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Abstract

In this paper, we present an integration framework for heterogeneous motion generators. The objective is

to outline issues that are currently easily solved in professional post-processing systems used in film and

game production but which cannot be transposed as is to real-time systems with autonomous agents. We

summarise our approach for articulated agent-modelling and their animation by combining heterogeneous

motion generators, such as real-time motion capturing, key-framing, inverse kinematics, procedural walking.

We propose an agent/action-oriented framework. Activity properties such as action simultaneity and motion

blending, spatial coherence, motion-flow update schemes, agent attachments, and location corrections, are the

main topics handled by our generic animation framework. Numerous examples throughout the paper illustrate

our approach and outline encountered problems and solutions or open research directions.

1. Introduction

Real-time synthetic character animation as needed in

virtual reality applications, is still a challenge for com-

puter graphics scientists. Numerous animation algo-

rithms can be found in literature, but they all suffer

more or less from being specifically designed for one

type of tasks, such as locomotion11, inverse kinematics

or dynamics. Although they generally produce high-

quality animations, we state that they are of limited use

if they cannot be combined with other motion gener-

ators, especially if real-time applications are targeted.

Combining motion generators8, 10 is not trivial, because

each motion generator has specific requirements con-

cerning initial, run-time and termination states13, such

as posture, geometry, support planes, inter-agent links.

Additionally the composition of motions itself gener-

ates a whole new set of animation artefacts, especially

transition15, location and collision problems. Ref. 14

describes a system that integrates motions and be-

haviours but the main objective is the script language

allowing authors to control the animation.

In this paper, we briefly present our approach to

real-time character modelling and then focus on issues

resulting from the need of a generic and open plug-

in architecture for motion generators. The first section

presents our modelling approach for articulated char-

acters. Section 3 presents an overview of the animation

framework and introduces agent and action concepts.

Section 4 focuses on problems resulting from motion

mixing especially at the end-effector level. The paper

terminates with a conclusion on the presented and on-

going work.

2. Modelling Humans

In order to preserve the mobility of a human skeleton

in a body model, we have to handle a large number

of degrees of freedom (DOF), around 40–80, excluding

hands and feet. Currently, our model has 68 DOF for

the main skeleton (Figure 1). It is a hierarchical structure

of nodes. A node is either instantiated with a one-DOF

joint, a six-DOF joint, a geometric entity or a neutral

type4.

Each node corresponds to a local reference frame that

is dependent on its parent-node transformations. For

example, increasing the shoulder joint’s flexion DOF

implies that subsequent child nodes (the arm, the fore-

arm and the hand) move accordingly, i.e. the arm is

lifted to the front. The special order of the nodes in-
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Figure 1: Samples of humanoid body representations.
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Figure 2: Node topology and motion-flow scheme of a

skeleton model hierarchy.

side the skeleton hierarchy pre-defines the motion flow.

By default, the motion flow is evaluated in a top-down

approach, similarly to the topological tree structure: the

parent nodes are evaluated prior to their child nodes

(Figure 2).

In Section 4.2 we discuss issues of changing the motion

flow in order to satisfy body support constraints more

easily.

At the terminal nodes of the skeleton structure, we

attach geometric primitives such as spheres, cubes, cylin-

ders, or polygonal objects. They serve either for display

purposes (Figure 1), or for computation facilities such as

collision detection. Neutral type nodes serve for hierar-

chy organisation and inserting static translation and/or

rotation offsets between a root node and a sub-tree.

3. Animating Humans

3.1. Motion Generators

We define a motion generator as an algorithm that, at

each time step, generates a set of DOF values. Many

different types of motion generators are available in

our system: keyframing, live motion capturing, proce-

dural walking, heuristic grasping, physics based, inverse

kinematics and inverse kinetics. The reason for creating

highly specialised motion generators is that most mo-

tions require specific parameterisations in order to pro-

duce realistic and believable animations. For example,

‘walking’ is best done with a procedural approach due

to the numerous customisation possibilities. Real-time

human animation for virtual reality applications requires

accurate motion capture12. Object grasping asks for in-

verse kinematics or inverse kinetics7 if the body has to

maintain balance.

However, creating a set of specific motion generators

raises a software integration problem. As each motion

generator has its proprietary interface and its own set

of adjustable parameters, it is difficult to combine the

generated motions. We propose a single meta-controller

capable of motion mixing, sequencing and synchronisa-

tion – without any dependency to the motion generators’

specific interfaces. Another objective is an easy exten-

sibility of the motion repertoire by programmers that

ignore the framework’s kernel implementation and that

are not allowed to recompile the core library.

3.2. Agents and Actions

We encapsulate each motion generator as a Specialised

Action within a generic model interface (Figure 3). This

is a key issue for clearly delimiting the system core

from the actual motion generators. Basically, we de-

fine three entities: Agent, Action and Specialised Action.

We also distinguish four types of users: Action Provider

(AP), Core Developer (CD), Application Creator (AC)

and End User (EU). In the following section, we briefly

summarise those concepts; for details on action transi-

tions and priorities, please refer to6.

First of all, we define an agent as an encapsulation

of the character’s articulated skeleton model (2). As our

research interests mainly focus on human animation, we

most often use humanoid agents. However, an agent

can be any arbitrary rigid or articulated object. Agents

are animated by the means of actions. An action can

be understood as a generic virtual motion generator

-‘virtual’ because it does not generate any motion infor-

mation: it only imports the general functionality, such

as ‘Start’, ‘Execute’ and ‘Stop’ commands, from a spe-

cific motion generator. Each agent instantiates its own

set of actions. Some actions are specifically designed

for humanoid agents such as walking, others apply to

object agents only, and still others can be applied indif-

ferently to humanoid and object agents, such as ‘falling

down’ due to gravity. The agent’s animation basically

consists in a sequence of start-execute-stop action com-

mands. An action is linked to a specific motion genera-

tor via a specialised action. A specialised action imports

high-level tuning functions for the underlying motion

generator. Specialised actions are also responsible for

standardising the access to the agent structure. Indeed,

a major objective of the specialised action is to prevent

direct access to the agent’s DOF by motion generators

(Section 3.3).

Action Providers propose motion generators to be

plugged into the animation library. The motion genera-
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Figure 3: Agentlib framework and user categories.

tor can be developed independently but the associated

specialised action has to be library-compliant in order

to function properly with existing actions6. Then all

features of the library’s motion controller unit become

instantly available, without any core compilation. Note

that simple motion generators can be directly imple-

mented inside a specialised action: for example ‘nod-

ding the head’ or ‘spinning around an axis’ requires only

small software developments. Only APs are allowed to

modify the source code of the motion generator and the

associated specialised action. Library Core Developers

have access to the source code of the agent, action and

specialised action modules. As the animation library is

based on an action plug-and-play paradigm, CDs can

afford ignoring the motion generators’ implementation.

Application Creators’ access is limited to the module

interfaces. They program at a conceptually higher level

such as behaviours, interaction and autonomy. The last

category of users, are the End Users. They interact with

the application either via a graphical and/or text in-

terface or by more sophisticated means such as virtual

reality equipment9.

3.3. Action Simultaneity

Realistic character animation requires more than the

performance of an action sequence (Figure 4). Human

actions most often perform in parallel or, at least, over-

lap in time (Figure 5), for example giving a phone call

with a mobile phone while walking. Simultaneous ac-

tions are not necessarily synchronized. They have their

own life cycle, from activation to de-activation, depend-

ing on the Application Creator’s desired semantic: the

phone call might finish much earlier than the walk or

vice versa.

Unpredictable activation and de-activation requests

for an arbitrary number of actions prevent from pre-

t i m e

a c t i v i t y

a c t i o n i + 1 a c t i o n i + 2a c t i o n i

Figure 4: Sequential action performances.
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Figure 5: Parallel action performances.

defining a set of motion combinations as done in most

of the games. During the DOF-conflict resolution we

need a blending algorithm. Ref. 15 describes a system for

creating transitions of motion units in a semi-automatic

way, over the entire transition time interval. However,

the employed optimization process appears to be in-

compatible with real-time constraints and unsuitable for

free body motion. Other blending algorithms use DOF

frequency analyses3, 16 or motion warping techniques17.

The objective of these approaches are the tranformation

or creation of motions from an available set of unit mo-

tions. Frequency analyses generally require the knowl-

edge of the entire DOF functions, but in a dynamic

real-time context the future of DOF evolutions is not

known a priori. Motion warping is rather an interactive

off-line process where an animator creates new motions

by adjusting some parameters or defining constraints.

In our context, we are primarly interested in automatic

transition generations rather than semi-automatic mo-

c© The Eurographics Association and Blackwell Publishers Ltd 2000



234 Emering, Boulic, Molet, Thalmann / Activity Tuning

Body parts Number of DOF

BODY HEAD 3

BODY NECK 6

BODY THORAX 5

BODY ABDOMEN 5

BODY PELVIS 3

BODY L THIGH 6

BODY R THIGH 6

BODY L LEG 2

BODY R LEG 2

BODY L FOOT 4

BODY R FOOT 4

BODY L U ARM 7

BODY R U ARM 7

BODY L L ARM 2

BODY R L ARM 2

BODY L FIST 2

BODY R FIST 2

BODY L HAND 30

BODY R HAND 30

Table 1: Body parts.

tion generation. We choose a generic meta-motion con-

troller which solves simultaneous DOF-update conflicts

with a weight and priority mechanism.

Testing for DOF-update conflicts can be speeded up if

each action defines a minimal set of required DOF which

can be quickly compared for intersections. We divide the

body model into nineteen body parts (Table 1).

At creation, each action fixes its minimal set of re-

quired body parts. During action-activation, the action’s

body parts are compared with the body parts already

in use by competing actions. In case of intersections, we

either inhibit the activation (this is the default mode) or

we give a higher priority to the new action and generate

a motion transition through the meta-motion controller

(Section 3.4) on the intersecting body parts.

3.4. Action Mixing

The action blending is performed according to Equation

1. (Table 2) shows some results of blending two actions’

DOF-contributions.

Equation 1 is basically composed of two expressions

representing the following two action mixing modes:

blended and added mode. The action weight can be any

function of time whose value range is normalised to [0.0,

1.0]. We currently use cubic-step functions because of

symmetry and continuity issues (Table 2).
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Table 2: a) Weight functions of two action-contributions

for a same DOF. b) Sinusoid action-contributions and

blended result for a same DOF.
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Equation 1: Motion mixing for one DOF, where

I number of actions that perform

in blended mode (I ¿= 0)

J number of actions that perform

in added mode (J ¿= 0)

k is a time index

θ is the current DOF value at time

k

θkp is the DOF value of the pth con-

tributing action at time k

ωk
p is the DOF weighting function of

the pth contributing action.

• Blended Mode

In the default mode, the Blended Mode, the current

motion is smoothly blended with the newly activated

action. For each DOF, we compute a weighted sum

of the actions’ contributing DOF values. We associate

a weight to each action-controlled DOF. A weight

is a value ranging from zero to one. It modulates

the magnitude of the DOF contribution in the final

motion. When an action is activated, a desired weight

and duration is specified. The actions’ effective weights

evolve according to a cubic function, until the desired

weights are reached (Figure 6).

When several actions try to simultaneously update a
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Figure 6: Some actions’ DOF-weight evolution.

same DOF, all associated effective weights evolve such

that their sum constantly equals 1.0.

However, there are two exceptions to this constraint:

first, when one, or several actions are activated while

no other actions are active, and second, when all ac-

tive actions are de-activated. In these situations there

is a transition phase during which the sum of the

actions’ effective DOF weights tend towards one or

zero respectively.

Note that the blended mode expression of Equation 1

can be simplified when at least one action is already

fully active:
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Equation 2: DOF-blending for at least one

fully active action.

We stress here that the weight mechanism is ex-

clusively dedicated to blending purposes, despite its

impact on the contributing action amplifications. In

other terms, if an AC wants to modulate the magni-

tude of an action, the AP is invited to foresee such a

feature at the specialised action level. For illustration,

consider a ‘walk’ action: although the action weight

would make an agent walk more or less fast, it is

essential to include a speed regulator in the algorithm

instead of alienating the blending weights.

• Added Mode

In this mode, the contributions of newly activated ac-

tions are added to the current motion. This mode is

required for actions such as breathing or fidgeting.

• Matrix Blending

For the global positioning and orientation we need

to blend homogenous matrices. In our human mod-

els, the global location matrix is situated at the root

c u r r e n t

t r a n s f o r m a t i o n  q k

r e f e r e n c e

f r a m e

c o n t r i b u t i o n

t r a n s f o r m a t i o n  q i
k

( q i
k  -  q k )

Figure 7: Motion blending of homogenous matrices.

node of the hierarchy, the Global Motion (GM) node.

An homogenous matrix represents a frame location

relative to a given reference frame (Figure 7). First,

we compute the delta transformations between the

current matrix and the matrix of the ith contributing

motion generator (Figure 7). The rotation matrix is

converted to an equivalent axis-vector representation:

a vector representing the rotation axis and whose

norm is the rotation angle around this axis. By ac-

counting previous angle values, we extend the angle

range from [0, 2π] to new boundaries [−∞, +∞] in

order to avoid discontinuity problems. The rotation

angle is scaled by the current weight and the axis-

vector is converted back to a matrix. All contributing

matrices are multiplied together in order to produce

the final location matrix. As matrix multiplications

are not commutative, the order of the multiplications

must always be the same.

• Scope

The blending mechanism works correctly only if the

actions do not directly update the agent’s skeleton

posture. The posture updates have to be co-ordinated

according to Equation 1: an animation control unit

attached to the agent is responsible for it. To ensure

that the actions’ underlying motion generators do not

have write permission on the skeleton, we introduce

the concept of scope. A scope is a special buffer that
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f l o o r
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Figure 8: Top view showing the desired agent motion con-

tinuity. It shows the reference frame, the environment floor

and the displacements of one agent. The agent starts mov-

ing at point S, for example by using a walk action. At a

given time, it arrives at point C and activates a keyframe

action. However the keyframe action has been recorded

with absolute location values. If we naı̈vely apply the ac-

tion blending equation, the agent will slide from point C

to point A and continues its displacements in direction of

point B. In general, this doesn’t correspond to the desired

motion effect. We would rather like the agent to start play-

ing the keyframe at point C and continue moving in the

direction of point B’.

offers memory space for each DOF that an action

desires to update. The actions’ scope is declared in the

action interface. The definition of each scope is the

duty of the specialised action, alone to know the body

parts and/or DOF used by the underlying motion

generator (Figure 3). The scope also maintains the

effective and desired weights associated to each DOF.

4. Animation Fine-Tuning

4.1. Spatial Coherence

An action produces a skeleton posture at each animation

frame. A posture consists either of absolute or incremen-

tal DOF angle values. We choose absolute angle values

and absolute agent-positioning at the specialised-action

level, as reflected in Equation 1. Whenever two actions

have DOF-update conflicts, the blending mechansim

computes weighted relative contributions. Concerning

agent positioning, we have to distinguish several cases

because we cannot simply combine them in order to

generate a final agent location. In the Default mode,

an agent will slide from its current location to the

action’s absolute location-contribution. The problem is

illustrated in Figure 8.

A first proposal is called the Offset Adjust mode (Fig-

ure 9). It consists in computing an initial correction ma-

trix in order to annihilate the offset between the agent’s

current location and the action’s location-contribution.

All subsequent action location-contributions are ad-

o f f s e t
i n v e r s e

f l o o r

z

x

S

a c t i o n i + 2

a c t i o n i + 3 l o c a t i o n

e r r o r  ! !1
2

3

4

1 2
3 4

Figure 9: Location Offset Adjust mode. 1) Activate

actioni+2 and compute offset inverse transformation for

the location correction. 2) Perform actioni+2 and apply

the location correction. 3) Activate and perform actioni+3,

which modifies the agent location. Actioni+3 looses the

agent location control because actioni+3 has the higher

priority. 4) Actioni+3 terminates and actioni+2 regains

control of the agent location. However the agent’s location

has been changed according to the influence of actioni+3.

The initial offset-inverse matrix is invalid now, therefore

the agent slides in order to re-integrate the agent position

and location as adopted in 2).

justed with this correction matrix. The Offset Adjust

mode is straightforward and requires only one addi-

tional matrix multiplication per iteration.

However, it fails in the frequent case where an action

B is activated after an action A and B terminates before

the end of action A (Figure 10): actioni+2 and actioni+3.

At time tk we compute a location correction matrix

for actioni+2. At time tk+1, actioni+3 is activated and

modifies the agent’s location. Therefore, when actioni+3

terminates at time tk+2, the location correction matrix

of actioni+2 is not up to date any more. The motion re-

sults again in an undesired location drift. Of course, one

can detect all action activation and termination phases

and re-compute the correction matrices, but we pro-

pose a uniform approach, called the Dynamic Adjust

mode (Figure 10). We explicitly transform the absolute

location data of the action’s contribution into relative

location data. If subsequently applied to all actions, this

solution works fine for any action activation configura-

tions. The price to pay is a matrix inversion and two

matrix multiplication per animation frame.
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Figure 10: Location Dynamic Adjust mode. 1) Activate

actioni+2. 2) At each iteration: compute relative loca-

tion data for actioni+2 and apply it. 3) Activate and

perform actioni+3, which modifies the agent location. 4)

Actioni+3 terminates and actioni+2 regains control of the

agent location. As we compute incremental location data

for actioni+2, the agent’s location is coherent.

Spatial coherence enforcement as presented with the

Offset and the Dynamic modes, guarantees a continuous

animation without agent sliding. However, these modes

impact on the agent controllability. For example con-

sider a ’restaurant’ scenario where a waiter-agent has

a set of pre-defined absolute motions such that table

collisions are successfully avoided. In the context of the

Offset and the Dynamic modes, the pre-defined motions

can be seamlessly concatenated, but the dynamic trans-

formation of the absolute motions into relative motions

might violate the table-collision avoidance constraint.

Due to the transformation, the agent’s absolute position

is not easily controlled any more. In contrast, the De-

fault mode allows to play the pre-defined motions just as

they were designed. However, the motion-concatenation

might induce agent sliding. Agent-sliding can be avoided

if the pre-defined motions are specifically designed: the

paradigm is comparable to ’tileable texture patterns’: the

final phase of a first motion can be seamlessly appended

to the intial phase of a second motion. The benefit is an

exact absolute agent location, known at any time.

4.2. Motion Flow Scheme

Each node of the skeleton model maintains ‘direct’ and

‘inverse’ transformations relative to its parent node and

relative to the global reference frame. ‘Direct’ and ‘in-

a) b) c)

Table 3: a) The agent is waiting in its initial position: it

is ready to start its gymnastics exercise. The gymnastics

animation is a pre-recorded sequence read from a file and

played back in real-time. The sequence has been recorded

with a magnetic motion capture device with 12 sensors. b)

The agent performs its gymnastics. The spine base is the

motion flow root node, therefore it is not guaranteed that

the hand stays fixed on the horizontal bar. c) The agent

performs its gymnastics again. This time, the right hand is

the motion flow root node: the hand necessarily remains

fixed on the horizontal bar.

verse’ transformation matrices are grouped inside a sin-

gle structure, the DIT (Direct-Inverse-Transformation)

(Figure 1).

The update procedure of each node’s global DIT de-

pends on the topology of the skeleton model. By default,

we use a top-down update approach: the skeleton’s tree

root node is updated first, then its children, their subse-

quent children and so on (Default Motion Flow Update

Scheme). The entire DIT update procedure is called the

Motion Flow Scheme (MFS). The MFS has always a

root node, in our human body model it is the spine

base node. By default, the spine base node is both the

topological and MFS root.

As the spine base node spawns all body limbs, the

positioning of the spine base in 3D space is equivalent

to positioning the whole body in space. We position the

body by updating one of the spine base’s parent-node,

the 6-DOF ‘Global-Motion’ (GM) node. This method is

reasonable for most actions such as walking or jumping.

However, sometimes it is preferable to position the body

by an end effector - hands, feet and head are considered

end effectors.

An example is an agent doing its daily gymnastics

exercises with a horizontal bar: the right hand is posi-

tioned at the bar and all body limbs move relative to

that hand. Doing this, requires switching from the de-

fault MFS root (Figure 3) to the hand node. A similar

formulation to the MFS problem is known as re-rooting

transformation as described in1.
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W o r l d
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A P   =  I n t e r m e d i a t e  n o d e

P     =  P a r e n t  n o d e  o f  S B

S B   =  S p i n e  B a s e

N     =  T e r m i n a l  n o d e

t o p o l o g i c a l  l i n k

n o d e

M F S  d i r e c t  
t r a n s f o r m a t i o n

Figure 11: Default Motion Flow Update Scheme.

. . .. . .

  S B

   N

. . .

    P

W o r l d
 G M

 A P

Figure 12: Modified Motion update Flow Scheme, with an

end effector as motion root.

From a conceptual point of view, we reassign the DIT

update flow in the hierarchy: we cut the flow after the

GM node and redirect it through the end effector node.

The end effector node, which previously was a terminal

node in the MFS, now becomes a motion source node.

The update flow proceeds to the topological parent node

of the end effector’s node, to its child nodes and so on

(Figure 11) and (Figure 12).

Changing the default MFS requires the creation of

an additional 6-DOF node in the hierarchy. This node

stores the DIT between the new MFS root node and

its parent, which necessarily differs from the topological

parent. This additional node also allows the specifica-

tion of a local DIT in order to position the new MFS

root relative to its MFS parent. We call this approach,

the topological MFS change method (tMFS) because it

modifies the model hierarchy.

In the context of our motion integration framework,

the tMFS approach is inadequate for the following two

reasons. First, actions are not allowed to modify the

skeleton hierarchy, especially the creation of an addi-

tional node in the hierarchy tree is not tolerated (Sec-

tion 3.3). Second, and this is far more critical, we cannot

handle the situation where two concurrently performing

actions define each a proprietary MFS. Due to the topo-

logical impact of the MFS modification, it is impossible

. . .. . .

   N

  S B

. . .

    P

   V

W o r l d
 G M

 A P

Figure 13: Simulation of a modified Motion Flow Scheme

by introducing a virtual node and reporting its effects up

to the Global Motion node.

to define a reasonable compromise. For instance, sup-

pose that an action A defines a MFS with the left foot

as motion root node: the right foot motion is relative to

the left foot. Now, an action B defines an MFS with the

right foot as motion root. Action B is activated while

action A is still performing. The result is a circular de-

pendency in the DIT update procedure: the right foot

motion depends on the left foot motion and vice versa.

The question then is how to achieve a MFS mod-

ification without impact on the skeleton model? The

answer is based on one major observation: changing

the MFS does not modify the skeleton posture. For a

given set of DOF values, the MFS only alters the global

position and orientation of the body as illustrated in

(Table 3). Both sequences only differ by a global ro-

tation/translation transformation applied to the body.

Therefore, we can simulate the MFS (sMFS) concept by

computing compensating matrix-contributions for the

GM node. The following equations briefly outline the

sMFS matrix computations. We temporarily introduce

a virtual node V at the place where the motion-flow link

is cut, and then report the virtual node’s value up to the

GM node (Algorithm 1).

Note that the sMFS approach successfully avoids the

topological modifications of the agent’s skeleton model,

but it does not solve the problem of concurrent actions

asking for distinct MFS. In such a case, a priority has

to be given to one of the actions. We suggest that the

most recently activated action controls the MFS choice.

If the new MFS differs from the current one, the motion

meta-controller switches in an abrupt way to the new

MFS. A smooth transition between MFS is technically

feasible, by a fade-in fade-out paradigm of the GM delta

contributions, however real-life situations corresponding

to such a transition seem to be less frequent. Indeed MFS

changes are mostly used when an agent moves relative

to an end effector or the spine base.
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Step 1 We start with a default body skeleton

model (Figure 11). The current motion

flow starts at GM, goes through the nodes

P and SB and ends at node N (Figure 3b).

We update the hierarchy with all DOF-

value contributions.

Step 2 We want to redirect the motion flow from

the node P through node N and propagate

it upwards in the tree (Figure 12) (Figure

3c). This invalidates the current DIT be-

tween node P and SB. We temporarily

introduce a virtual node V as illustrated

in (Figure 13). We compute the new ma-

trix transformation, MV , between node P

and SB, where W is the world reference

frame and aM
V
b is the matrix transforma-

tion from a to b in the hierarchy contain-

ing V:

MV
V =P M

V
N ·N MV

SB

Step 3 Now we report the V-node’s transforma-

tion as a delta contribution to the GM

node (Figure 11). The equations are based

on the following equivalence:

WMSB with V =

WMSB without V but GM scaled by ∆

⇔ WM
V
SB =W MSB

⇔ WM
V
GM ·GMMV

P ·MV
V =W MGM ·∆·APMSB

⇔ GMM
V
P ·MV

V = ∆ ·AP MSB

⇔ ∆ =GM MV
P ·MV

V ·SB MAP

as V is temporary, SBMAP is equal to

PM
V
AP :

∆ =GM MV
P ·MV

V ·P MV
AP

Note that, if the GM-node is a direct par-

ent node of the SB-node, the transforma-

tion matrix ∆ is simply equal to MV
V .

Algorithm 1: Computation of simulated Motion Flow

Scheme.

Finally, we mention a functional difference between

the tMFS and the sMFS when we choose an arbitrary

internal node as MFS root in the model hierarchy, for

example the right shoulder twist node as MFS root as

shown in (Figure 4c) and (Figure 4d). For the tMFS, this

may result in skeleton dislocations (Figure 4c) because

the hierarchy is split into two independently updated

sub-trees. For the sMFS approach skeleton, dislocations

are impossible (Figure 4d) because of the absence of

topological impacts. However the computed GM cor-

rections equally affect both sub-trees of such an sMFS,

that is the body moves in order to stay connected to

the arm model sub-tree (Figure 4d). Note that overlap-

ping motions with two separate roots could possibly be

a) b)

c) d)

Table 4: a) The test animation sequence with the default

MFS. b) The left hand as tMFS (or sMFS) effector, the

spine base node as MFS root: both motions are equivalent.

c) The right hand as tMFS effector, right shoulder twist

node as tMFS root: the arm disconnects from the body.

d) The right hand as sMFS effector; right shoulder twist

node as sMFS root: the arm stays connected, but the body

moves.

handled as multi-point constraints with a root/effector

approach such as inverse kinematics.

4.3. Agent Attachment

Agents can be either complex articulated structures such

as humanoids, or simple objects. Behavioural animation

often requires agents to be attached to other agents.

The attached agent, or passive agent, looses the control

of its spatial location, independently of its currently

performing actions. The active agent is the one which

decides of attaching another agent to itself.

For example, a human agent grasps a balloon agent

and walks away with it (Figure 5a). As soon as the

humanoid reaches the balloon, possibly by applying an

inverse kinematics or a grasping action, we attach the

balloon to the hand. From here on, the distance and

orientation of the balloon remains constant relative to

the agent. In order to model the relative mobility of

the balloon to the agent, the balloon model can have

extra animation nodes. We can reverse the role of active

and passive agent (Figure 5b). The choice of the active

and passive agents depends on which agent is supposed

to control the other one - is the human carrying the

balloon or is the balloon lifting the human into the
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a) b) c)

Table 5: a) A balloon attached to the humanoid’s hand.

b) A human agent attached to a balloon. c) A balloon

attached to a box that is attached to the humanoid’s hands.

Figure 14: Floor intersections, due to sequential activation

of walk sequences.

air? Attachments and detachments can be dynamically

specified. They can be sequenced such that the roles of

the active and passive agents are reversed, for example

an active human agent carries a passive balloon agent

(Figure 5a), but soon the balloon becomes an active

agent and lifts, the now passive human agent, into the

air (Figure 5b). By extension, any agent can be active

and passive at the same time, e.g. a box attaches a

balloon and is attached to a humanoid (Figure 5c).

4.4. Position Corrections

As we apply the motion blending mechanism to the

body’s position DOF, we sometimes get unwanted ani-

mation artefacts, such as a body lifting of the floor or,

on contrary, sinking below (Figure 14).

Indeed the blending equation ignores any motion con-

text parameters such as velocity, acceleration, gravity,

amplitude, period or phase. In consequence, the conti-

nuity of these parameters is not guaranteed during the

animation. There are three solutions:

First, one can use an automatic action-initialisation

procedure in order to ensure motion parameter conti-

nuity. During the action initialisation phase, the action

senses the agent’s current state and adjusts its motion

parameters accordingly. This solution, although concep-

tually attractive, requires a general-purpose method for

parameter extraction of arbitrary motions, which is non-

trivial. The concept of such parameter extraction could

be inspired by approaches as presented in16.

The second solution for floor contact enforcement

consists in activating a kind of ‘reset’ action that re-

adjusts the agent position. This action is activated when-

ever floor contacts are likely to appear, typically when a

lot of body-displacements happen during animation. If

potential floor contacts are difficult to predict, the reset

action can be consequently activated prior to each new

action. However, inserting an action with the objective

of merely correcting the visual aspect, is generally not

satisfactory: action sequences should exclusively depend

on the animator’s requirements, not on technical prob-

lems. Besides the conceptual problems, the ‘reset’ method

suffers from severe side effects relative to currently active

actions: the final animation is altered due to the pres-

ence of the reset action. During the motion-blending

phase, the reset action receives the control of the loca-

tion matrix whereas currently performing actions loose

it. Thus the presence of the reset actions influences the

global animation.

The third solution to the floor contact enforcement

consists in working at the Agent level rather than the

Action level. It is performed at the end of the mo-

tion blending process. This way the correction proce-

dure limits its impact to state-dependent actions. State-

dependent actions refer to the agent’s current state in

order to compute the state for the next time step. Due to

their incremental nature, they will notice the correction

previously applied and intrinsically take it into account

in their own motion generation. Possible approaches

are: correcting only the body location, correcting the

location of effectors violating the floor constraint with

inverse kinematics as in5, or a combination of both. We

present here the first approach because it is produces

reasonably good results while being computationally in-

teresting.

The location correction works as follows: the body

position is adjusted such that at any time, one foot at

least touches the floor and none of the feet ever drop

below the floor. The correction consists in adding a

vertical translation to the agent’s location matrix.

In order to compute the translation value, we evaluate

foot constraints at each iteration of the agent animation,

after the action-blending step. We define a virtual sen-

sor at strategic foot regions such as the toes, the heel

or the foot centre and compute their distance relative

to the floor. Increasing the number of virtual sensors

improves the accuracy of foot/floor intersections but it

also complicates the computation of the agent position

corrections. For example, with a single sensor at the

middle of the foot, floor intersections such as e) to h),

cannot be detected and are therefore not corrected.
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a) b) c) d)

e) f) g) h)

Table 6: Easily detectable foot position configurations rel-

ative to the floor. a) Lateral foot position is correct. b)

Frontal foot position is correct. c) Foot floats above the

floor. d) Foot intersects with the floor. e) Heel intersects

with the floor. f) Toes intersect with the floor. g) Lateral

foot/floor intersection. h) Lateral foot/floor intersection.

Figure 15: Walking with vertical agent location correc-

tions for floor contact enforcement.

Especially when a highly flexible foot model is used,

we have to use more sensors in order to get sufficiently

accurate floor intersections. Currently, we use two sen-

sors per foot, at the heel and at the toes. So the situations

illustrated in Table 6g) and Table 6h) are not corrected.

The floor is specified as a plane defined by a reference

point and a normal vector. As the foot model varies for

various humanoid models and because accurate sensor

locations are not hardwired inside the model, the agent

ideally includes a static floor offset-correction.

4.5. Action sequencing artefact

Sometimes a given sequence of action activation shows

up awkward side effects, such as self-collisions, although

the actions themselves produce a flawless animation

when performed separately. (Figure 16) illustrates such

a self-collision example with two sequentially performed

actions. First, the humanoid is in a rest position (Figure

16a). The first action is activated: the humanoid adopts

an attentive attitude by putting the hands to the back

while leaning forward and starring to the camera (Fig-

ure 16b). Next, we activate a ‘What’s the time?’ action

that brings the left hand to the front of the body (Figure

16d): during the performance, the left hand collides with

the humanoid’s body (Figure 16c).

The self-collision is due to the humanoid’s posture at

the moment when the second action is activated (Fig-

ure 16b). Indeed both actions are key-frame actions,

Figure 16: Self-collisions during the sequential perfor-

mance of two actions: a) initial rest posture, a ‘Be at-

tentive!’ key-frame action is performed, b) a ‘What’s the

time?’ key-frame action is activated, c) final body posture;

all actions are completed.

meaning that they play back a sequence of postures rel-

ative to the current body configuration. In particular,

the artefact (Figure 16b) can be avoided by inserting a

third action (similar to the ‘buffer action’ described in14)

such that the hands avoid the main body. In the sim-

plest case, this action simply resets the body to the rest

posture. Alternatively this buffer action can be merged

within the other actions: we insert a ‘rest posture’ frame

at the end of the first (or at the beginning of the second)

action’s key-frame sequence. More elaborate schemes

with automatic activation of various buffer actions are

currently under study. Potentially such actions can be

posture-reset actions, inverse kinematics actions with

end-effector constraints, or specific collision-avoidance

actions such as described in19 or inspired by the fin-

ger/object collision avoidance approach used in auto-

matic grasping actions.

5. Conclusions

In this paper, we presented a flexible framework im-

plementation for integrating various kinds of motion

generators. With a generic Action and Agent concept,

we are able to plug in new motion generators that

can then be freely mixed with existing actions. We also

discussed new possibilities in animation such as action

parallelism and sequencing, body support planes, Agent

attachments, automatic Agent position corrections. Fi-

nally we pointed out some animation artefacts that may

occur due to the generic character of our framework

and proposed solutions.

The animation library is currently used for all kinds

of applications in our laboratory and has proven to be

a robust and easily extensible solution for integrating a

large variety of animation techniques. The encouraging

feedback led us to extend the framework with new fea-

tures, especially in the domain of perception and object

management2.
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