for Polyhedral Cell
Complexes. ACM Symposium on Volume Visualizatigrages
87-94. October 1998.

18. J. Snyder and J. Lengyel. Visibility Sorting and Compositing
Without Splitting for Image Layer Decomposition. Proc. SIG-
GRAPH '98, pp. 219-230, 1998.

19. C. Stein, B. Becker, and N. Max. Sorting and hardware assisted
rendering for volume visualizatiorl994 Symposium on Volume
Visualization pages 83-90. ACM SIGGRAPH, October 1994.

20. P. L. Williams. Visibility Ordering Meshed PolyhedrddCM
Transactions on Graphi¢wvol. 11, no. 2, 1992.

21. P.L.Williams, N. Max, and C. Stein. A high accuracy volume
renderer for unstructured dat&EE Trans. on Visualization and
Computer Graphicsvol. 4, no. 1, pp. 1-18, March 1998.

(© The Eurographics Association and Blackwell Publishers 1999.

Comba et al. / Fast Polyhedral Cell Sorting for Interactive Rendering of Unstructured Grids

Figure 4: Image computed with BSP-XMPVO of a 240,000-cell complex.

Figure 5: Image computed with BSP-XMPVO of a 190,000-cell complex.

Figure 6: Image computed with BSP-XMPVO of a 13,000-cell complex.

(© The Eurographics Association and Blackwell Publishers 1999.

